A Combined Field and Remote-Sensing Based Methodology to Assess the Ecosystem Service Potential of Urban Rivers in Developing Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Raw Data
2.2. Methodology
2.2.1. Hydromorphological Quality
2.2.2. Water Quality
2.2.3. Land Cover
2.2.4. Urban River Ecosystem Services Categorization
2.2.5. Links between URES and Ecosystem Status Categories
3. Results
3.1. Ecosystem Status Categories
3.2. Ecosystem Service Potential of the Pochote River
4. Discussion
4.1. Potential of the Pochote River to Provide Ecosystem Services and Comparison with Other Assessment Methods
4.2. Discussion and Recommendation of Improvements Regarding the Data and Methodology Used
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kumar, P. (Ed.) TEEB Glossary. In The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Earthscan: London, UK; Washington, DC, USA, 2010; ISBN 0-415-50108-3. [Google Scholar]
- Haines-Young, R.; Potschin, M. The links between biodiversity, ecosystem services and human well-being. In Ecosystem Ecology: A New Synthesis; Raffaelli, D.G., Frid, C.L.J., Eds.; Cambridge University Press: Cambridge, UK, 2010; p. 170. ISBN 9780521513494. [Google Scholar]
- MEA Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Schwarz, N.; Moretti, M.; Bugalho, M.N.; Davies, Z.G.; Haase, D.; Hack, J.; Hof, A.; Melero, Y.; Pett, T.J.; Knapp, S. Understanding biodiversity-ecosystem service relationships in urban areas: A comprehensive literature review. Ecosyst. Serv. 2017, 27, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Hubacek, K.; Kronenberg, J. Synthesizing different perspectives on the value of urban ecosystem services. Landsc. Urban Plan. 2013, 109, 1–6. [Google Scholar] [CrossRef]
- Haase, D.; Frantzeskaki, N.; Elmqvist, T. Ecosystem Services in Urban Landscapes: Practical Applications and Governance Implications. Ambio 2014, 43, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Kremer, P.; Hamstead, Z.; Haase, D.; McPhearson, T.; Frantzeskaki, N.; Andersson, E.; Kabisch, N.; Larondelle, N.; Rall, E.L.; Voigt, A.; et al. Key insights for the future of urban ecosystem services research. Ecol. Soc. 2016, 21, art29. [Google Scholar] [CrossRef]
- Czúcz, B.; Arany, I.; Potschin-Young, M.; Bereczki, K.; Kertész, M.; Kiss, M.; Aszalós, R.; Haines-Young, R. Where concepts meet the real world: A systematic review of ecosystem service indicators and their classification using CICES. Ecosyst. Serv. 2018, 29, 145–157. [Google Scholar] [CrossRef]
- Jansson, Å. Reaching for a sustainable, resilient urban future using the lens of ecosystem services. Ecol. Econ. 2013, 86, 285–291. [Google Scholar] [CrossRef]
- Sieber, J.; Pons, M. Assessment of Urban Ecosystem Services using Ecosystem Services Reviews and GIS-based Tools. Procedia Eng. 2015, 115, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Alan Yeakley, J.; Ervin, D.; Chang, H.; Granek, E.F.; Dujon, V.; Shandas, V.; Brown, D. Ecosystem services of streams and rivers. In River Science; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 335–352. [Google Scholar]
- Francis, R.A. Positioning urban rivers within urban ecology. Urban Ecosyst. 2012, 15, 285–291. [Google Scholar] [CrossRef]
- Groffman, P.M.; Bain, D.J.; Band, L.E.; Belt, K.T.; Brush, G.S.; Grove, J.M.; Pouyat, R.V.; Yesilonis, I.C.; Zipperer, W.C. Down by the riverside: Urban riparian ecology. Front. Ecol. Environ. 2003, 1, 315–321. [Google Scholar] [CrossRef]
- Angela, C.-B.; Javier, C.-J.; Teresa, G.-M.; Marisa, M.-H. Hydrological evaluation of a peri-urban stream and its impact on ecosystem services potential. Glob. Ecol. Conserv. 2015, 3, 628–644. [Google Scholar] [CrossRef] [Green Version]
- Elmqvist, T.; Setälä, H.; Handel, S.; van der Ploeg, S.; Aronson, J.; Blignaut, J.; Gómez-Baggethun, E.; Nowak, D.; Kronenberg, J.; de Groot, R. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 2015, 14, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Christie, M.; Fazey, I.; Cooper, R.; Hyde, T.; Deri, A.; Hughes, L.; Bush, G.; Brander, L.; Nahman, A.; de Lange, W.; et al. An Evaluation of Economic and Non-economic Techniques for Assessing the Importance of Biodiversity to People in Developing Countries; Department for Environment, Food and Rural Affairs (DEFRA): London, UK, 2008. [Google Scholar]
- Tallis, H.; Pagiola, S.; Zhang, W.; Shaikh, S.; Nelson, E.; Stanton, C.; Shyamsundar, P. Poverty and the Distribution of Ecosystem Services. In Natural Capital: Theory & Practice of Mapping Ecosystem Services; Kareiva, P., Tallis, H., Ricketts, T.H., Daily, G.C., Polasky, S., Eds.; Oxford University Press: New York, NY, USA, 2011; pp. 278–294. ISBN 978-0-19-958900-5. [Google Scholar]
- Ullah, Z.; Khan, H.; Waseem, A.; Mahmood, Q.; Farooq, U. Water quality assessment of the River Kabul at Peshawar, Pakistan: Industrial and urban wastewater impacts. J. Water Chem. Technol. 2013, 35, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Collier, C.A.; de Almeida Neto, M.S.; Aretakis, G.M.A.; Santos, R.E.; de Oliveira, T.H.; Mourão, J.S.; Severi, W.; El-Deir, A.C.A. Integrated approach to the understanding of the degradation of an urban river: Local perceptions, environmental parameters and geoprocessing. J. Ethnobiol. Ethnomed. 2015, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Findlay, S.; Taylor, M. Why Rehabilitate Urban River Systems? Area 2006, 38, 312–325. [Google Scholar] [CrossRef]
- Everard, M.; Moggridge, H.L. Rediscovering the value of urban rivers. Urban Ecosyst. 2012, 15, 293–314. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Nilon, C.H.; Pouyat, R.V.; Zipperer, W.C.; Costanza, R. Urban Ecological Systems: Linking Terrestrial Ecological, Physical, and Socioeconomic Components of Metropolitan Areas. In Urban Ecology; Springer US: Boston, MA, USA, 2001; Volume 32, pp. 99–122. ISBN 9780387734118. [Google Scholar]
- Satterthwaite, D.; Mitlin, D.; Hardoy, J.E. Environmental Problems in an Urbanizing World; Earthscan Publications: London, UK, 2001; ISBN 1-85383-720-2. [Google Scholar]
- Hack, J. Application of payments for hydrological ecosystem services to solve problems of fit and interplay in integrated water resources management. Water Int. 2015, 40, 929–948. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Gren, Å.; Barton, D.; Langemeyer, J.; McPhearson, T.; O’Farrell, P. Urban Ecosystem Services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K.C., et al., Eds.; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2013; pp. 175–251. [Google Scholar] [Green Version]
- Liu, Y. Dynamic evaluation on ecosystem service values of urban rivers and lakes: A case study of Nanchang City, China. Aquat. Ecosyst. Health Manag. 2014, 17, 161–170. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M.B. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure; The Paddocks: Nottingham, UK, 2018. [Google Scholar]
- Dobbs, C.; Escobedo, F.J.; Clerici, N.; de la Barrera, F.; Eleuterio, A.A.; MacGregor-Fors, I.; Reyes-Paecke, S.; Vásquez, A.; Zea Camaño, J.D.; Hernández, H.J. Urban ecosystem Services in Latin America: Mismatch between global concepts and regional realities? Urban Ecosyst. 2019, 22, 173–187. [Google Scholar] [CrossRef]
- Andersson, E.; Barthel, S.; Borgström, S.; Colding, J.; Elmqvist, T.; Folke, C.; Gren, Å. Reconnecting Cities to the Biosphere: Stewardship of Green Infrastructure and Urban Ecosystem Services. Ambio 2014, 43, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Müller, F.; Burkhard, B. The indicator side of ecosystem services. Ecosyst. Serv. 2012, 1, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Jacobs, S.; Burkhard, B.; Van Daele, T.; Staes, J.; Schneiders, A. ‘The Matrix Reloaded’: A review of expert knowledge use for mapping ecosystem services. Ecol. Modell. 2015, 295, 21–30. [Google Scholar] [CrossRef]
- Kandziora, M.; Burkhard, B.; Müller, F. Mapping provisioning ecosystem services at the local scale using data of varying spatial and temporal resolution. Ecosyst. Serv. 2013, 4, 47–59. [Google Scholar] [CrossRef]
- Maes, J.; Teller, A.; Erhard, M.; Murphy, P.; Luisa Paracchini, M.; Barredo, J.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.-E.; et al. Mapping and Assessment of Ecosystems and Their Services—Indicators for Ecosystem Assessments under Action 5 of the EU Biodiversity Strategy to 2020 Environment; European Union Publications Office: Luxembourg, 2014. [Google Scholar]
- Maes, J.; Zulian, G.; Thijssen, M.; Castell, C.; Baró, F.; Ferreira, A.M.; Melo, J.; David, N.; Alzetta, C.; Geneletti, D.; et al. Mapping and Assessment of Ecosystems and their Services; Urban Ecosystems 4th report; European Union Publishing Office: Luxembourg, 2016. [Google Scholar]
- Kandziora, M.; Burkhard, B.; Müller, F. Interactions of ecosystem properties, ecosystem integrity and ecosystem service indicators: A theoretical matrix exercise. Ecol. Indic. 2013, 28, 54–78. [Google Scholar] [CrossRef]
- Derkzen, M.L.; van Teeffelen, A.J.A.; Verburg, P.H. Quantifying urban ecosystem services based on high-resolution data of urban green space: An assessment for Rotterdam, the Netherlands. J. Appl. Ecol. 2015, 52, 1020–1032. [Google Scholar] [CrossRef]
- Alcaldía Municipal de León Datos generales del municipio León. Available online: http://www.leonmunicipio.com/uploads/1/3/8/2/1382165/datos_generales_del_municipio_de_len.pdf (accessed on 9 November 2016).
- Lüke, A.; Hack, J. Comparing the Applicability of Commonly Used Hydrological Ecosystem Services Models for Integrated Decision-Support. Sustainability 2018, 10, 346. [Google Scholar] [CrossRef]
- Bach, A.; Kipp, C. Photo Documentation of the Río Pochote - Geocoding of the Course of the River with GPS and Localisation of Freshwater Springs, Sewage Discharges and Specific Characteristics; León Publishing Office: León, Nicaragua, 2017. [Google Scholar]
- Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland: Verfahren für kleine und mittelgroße Fließgewässer; LAWA: Berlin, Germany, 2000; ISBN 978-3-88961-233-5.
- Gellert, G.; Pottgiesser, T.; Euler, T. Assessment of the structural quality of streams in Germany—Basic description and current status. Environ. Monit. Assess. 2014, 186, 3365–3378. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS User Guide—Release 2.18. 2019. Available online: https://docs.qgis.org/2.18/pdf/en/QGIS-2.18-UserGuide-en.pdf (accessed on 6 May 2019).
- Preisendorfer, R.W. Secchi disk science: Visual optics of natural waters. Limnol. Oceanogr. 1986, 31, 909–926. [Google Scholar] [CrossRef]
- Garaba, S.; Friedrichs, A.; Voß, D.; Zielinski, O. Classifying Natural Waters with the Forel-Ule Colour Index System: Results, Applications, Correlations and Crowdsourcing. Int. J. Environ. Res. Public Health 2015, 12, 16096–16109. [Google Scholar] [CrossRef] [Green Version]
- Davies-Colley, R.J.; Smith, D.G. Offsite Measurement of the Visual Clarity of Waters. J. Am. Water Resour. Assoc. 1992, 28, 951–957. [Google Scholar] [CrossRef]
- Davies-Colley, R.J.; Vant, W.N.; Wilcock, R.J. Lake water color: Comparison of direct observations with underwater spectral irradiance. J. Am. Water Resour. Assoc. 1988, 24, 11–18. [Google Scholar] [CrossRef]
- QGIS Development Team. GNU Image Manipulation Program—User Manual. 2015. Available online: https://docs.gimp.org/odftest/en.pdf (accessed on 6 May 2019).
- Sourcepole AG QGIS OpenLayers Plugin. Available online: https://github.com/sourcepole/qgis-openlayers-plugin (accessed on 6 March 2019).
- Haines-Young, R.; Potschin, M.B. CICES V5.1 Spreadsheet. 2018. Available online: https://cices.eu/content/uploads/sites/8/2018/03/Finalised-V5.1_18032018.xlsx (accessed on 6 March 2019).
- Geange, S.; Townsend, M.; Clark, D.; Ellis, J.; Lohrer, A. Communicating the value of marine conservation using an ecosystem service matrix approach. Ecosyst. Serv. 2018, 35, 150–163. [Google Scholar] [CrossRef]
- Malherbe, H.; Pauleit, S.; Lorz, C. Mapping the Loss of Ecosystem Services in a Region Under Intensive Land Use Along the Southern Coast of South Africa. Land 2019, 8, 51. [Google Scholar] [CrossRef]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem Service Potentials, Flows and Demands—Concepts for Spatial Localisation, Indication and Quantification. Landsc. Online 2014, 32, 1–32. [Google Scholar] [CrossRef]
- Vigerstol, K.L.; Aukema, J.E. A comparison of tools for modeling freshwater ecosystem services. J. Environ. Manag. 2011, 92, 2403–2409. [Google Scholar] [CrossRef] [PubMed]
- Shuker, L.; Gurnell, A.M.; Raco, M. Some simple tools for communicating the biophysical condition of urban rivers to support decision making in relation to river restoration. Urban Ecosyst. 2012, 15, 389–408. [Google Scholar] [CrossRef]
- Lundy, L.; Wade, R. Integrating sciences to sustain urban ecosystem services. Prog. Phys. Geogr. Earth Environ. 2011, 35, 653–669. [Google Scholar] [CrossRef]
- Ward, E.W.; Winter, K. Missing the link: Urban stormwater quality and resident behaviour. Water SA 2016, 42, 571. [Google Scholar] [CrossRef]
- Thiele, J.; von Haaren, C.; Albert, C. Are river landscapes outstanding in providing cultural ecosystem services? An indicator-based exploration in Germany. Ecol. Indic. 2019, 101, 31–40. [Google Scholar] [CrossRef]
# | Class | Appearance of Discharge |
---|---|---|
0 | not or barely polluted | visibly clear water |
1 | seasonally polluted | brownish colored water, rainwater from surface runoff or does not fit in the other categories |
2 | polluted | |
3 | seasonally highly polluted | milky whitish colored water and or foaming water |
4 | highly polluted |
Hydromorphological Quality | Water Quality | Land Cover | |||
---|---|---|---|---|---|
Class | Value | Class | Value | Class | Value |
1 unchanged | 1.0 | 0 not or barely polluted | 1.0 | high vegetation | 1.0 |
2 slightly changed | 0.83 | 1 seasonally polluted | 0.9 | ||
3 moderately changed | 0.67 | 2 polluted | 0.6 | low vegetation | 0.6 |
4 significantly changed | 0.50 | ||||
5 strongly changed | 0.33 | 3 seasonally highly polluted | 0.3 | ||
6 very strongly changed | 0.17 | ||||
7 totally changed | 0.0 | 4 highly polluted | 0.0 | built-up | 0.0 |
Urban River Ecosystem Service (URESk) | Weighting Factors of Ecosystem Status Categories | |||
---|---|---|---|---|
Hydromorphological Quality (hqk) | Water Quality (wqk) | Land Cover (lck) | ||
Regulating ES | Bio-remediation by micro-organisms, algae, plants, and animals | 1 | 1 | 1 |
Filtration/sequestration/storage/accumulation by micro-organisms, algae, plants, and animals | 1 | 1 | 1 | |
Noise attenuation | - | - | 1 | |
Hydrological cycle and water flow regulation (Including flood control, and coastal protection) | - | - | 1 | |
Maintaining nursery populations and habitats (Including gene pool protection) | 1 | 1 | 2 | |
Regulation of the chemical condition of freshwaters by living processes | 3 | 1 | 1 | |
Regulation of temperature and humidity, including ventilation and transpiration | - | - | 1 | |
Cultural ES | Characteristics of living systems that enable activities promoting health, recuperation, or enjoyment through passive or observational interactions | - | - | - |
Characteristics of living systems that enable aesthetic experiences | - | - | - | |
Provisioning ES | Surface water for drinking | - | - | - |
Surface water for non-drinking purposes | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beißler, M.R.; Hack, J. A Combined Field and Remote-Sensing Based Methodology to Assess the Ecosystem Service Potential of Urban Rivers in Developing Countries. Remote Sens. 2019, 11, 1697. https://doi.org/10.3390/rs11141697
Beißler MR, Hack J. A Combined Field and Remote-Sensing Based Methodology to Assess the Ecosystem Service Potential of Urban Rivers in Developing Countries. Remote Sensing. 2019; 11(14):1697. https://doi.org/10.3390/rs11141697
Chicago/Turabian StyleBeißler, Manuel R., and Jochen Hack. 2019. "A Combined Field and Remote-Sensing Based Methodology to Assess the Ecosystem Service Potential of Urban Rivers in Developing Countries" Remote Sensing 11, no. 14: 1697. https://doi.org/10.3390/rs11141697
APA StyleBeißler, M. R., & Hack, J. (2019). A Combined Field and Remote-Sensing Based Methodology to Assess the Ecosystem Service Potential of Urban Rivers in Developing Countries. Remote Sensing, 11(14), 1697. https://doi.org/10.3390/rs11141697