Water-Quality Classification of Inland Lakes Using Landsat8 Images by Convolutional Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Datasets
2.1.1. Study Areas
2.1.2. Satellite Data
2.1.3. In Situ Water-Quality Levels
2.2. Methods
2.2.1. Remote-Sensing Image Preprocessing
2.2.2. Water-Quality-Level Classification Based on Convolutional Neural Networks
2.2.3. Transfer Learning
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CNN | Convolutional neural network |
Chl-a | Chlorophyll-a |
TSS | Turbidity and Suspended solids |
CODM | Colored dissolved organic matter |
TN | Total nitrogen |
TP | Total phosphorus |
COD | Chemical oxygen demand |
DO | Dissolved oxygen |
DL | Deep learning |
SVM | Support vector machine |
RF | Random forest |
SAE | Stacked autoencoder |
DBN | Deep-belief network |
Landsat8 OLI | Landsat8 Operational Land Imager |
ETM+ | Enhanced Thematic Mapper Plus |
USGS | United States Geological Survey |
CNEMC | China National Environmental Monitoring Center |
FLAASH | Fast line-of-sight atmospheric analysis of spectral hypercube |
ReLU | Rectified Linear Unit |
OA | Overall accuracy |
TL | Transfer learning |
LBP | Local binary pattern |
GLCM | Gray level co-occurrence matrix |
CH | Color histograms |
CM | Color moments |
Appendix A
Numbers | Parameters (Unit: mg/L) | Water-Qualtiy Levels | ||||
---|---|---|---|---|---|---|
I | II | III | IV | V | ||
1 | pH (No unit) | 6–9 | ||||
2 | DO | ≥7.5 | ≥6 | ≥5 | ≥3 | ≥2 |
3 | Permanganate | ≤2 | ≤4 | ≤6 | ≤10 | ≤15 |
4 | COD | ≤15 | ≤15 | ≤20 | ≤30 | ≤40 |
5 | BOD_5 | ≤3 | ≤3 | ≤4 | ≤6 | ≤10 |
6 | NH_3-N | ≤0.15 | ≤0.5 | ≤1 | ≤1.5 | ≤2 |
7 | TP | ≤0.02 | ≤0.1 | ≤0.2 | ≤0.3 | ≤0.4 |
8 | TN | ≤0.2 | ≤0.5 | ≤1 | ≤1.5 | ≤2 |
9 | Cu | ≤0.01 | ≤1 | ≤1 | ≤1 | ≤1 |
10 | Zn | ≤0.05 | ≤1 | ≤1 | ≤2 | ≤2 |
11 | Fluoride | ≤1 | ≤1 | ≤1 | ≤1.5 | ≤1.5 |
12 | Se | ≤0.01 | ≤0.01 | ≤0.01 | ≤0.02 | ≤0.02 |
13 | As | ≤0.05 | ≤0.05 | ≤0.05 | ≤0.1 | ≤0.1 |
14 | Hg | ≤0.00005 | ≤0.00005 | ≤0.0001 | ≤0.001 | ≤0.001 |
15 | Cd | ≤0.001 | ≤0.005 | ≤0.005 | ≤0.005 | ≤0.01 |
16 | Cr | ≤0.01 | ≤0.05 | ≤0.05 | ≤0.05 | ≤0.1 |
17 | Pb | ≤0.01 | ≤0.01 | ≤0.05 | ≤0.05 | ≤0.1 |
18 | Cyanide | ≤0.005 | ≤0.05 | ≤0.2 | ≤0.2 | ≤0.2 |
19 | Volatile phenol | ≤0.002 | ≤0.002 | ≤0.005 | ≤0.01 | ≤0.1 |
20 | Petroleum | ≤0.05 | ≤0.05 | ≤0.05 | ≤0.5 | ≤1 |
21 | Anionic surfactant | ≤0.2 | ≤0.2 | ≤0.2 | ≤0.2 | ≤0.3 |
22 | Sulfide | ≤0.05 | ≤0.1 | ≤0.2 | ≤0.5 | ≤1 |
23 | Fecal coliform | ≤200 | ≤2000 | ≤10,000 | ≤20,000 | ≤40,000 |
References
- Su, J.; Ji, D.F.; Mao, L.; Chen, Y.Q.; Sun, Y.Y.; Huo, S.L.; Zhu, J.C.; Xi, B.D. Developing surface water quality standards in China. Resour. Conserv. Recycl. 2016, 117, 294–303. [Google Scholar] [CrossRef]
- Chen, K.; Ni, M.; Cai, M.; Wang, J.; Huang, D.; Chen, H.; Wang, X.; Liu, M. Optimization of a coastal environmental monitoring network based on the Kriging method: A case study of quanzhou cay, China. BioMed Res. Int. 2016, 1, 1–12. [Google Scholar] [CrossRef]
- Hajigholizadeh, M.; Melesse, A.M.; Reddi, L. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed]
- Nazeer, M.; Bilal, M.; Alsahli, M.M.M.; Shahzad, M.I.; Waqas, A. Evaluation of empirical and machine learning algorithms for estimation of coastal water quality parameters. Int. J. Geo-Inf. 2017, 6, 360. [Google Scholar] [CrossRef]
- Du, C.; Wang, Q.; Li, Y.; Lyu, H.; Zhu, L.; Zheng, Z.; Wen, S.; Liu, G.; Guo, Y. Estimation of total phosphorus concentration using a water classification method in inland water. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 29–42. [Google Scholar] [CrossRef]
- Yu, X.; Yi, H.; Liu, X.; Wang, Y.; Liu, X.; Zhang, H. Remote-sensing estimation of dissolved inorganic nitrogen concentration in the Bohai Sea using band combinations derived from MODIS data. Int. J. Remote Sens. 2017, 37, 327–340. [Google Scholar] [CrossRef]
- Singh, A.; Jakubowski, A.; Chidister, I.; Townsend, P.A. A MODIS approach to predicting stream water quality in Wisconsin. Remote Sens. Environ. 2013, 128, 74–86. [Google Scholar] [CrossRef]
- Mathew, M.M.; Rao, N.S.; Mandla, V.R. Development of regression equation to study the total nitrogen, total phosphorus and suspended sediment using remote sensing data in Gujarat and Maharashtra coast of India. J. Coastal Conserv. 2017, 21, 1–11. [Google Scholar] [CrossRef]
- Politi, E.; Prairie, Y.T. The potential of earth observation in modelling nutrient loading and water quality in lakes of southern Québec, Canada. Aquat. Sci. 2018, 80, 8. [Google Scholar] [CrossRef]
- Politi, E.; Cutler, M.E.J.; Rowan, J.S. Evaluating the spatial transferability and temporal repeatability of remote-sensing-based lake water quality retrieval algorithms at the European scale: A meta-analysis approach. Aquat. Sci. 2015, 36, 3005. [Google Scholar] [CrossRef]
- Tan, W.X.; Liu, P.C.; Liu, Y.; Yang, S.; Feng, S. A 30-year assessment of phytoplankton blooms in Erhai Lake using Landsat imagery: 1987 to 2016. Remote Sens. 2017, 12, 1265. [Google Scholar] [CrossRef]
- Min, C.; Ning, W.; Li, F. Extraction of water body with different water quality types based on Landsat8 image. J. Anhui Agric. Sci. 2016, 30, 220–222. [Google Scholar]
- Kuang, R.Y.; Luo, W.; Zhang, M. Optical classification of Poyang Lake waters based on in situ measurements and remote sensing images. Resour. Environ. Yangtze Basin 2015, 5, 1. [Google Scholar]
- Vapnik, V.V. The nature of statistical learning theory. In The Nature of Statistical Learning Theory; Springer: Berlin, Germany, 2000. [Google Scholar]
- Zhou, Y.; Chen, Y.H.; Feng, L.; Zhang, X.; Shen, Z.F.; Zhou, X.C. Supervised and adaptive feature weighting for object-based classification on satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 99, 1–11. [Google Scholar] [CrossRef]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random forests. Mach. Learn. 2011, 45, 157–176. [Google Scholar]
- Tong, X.Y.; Lu, Q.K.; Xia, G.S.; Zhang, L.P. Large-scale land cover classification in GaoFen-2 satellite imagery. In Proceedings of the IGARSS 2018—IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Zhang, L.P.; Zhang, L.F.; Du, B. Deep learning for eemote sensing data: A technical tutorial on the State of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Haut, J.M.; Paoletti, M.E.; Plaza, J.; Li, J.; Plaza, A.; Chen, H.; Wang, X.; Liu, M. Active learning with convolutional neural networks for hyperspectral image classification using a new Bayesian approach. IEEE Trans. Geosci. Remote Sens. 2018, 99, 1–22. [Google Scholar] [CrossRef]
- Zhao, W.; Jiao, L.C.; Ma, W.P.; Zhao, J.Q.; Zhao, J.; Liu, X.H.; Yang, S.Y. Superpixel-based multiple local CNN for panchromatic and multispectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 99, 1–16. [Google Scholar] [CrossRef]
- Brook, A.; Dor, E.B. Supervised vicarious calibration SVC of hyperspectral remote-sensing data. Remote Sens. Environ. 2011, 115, 1543–1555. [Google Scholar] [CrossRef]
- Lu, D.S.; Mausel, P.; Brondizio, E.S.; Moran, E. Assessment of atmospheric correction methods for Landsat TM data applicable to Amazon basin LBA research. Int. J. Remote Sens. 2002, 23, 2651–2671. [Google Scholar] [CrossRef]
- Nazeer, M.; Nichol, J. Improved water quality retrieval by identifying optically unique water classes. J. Hydrol. 2016, 541, 1119–1132. [Google Scholar] [CrossRef]
- Pyo, J.; Ligaray, M.; Kwon, Y.S.; Ahn, M.H.; Kim, K.; Lee, H.; Kang, T.; Cho, S.B.; Park, Y.; Cho, K.H. High-spatial resolution monitoring of phycocyanin and chlorophyll-a using airborne hyperspectral imagery. Remote Sens. 2018, 10, 1180. [Google Scholar] [CrossRef]
- Liu, J.M.; Zhang, Y.J.; Yuan, D.; Song, X.Y. Empirical estimation of total nitrogen and total phosphorus concentration of urban water bodies in china using high resolution IKONOS multispectral imagery. Water 2015, 7, 6551–6573. [Google Scholar] [CrossRef]
- Xu, X.; Huang, X.L.; Zhang, Y.L.; Yu, D. Long-term changes in water clarity in lake Liangzi determined by remote sensing. Remote Sens. 2018, 10, 1441. [Google Scholar] [CrossRef]
- Liu, D.Z.; Fu, D.Y. Atmospheric correction of Hyperion imagery over estuarine waters: A case study of the Pearl River Estuary in southern China. Int. J. Remote Sens. 2017, 38, 199–210. [Google Scholar] [CrossRef]
- Souleyman, C.; Liu, H.; Gu, Y.F.; Yao, H.X. Deep feature fusion for VHR remote sensing scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 99, 1–10. [Google Scholar]
- Cheng, G.; Yang, C.Y.; Yao, X.W.; Li, K.M.; Han, J.W. When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 2018, 99, 1–11. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks; NIPS Curran Associates, Inc.: Harrahs and Harveys, Lake Taho, NV, USA, 2012. [Google Scholar]
- Simonyan, K.; Zisserman, M. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2013. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? arXiv 2014, arXiv:1411.1792. [Google Scholar]
- Saeed, A.; Khan, A.; Zameer, A.; Usman, A. Wind power prediction using deep neural network based meta regression and transfer learning. Appl. Soft Comput. 2017, 58, 742–755. [Google Scholar]
- Ojala, T.; Pietikainen, M.; Harwood, D. A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 1996, 29, 51–59. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. Stud. Media Commun. 1990, 3, 610–621. [Google Scholar] [CrossRef]
- Yu, G.L.; Yang, W.; Matsushita, B.; Li, R.H.; Oyama, Y.; Fukushima, T. Remote estimation of chlorophyll-a in inland waters by a NIR-red-based algorithm: Validation in Asian Lakes. Remote Sens. 2014, 4, 3492–3510. [Google Scholar] [CrossRef]
- Wu, L.; Wang, L.; Min, L.; Hou, W.; Guo, Z.W.; Zhao, J.H.; Li, N. Discrimination of algal-bloom using spaceborne SAR observations of Great Lakes in China. Remote Sens. 2018, 5, 767. [Google Scholar] [CrossRef]
Water Body | Stations | Section | Assessment (mg/L) | Water-Quality | |||
---|---|---|---|---|---|---|---|
pH | DO | COD | NH | ||||
Chaohu Lake | Hefei Hubin | Chaohu | 7.69 | 11.6 | 4.4 | 0.18 | III |
Chaohu Yuxikou | East Lake | 7.63 | 10.5 | 3.0 | 0.21 | II |
Numbers | Streams | Location | Responsible Department | Water-Quality Level | Major Overstandard Factors |
---|---|---|---|---|---|
1 | Mijuhe | Yinqiaocun | Eryuan county | IV | TP, TN |
2 | Mijuhe | Dafengluqiao | Eryuan county | V | TP, TN |
3 | Mijuhe | Lake inlet | Shangguan town | IV | TP, TN |
4 | Yong’anjiang | Lianhecun | Eryuan county | V | DO, TP, TN |
5 | Yong’anjiang | Xichangcun | Eryuan county | V | DO, TP, TN |
6 | Yong’anjiang | Lake inlet | Shangguan town | V | DO, TP, TN |
The Number of convolutional layers | 2 | 3 | 4 | 5 | 6 | 7 |
Average accuracy | 89.90% | 92.26% | 92.49% | 92.40% | 92.10% | 92.09% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, F.; Ding, C.; Chao, Z.; Yu, Y.; Xu, X. Water-Quality Classification of Inland Lakes Using Landsat8 Images by Convolutional Neural Networks. Remote Sens. 2019, 11, 1674. https://doi.org/10.3390/rs11141674
Pu F, Ding C, Chao Z, Yu Y, Xu X. Water-Quality Classification of Inland Lakes Using Landsat8 Images by Convolutional Neural Networks. Remote Sensing. 2019; 11(14):1674. https://doi.org/10.3390/rs11141674
Chicago/Turabian StylePu, Fangling, Chujiang Ding, Zeyi Chao, Yue Yu, and Xin Xu. 2019. "Water-Quality Classification of Inland Lakes Using Landsat8 Images by Convolutional Neural Networks" Remote Sensing 11, no. 14: 1674. https://doi.org/10.3390/rs11141674
APA StylePu, F., Ding, C., Chao, Z., Yu, Y., & Xu, X. (2019). Water-Quality Classification of Inland Lakes Using Landsat8 Images by Convolutional Neural Networks. Remote Sensing, 11(14), 1674. https://doi.org/10.3390/rs11141674