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Abstract: Accurate paddy rice mapping with fine spatial detail is significant for ensuring food
security and maintaining sustainable environmental development. In northeastern China, rice is
planted in fragmented and patchy fields and its production has reached over 10% of the total
amount of rice production in China, which has brought the increasing need for updated paddy
rice maps in the region. Existing methods for mapping paddy rice are often based on remote
sensing techniques by using optical images. However, it is difficult to obtain high quality time
series remote sensing data due to the frequent cloud cover in rice planting area and low temporal
sampling frequency of satellite imagery. Therefore, paddy rice maps are often developed using
few Landsat or time series MODIS images, which has limited the accuracy of paddy rice mapping.
To overcome these limitations, we presented a new strategy by integrating a spatiotemporal fusion
algorithm and phenology-based algorithm to map paddy rice fields. First, we applied the spatial
and temporal adaptive reflectance fusion model (STARFM) to fuse the Landsat and MODIS data and
obtain multi-temporal Landsat-like images. From the fused Landsat-like images and the original
Landsat images, we derived time series vegetation indices (VIs) with high temporal and high spatial
resolution. Then, the phenology-based algorithm, considering the unique physical features of paddy
rice during the flooding and transplanting phases/open-canopy period, was used to map paddy
rice fields. In order to prove the effectiveness of the proposed strategy, we compared our results
with those from other three classification strategies: (1) phenology-based classification based on
original Landsat images only, (2) phenology-based classification based on original MODIS images
only and (3) random forest (RF) classification based on both Landsat and Landsat-like images.
The validation experiments indicate that our fusion-and phenology-based strategy could improve the
overall accuracy of classification by 6.07% (from 92.12% to 98.19%) compared to using Landsat data
only, and 8.96% (from 89.23% to 98.19%) compared to using MODIS data, and 4.66% (from93.53% to
98.19%) compared to using the RF algorithm. The results show that our new strategy, by integrating
the spatiotemporal fusion algorithm and phenology-based algorithm, can provide an effective and
robust approach to map paddy rice fields in regions with limited available images, as well as the
areas with patchy and fragmented fields.
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1. Introduction

Rice is one of the major staple foods worldwide and plays an essential role in supporting the
growing population. Timely and efficient monitoring of paddy rice fields is a prerequisite for paddy
rice growth monitoring, yield estimation, and agricultural resource management. In recent decades,
paddy rice fields have expanded rapidly due to increasing population and food demand, especially in
northeastern China [1,2], which is exerting pressures on cultivated lands, regional biodiversity and
water resources. Monitoring the spatiotemporal dynamics of paddy rice fields is of great significance
to food safety [3], water resources management [4], and ecosystem sustainability [5].

The rapid development of satellite remote sensing technology has greatly improved our ability to
observe, monitor, and map paddy rice fields [6]. Compared to single time imagery used in traditional
classification, time series imagery can provide more temporal information and help capture phenology
information, thereby reducing the classification errors [7]. In recent years, phenology-based algorithms
have been developed. For example, Zhang et al., 2017 successfully used MODIS LST product to define
rice flooding/transplanting period, and then used MODIS-derived VI temporal profiles to analyze
the spatiotemporal patterns of paddy rice fields from 2000 to 2015 [8]. Zhou et al., 2016 used the
phenology-based method through analysis of Landsat and MODIS images to extract the paddy rice
planting area from the rice-wetland coexistent area [9]. These algorithms extract phenology information
and recognize the key phenology phase (e.g., flooding and transplanting phase, tillering) using spectral
reflectance or vegetation indices at individual pixels from time series imagery.

The most representative phenology-based paddy rice mapping method is the transplanting-based
algorithm [8]. Paddy rice fields are a mixture of water and rice plants in the flooding and transplanting
phase and thus have unique physical characteristics. This feature can be detected based on
the relationship between the time series Land Surface Water Index (LSWI) [10] and Normalized
Difference Vegetation Index (NDVI) [11] or Enhanced Vegetation Index (EVI) [12]. At present,
the transplanting-based algorithm has been widely used for rice field mapping in many regions [7,13–15].
For example, Xiao et al. successfully applied the transplanting-based algorithm to paddy rice mapping
and generated rice distribution maps in South China, South Asia and Southeast Asia based on MODIS
data [13,16]. Zhang et al. obtained the paddy rice map of northeastern China in 2010 by using time
series MODIS-derived VI data [17].

At present, MODIS data has been widely used in the transplanting-based algorithm to map paddy
rice for its high revisit frequency [18]. However, its coarse spatial resolution (250 m–1 km) limits its
suitability in monitoring small cropland patches with high spatial complexity. Especially in China
where paddy rice is usually planted in small, patchy and fragmented fields, the low spatial resolution of
MODIS imagery makes it extremely difficult to generate accurate paddy rice mapping [8]. The Landsat
imagery is an alternative data source with 30 m spatial resolution [6]. However, because of its low
temporal resolution (16 days), it is difficult to obtain enough cloud-free Landsat images for time series
analysis. Therefore, neither the MODIS nor the Landsat alone is suitable for mapping fragmented
paddy rice fields.

One way to solve this problem is to use spatiotemporal fusion algorithms to generate high
spatial-temporal-resolution Landsat-like imagery. Applying remote sensing spatiotemporal fusion
algorithms is a flexible, inexpensive and effective way to generate images with both high temporal
and high spatial resolutions. A typical fusion idea is to combine low-temporal, high-spatial resolution
data (such as Landsat) with high-temporal, low-spatial resolution data (such as MODIS) to predict
images. At present, many scholars have proposed various spatiotemporal fusion algorithms based
on multi-source data [19–21], among which the Spatial and Temporal Adaptive Reflectance Fusion
Model (STARFM) proposed by Gao et al. [22] has been most widely used. Currently, spatiotemporal
fusion predictions have demonstrated their ability and potential for crop-type and other land cover
classifications [23–27]. For example, Zhu et al., 2017 fused Landsat and MODIS images and used SVM
for crop type classification. They found that incorporating STARFM-predicted images for key dates
helps reduce the classification error [23]. Li et al., 2015 fused Landsat TM and MODIS imagery using
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ESTARFM and used decision tree classification to map six crop types [28]. Wang et al., 2017 adopted
similar strategy to map six energy crop types [24]. One recent study used several fused images on key
dates to map paddy rice fields in Hunan, China by supervised random tree (RT) classifier [25]. However,
it can be seen that most studies used image statistics-based approaches, e.g., the supervised classifiers
like maximum likelihood classify (MLC) [27], support vector machine (SVM) [23,26], random forest [29],
and unsupervised classifiers like iterative self-organizing data analysis technique (ISODATE) [30].
Those approaches usually rely on image statistics and/or training sample collection and/or visual
interpretation, which is time-consuming, labor-intensive and region-dependent. The classification
models trained for one region may not be suitable for other regions, which may make the classification
results not always satisfying [9,24,31]. On the other hand, some studies used several predicted images
only instead of constructing time series data throughout the growing season [25,32]. For paddy rice,
clear quantitative representations of physical characteristics such as the flooding and transplanting
signals of paddy rice and key phenology phases would be helpful [18]. However, the phenological
characteristics or variations (e.g., from transplanting to tillering), and the temporal profile information
cannot be well quantified without time series observations.

Because of the unique phenological characteristics of paddy rice, time series Landsat and
Landsat-like data reconstructed by spatiotemporal fusion method combined with phenology-based
algorithm may have the potential to provide a new and feasible strategy for paddy rice mapping in
areas with small, patchy and fragmented paddy rice fields. This study aims to present such a strategy.
First, the time-series MODIS land surface temperature (LST) product was used to identify the plant
growing season and key phenology phases in order to improve the selection of images at appropriate
phenological stages. Second, time series Landsat and Landsat-like images during the growing season
were constructed by the fusion of Landsat and MODIS imagery using STARFM. Third, an improved
phenology-based algorithm with the aid of auxiliary information was proposed. Finally, the accuracy
of the final paddy rice map was evaluated. To further evaluate the role of the strategy in rice mapping,
the importance of fusion data in different time windows was also analyzed.

2. Study Area and Data

2.1. Study Area

The Sanjiang Plain, located in Northeastern China, is an alluvial plain formed by the confluence
of Heilongjiang River, Wusuli River and Songhua River. It has a humid and semi-humid continental
climate region and belongs to the temperate zone. Annual precipitation is about 500–650 mm and
mainly falls between June to October. The agriculture land is primarily cultivated with paddy rice,
maize, bean and some vegetables. Rice seeds are usually sown in mid-April, and rice seedling plants
are transplanted to paddy rice fields between mid-May and early June. Flooding is usually carried
out about two weeks before rice transplanting, and it is a key practice in rice agriculture. Rice plants
are mature in late September and harvested in early October. Corn and soybean are planted from
mid-to-late May and are mature at almost the same time as rice. Other vegetation such as evergreen
forests and wetlands usually have longer growing seasons than rice, corn and soybean. In recent
years, the paddy rice planting area in the Sanjiang Plain has been increasing, resulting in a decrease
in wetland area and a sharp increase in farmland [33]. It was reported that the rice production in
Sanjiang Plain has reached 13% of the total amount of rice production in China [34]. We chose a part
of the Sanjiang Plain as a pilot study area (Landsat Path/Row: 114/27). The study area is located
between 46◦05′33.70′′–48◦02′26.12′′N, 132◦00′39.13′′–133◦08′42.03′′E, and has large areas of croplands,
water bodies, buildings, forests, marshes (wetlands) and other land cover types. The paddy rice fields
in the study are distributed in a scattered manner (Figure 1).
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Figure 1. The location of the study area and its digital elevation model (DEM). The DEM is from 
Shuttle Radar Topography Mission (SRTM) 90 m Digital Elevation Data Version 4, obtained from 
http://www.srtm.csi.cgiar.org. Main rivers, the county boundary and Landsat scene extent (path/row 
114/27) are highlighted. 

2.2. Data and Pre-Processing 

2.2.1. Landsat Data and Pre-Processing 

In order to examine the availability of the Landsat data, the Google Earth Engine platform (GEE, 
https://earthengine.google.org) was used to count the number of all available Landsat images 
(Landsat ETM+, Landsat OLI) over China [35]. Figure 2 shows the annual average numbers of 
Landsat images during 2013–2018 (Figure 2a,c) and the total number of 2018 (Figure 2c,d) with a 
cloud cover of less than 10% respectively. As illustrated, there are few Landsat images available 
especially in the southern and northeastern regions, while those regions are the main rice production 
areas in China (most less than 10 images). Due to the long revisit period (16 days) and the impacts 
from clouds and rain, the actual available data is too few to meet the requirement of the phenology-
based algorithm.  

Figure 1. The location of the study area and its digital elevation model (DEM). The DEM is from
Shuttle Radar Topography Mission (SRTM) 90 m Digital Elevation Data Version 4, obtained from
http://www.srtm.csi.cgiar.org. Main rivers, the county boundary and Landsat scene extent (path/row
114/27) are highlighted.

2.2. Data and Pre-Processing

2.2.1. Landsat Data and Pre-Processing

In order to examine the availability of the Landsat data, the Google Earth Engine platform (GEE,
https://earthengine.google.org) was used to count the number of all available Landsat images (Landsat
ETM+, Landsat OLI) over China [35]. Figure 2 shows the annual average numbers of Landsat images
during 2013–2018 (Figure 2a,c) and the total number of 2018 (Figure 2c,d) with a cloud cover of less than
10% respectively. As illustrated, there are few Landsat images available especially in the southern and
northeastern regions, while those regions are the main rice production areas in China (most less than
10 images). Due to the long revisit period (16 days) and the impacts from clouds and rain, the actual
available data is too few to meet the requirement of the phenology-based algorithm.

http://www.srtm.csi.cgiar.org
https://earthengine.google.org
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Figure 2. Availability of time series cloudless Landsat images in China. The annual average 
observation numbers during 2000–2018 for (a) Landsat 8 and (b) Landsat 7; the total observation 
numbers in 2018 for (c) Landsat 8 and (d) Landsat 7. The study area is marked with red polygons. 

In the study, all available Landsat 7 (ETM+) and Landsat 8 (OLI) surface reflectance data 
(path/row: 114/27) of the study area with cloud cover less than 10% in 2018 were obtained, except for 
the images with large areas of snow cover in winter. The total number of qualified images is seven. All 
Landsat images used in the study were standard terrain-corrected (L1T), radiation-corrected, and 
geometric-corrected images, and had been atmospherically corrected to surface reflectance using 
LEDAPS (Landsat ETM+) [36] and Land Surface Reflectance Code (LaSRC) (Landsat OLI) [37]. All 
possible bad observations affected by clouds, cirrus clouds or ice/snow with confidence levels of 67–
100% were excluded from Landsat images using the quality assessment band (QA). The SLC-off strips 
in the Landsat ETM + images were classified as “no value” [38]. Then, we cropped all images to the 
geographic extent of the study area. Finally, Landsat images after preprocessing were used for the 
STARFM and phenology-based classification (Figure 3). 

Figure 2. Availability of time series cloudless Landsat images in China. The annual average observation
numbers during 2000–2018 for (a) Landsat 8 and (b) Landsat 7; the total observation numbers in 2018
for (c) Landsat 8 and (d) Landsat 7. The study area is marked with red polygons.

In the study, all available Landsat 7 (ETM+) and Landsat 8 (OLI) surface reflectance data (path/row:
114/27) of the study area with cloud cover less than 10% in 2018 were obtained, except for the images
with large areas of snow cover in winter. The total number of qualified images is seven. All Landsat
images used in the study were standard terrain-corrected (L1T), radiation-corrected, and geometric-
corrected images, and had been atmospherically corrected to surface reflectance using LEDAPS
(Landsat ETM+) [36] and Land Surface Reflectance Code (LaSRC) (Landsat OLI) [37]. All possible
bad observations affected by clouds, cirrus clouds or ice/snow with confidence levels of 67–100%
were excluded from Landsat images using the quality assessment band (QA). The SLC-off strips in
the Landsat ETM + images were classified as “no value” [38]. Then, we cropped all images to the
geographic extent of the study area. Finally, Landsat images after preprocessing were used for the
STARFM and phenology-based classification (Figure 3).
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Figure 3. Landsat images used in study after preprocessing (NIR, red and green bands) on the (a) 
April 1st, (b) April 25th, (c) May 19th, (d) May 27th, (e) July 6th, (f) August 7th, (g) September 16th, 
and h) October 18th, and the cloud cover percentage of each image is shown in the figure. 
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The MOD09A1 Version 6 is an eight-day composite 500-m MODIS surface reflectance product. 
The MYD11A2 Version 6 data can provide eight-day average values of nighttime clear-sky LSTs. All 
the MODIS products covering the study area were downloaded from the United States Geological 
Survey (USGS) and re-projected to the UTM-WGS84 Zone 53N projection. Then, all images were 
cropped to keep the same size with Landsat images exactly. For MOD09A1 images, pixels 
contaminated by clouds were masked based on the MODIS quality flags. The MYD11A2 products 
were used to define phenology timing and crop calendar. The starting dates of temperatures above 
0, 5 and 10 °C were calculated and then the resultant maps of the starting date of stable temperatures 
above 0, 5 and 10 °C were generated (Figure 4). Finally, all MOD09A1 images and the resultant maps 
were resampled to a spatial resolution of 30 m using the nearest neighbor interpolation to be spatially 
consistent with the used Landsat images.  

2.3. Additional Datasets 

Ancillary datasets including elevation data and forest map were used to improve paddy rice 
classification. The elevation data was Shuttle Radar Topography Mission (SRTM) Digital Elevation 
Data Version 4 from the CGIAR-CSI SRTM 90 m Database (http://srtm.csi.cgiar.org) and the forest 
map was obtained from ALOS/PALSAR-based fine resolution (25-m) global forest map 
(https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm) [39]. In addition, the phenology 
calendar of major plants in the study area acquired from the Ministry of Agriculture and Rural Affairs 
of the People’s Republic of China (http://www.moa.gov.cn) was used to validate the accuracy of the 
temperature-defined plant growing season and flooding and transplanting period of paddy rice. 

Reference samples were visually interpreted from (1) high resolution image collections from 
Google Earth, and (2) the 311 geo-referenced field photos mostly collected in May 2017 from the 
Global Geo-Referenced Field Photo Library (http://www.eomf.ou.edu/photos/). The geo-referenced 
field photos were converted into points of interest (POIs) in kmz format for displaying in Google 
Earth. In those photos, rice fields were usually farmland covered by water. A total of 711 vector 
polygons (Areas of Interest, AOIs) were drawn around the acquired POIs by referring to both the 
field photos and the Google’s historical high-resolution images, including paddy rice (347 AOIs, 9997 

Figure 3. Landsat images used in study after preprocessing (NIR, red and green bands) on the (a) April
1st, (b) April 25th, (c) May 19th, (d) May 27th, (e) July 6th, (f) August 7th, (g) September 16th, and h)
October 18th, and the cloud cover percentage of each image is shown in the figure.

2.2.2. MODIS Data and Pre-Processing

The MOD09A1 Version 6 is an eight-day composite 500-m MODIS surface reflectance product.
The MYD11A2 Version 6 data can provide eight-day average values of nighttime clear-sky LSTs. All the
MODIS products covering the study area were downloaded from the United States Geological Survey
(USGS) and re-projected to the UTM-WGS84 Zone 53N projection. Then, all images were cropped
to keep the same size with Landsat images exactly. For MOD09A1 images, pixels contaminated by
clouds were masked based on the MODIS quality flags. The MYD11A2 products were used to define
phenology timing and crop calendar. The starting dates of temperatures above 0, 5 and 10 ◦C were
calculated and then the resultant maps of the starting date of stable temperatures above 0, 5 and 10 ◦C
were generated (Figure 4). Finally, all MOD09A1 images and the resultant maps were resampled to a
spatial resolution of 30 m using the nearest neighbor interpolation to be spatially consistent with the
used Landsat images.

2.3. Additional Datasets

Ancillary datasets including elevation data and forest map were used to improve paddy rice
classification. The elevation data was Shuttle Radar Topography Mission (SRTM) Digital Elevation
Data Version 4 from the CGIAR-CSI SRTM 90 m Database (http://srtm.csi.cgiar.org) and the forest map
was obtained from ALOS/PALSAR-based fine resolution (25-m) global forest map (https://www.eorc.
jaxa.jp/ALOS/en/palsar_fnf/data/index.htm) [39]. In addition, the phenology calendar of major plants
in the study area acquired from the Ministry of Agriculture and Rural Affairs of the People’s Republic
of China (http://www.moa.gov.cn) was used to validate the accuracy of the temperature-defined plant
growing season and flooding and transplanting period of paddy rice.

Reference samples were visually interpreted from (1) high resolution image collections from
Google Earth, and (2) the 311 geo-referenced field photos mostly collected in May 2017 from the
Global Geo-Referenced Field Photo Library (http://www.eomf.ou.edu/photos/). The geo-referenced
field photos were converted into points of interest (POIs) in kmz format for displaying in Google Earth.
In those photos, rice fields were usually farmland covered by water. A total of 711 vector polygons
(Areas of Interest, AOIs) were drawn around the acquired POIs by referring to both the field photos

http://srtm.csi.cgiar.org
https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm
https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm
http://www.moa.gov.cn
http://www.eomf.ou.edu/photos/
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and the Google’s historical high-resolution images, including paddy rice (347 AOIs, 9997 pixels) and
non-paddy rice (332 AOIs, 9908 pixels) (Figure 5). The area of paddy rice AOIs (900 ha) is close to
non-paddy rice AOIs (892 ha). Those AOIs contained only one kind of land cover and their boundaries
kept a distance of over 30 m away from the boundaries of other land cover types. The detailed
non-paddy rice AOIs generation method was as follows: the non-paddy rice land cover types were
divided into five major types: upland crop, forest, wetland/swamp, water body, and built-up land,
according to the auxiliary data in Section 2.3 and the paddy rice map from Qin et al. (2015) [3]. Random
points in the study area were generated in each stratum by referring to the high-resolution images
from Google Earth and field photos, and then non-rice AOIs were generated around the random points
with the same method as paddy rice AOIs. The Google historical images used in the AOI drawing
process were mainly in 2016–2018.
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3. Method

The fusion- and phenology-based paddy rice mapping methodology (Figure 6) mainly involved
the following steps: (1) STARFM prediction by using images after pre-processing (Landsat ETM+/OLI,
MODIS); (2) Calculation of time series VIs, namely EVI, NDVI, and LSWI; (3) Mapping paddy rice
fields using the phenology-based algorithm; and (4) Accuracy Assessment.
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Figure 6. Overview of the methodology for fusion-and phenology-based paddy rice mapping using
the Landsat data, MODIS data and other ancillary data.

3.1. STARFM Prediction

STARFM is the most widely used spatiotemporal fusion model, which has stable and reliable
performance in predicting fine resolution images [40,41]. In the study, STARFM was used to fuse
Landsat and MODIS surface reflectance data to generate Landsat-like images. The algorithm was
proposed based on two assumptions: (1) if MODIS and Landsat surface reflectances are equal on date
tk, then they should be equal at date t0; (2) if no change happens in the MODIS surface reflectance,
then no change should be predicted at the Landsat spatial resolution [22]. STARFM takes into account
the spectral and spatial similarities between pixels, using one or two base pairs of Landsat and MODIS
images at date tk and one MODIS image for the prediction date t0 to predict a synthetic Landsat-like
image with a 30 m spatial resolution at the prediction date [22]. In order to minimize the effect of
pixel outliers, the algorithm uses a moving window from fine-resolution images (Landsat) to search
for similar pixels by using spatial, temporal and spectral information. Then, the surface reflectance
for the central pixels of the window at date t0 is computed with a weighting function by introducing
additional information of similar pixels as follows:

L(xω
2 ,yω

2
, t0) =

∑w

i=1

∑w

j=1

∑n

k=1
Wi jk × (M(xi, yi, t0) + L(xi,yi, tk) −M(xi, yi, tk)), (1)

where w is the searching window size, (xω
2 ,yω

2
) is the central pixel of the moving window, and Wi jk is

the weight to decide the contribution of the similar pixels to the estimated reflectance of the central
pixel. L(xω

2 ,yω
2

, t0) is the predicted surface reflectance of pixel (xω
2 ,yω

2
) with the fine resolution at

date t0. M(xi, yi, t0), M(xi, yi, tk) are the surface reflectances of MODIS pixel (xi, yi) at date t0 and tk,
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respectively. L(xi,yi, tk) is the surface reflectance of Landsat pixel (xi,yi) at date tk. More detailed
descriptions of the algorithm can be found in Gao et al., 2006 [22].

In the study, the MODIS images used in STARFM were selected based on the date of available
Landsat images to minimize the time interval between the base pair. In addition, the time interval
between the acquisition date (tk) and the prediction date (t0) was also taken into consideration for
more precise fine images. In order to capture spectral characteristics during key phenology phases
(e.g., rice flooding and transplanting period) and remove noises from other vegetation and crops,
we tried to make Landsat and Landsat-like images distributed evenly during the growing season.
Finally, the STARFM-predicted images combined with the real Landsat images were assembled into
a time series dataset (hereafter referred to as ‘fused time series data’) ready for phenology-based
paddy rice mapping. The Landsat and MODIS images used in STARFM and the Landsat and
STARFM-predicted images used in the phenology-based algorithm are shown in Figure 7.
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STARFM and phenology-based algorithm.

3.2. Fused Time Series NDVI and EVI and LSWI Data

In the phenology-based algorithm, the paddy rice fields can be identified by its unique physical
characteristics. The characteristics can be detected by using the relationship between the time-series
LSWI, NDVI and EVI [13,16,42]. The three indices are widely used in the study of vegetation canopy,
biomass and phenology. Therefore, for each image in the fused time series data, we calculated the
NDVI, EVI, and LSWI using the surface reflectance values of the blue band (ρblue), red band (ρred),
NIR band (ρNIR) and SWIR band (ρSWIR). The functions are as follows:

NDVI =
ρNIR − ρred

ρNIR + ρred
, (2)

EVI = 2.5×
ρNIR − ρred

ρNIR + 6× ρred − 7.5× ρblue + 1
, (3)

LSWI =
ρNIR − ρSWIR

ρNIR + ρSWIR
, (4)

In addition, we calculated the difference between LSWI and EVI (LSWI− EVI) and the difference
LSWI and NDVI (LSWI−NDVI) for each image in the fused time series data. Finally, for comparison
purposes, we also obtained another two sets of VIs (EVI, NDVI, and LSWI) data calculated from the
Landsat only dataset and the MODIS only dataset, respectively.

3.3. Identification of Paddy Rice Fields

3.3.1. Algorithms to Identify Inundation/Flooding Signals

In the study, only paddy rice, natural wetlands, and some vegetation (e.g., grass, trees, and
shrubs growing on the edge of water bodies) have flooding/inundation events/signals. Previous
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works have proved that LSWI-NDVI ≥ 0 or LSWI-EVI ≥ 0 coincide with flooding events [13,16,42].
Generally, the pixels identified as flooded are a mixture of water and plants during the whole year [9].
For paddy rice, this phenomenon can be found in Figure 8. Paddy rice is the only crop that needs to be
transplanted into a mixed environment of water and soil. Before transplanting, paddy rice fields are
covered with water. After transplanting, as rice plants grow in flooded fields, rice fields are a mixture
of rice plants, soil and water (open-canopy stage). Then, rice plants continue to grow until plants
canopy completely covers the fields. In the open-canopy stage, the indices of paddy rice fields have
unique temporal characteristics: the LSWI values of paddy fields are higher than their NDVI and EVI
values. This phenomenon is called flooding events/signals (Figure 8).
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are marked.

Paddy rice transplanting date varies in different regions. Identification of the growing season and
the flooding/transplanting period of paddy rice could help us select images at appropriate times for
better distinguishing paddy rice from other vegetation types [10,14,31], and improve the efficiency
of paddy rice field detection. Crops need certain accumulated temperatures to complete their life
cycle, so it is more reliable to use nighttime LST as a physical indicator for biophysical limitation [7].
Hence, the nighttime MODIS LST data was used to determine the growing season and the paddy
rice flooding/transplanting of the study area. First, the first and last dates of nighttime LST larger
than 0 ◦C were extracted as the start and end dates of the plant growing season of the study area
(Figure 4a,d). Second, according to previous studies, the start date of nighttime LST above 5 ◦C
or 10 ◦C was determined as the likely start date of flooding and transplanting (SOF) [10,31]. Then,
by comparing the temporal profiles of VIs and nighttime LST (Figure 8, the flooding signals of paddy
rice fields mainly occur before the date that LSWI and EVI curves cross), the start date of nighttime
LST over 5 ◦C was close to the SOF in the study (Figure 4b). The flooding signals of paddy rice can
last for about two months after transplanting until rice canopy almost covers the entire fields [13],
so the length of the flooding/transplanting phase was SOF+60. The phenology stages recorded by
the phenology calendar matched well with the temperature-defined plant growing season and the
temperature-defined flooding and transplanting period of paddy rice (Figure 8).



Remote Sens. 2019, 11, 1699 11 of 24

Considering that NDVI is limited under a closed canopy and soil background [43], and EVI is
more sensitive to NIR and more robust to biomass variation [44], we marked the pixels with flooding
signals by using rule LSWI-EVI ≥ 0 for each image during the flooding and transplanting period.
Then we assumed pixels with flooding signals to be “potential or likely” paddy rice pixels and got a
preliminary paddy rice map.

3.3.2. Implementation of Phenology-Based Paddy Rice Mapping Algorithm

Influenced by factors such as atmospheric conditions and other land cover types that have some
similar physical characteristics to paddy rice, the preliminary paddy rice map was inevitably polluted
by noises. Therefore, according to the phenology characteristics and the temporal profiles of VIs of
other land cover types in the study area (Figure 9) [3,9,14,31], masks were established to remove these
noises as follows:

1. Natural vegetation. Forests, grasslands and shrubs grow earlier and are greener than paddy rice,
so the EVI values of natural vegetation are higher than the EVI values of paddy field before the
rice plants begin to grow. We identified the pixels with maximum EVI value ≥ 0.30 before the
mid-flooding/transplanting period (corresponding to the images before May 29 in the study) as
natural vegetation and generated a preliminary mask of natural vegetation. Then we combined
the preliminary mask with the ALOS/PALSAR-based fine resolution (25 m) forest map (2017) to
get a final natural vegetation mask.

2. Sloping land. Rice plants grow in water and therefore cannot be planted in sloping land.
The sloping land mask was generated based on the rule of slope ≥ 3◦ to exclude the areas with
low probabilities of growing paddy rice by using the SRTM DEM data.

3. Sparse vegetation. There are some low-vegetated lands in the field roads, built-up land, water edge
and other areas. Those low-vegetated lands have very low greenness within the entire growing
season (Figure 9 and Figure 11). Thus, pixels with the maximum EVI value ≤ 0.60 within the
plant growing season (nighttime LST > 0 ◦C) were labeled as sparse vegetation. In addition,
the preliminary paddy rice map had obvious strips. That was mainly because the EVI values
of paddy rice pixels reached their maximum from July to August, while the images in July all
contained SLC-off gaps from Landsat ETM+. Therefore, the maximum EVI values of paddy rice
pixels in the strip region were mostly replaced by the paddy rice EVI values from images in
September, and those paddy rice pixels were misclassified into sparse vegetation. Referring to
the dates of the Landsat ETM+ images in the fused time series data, pixels in the strip region with
the maximum EVI value ≤ 0.55 within the plant growing season (nighttime LST > 0 ◦C) were
classified as sparse vegetation.

4. Open canopies in permanent flooding areas, such as vegetation (grass, trees, shrubs) growing on
the edge of water bodies. Pixels in the open canopies are a mixture of natural vegetation and water
and have flooding signals. Therefore, it is necessary to distinguish open canopies in permanent
flooded areas from open canopies in seasonally flooded areas. Unlike seasonal flooding areas
such as rice fields, permanent flooded areas usually have flooding signals throughout the entire
growing season. Therefore, if a pixel had the flooding signal for all images within the entire
growing season, then it was marked as a permanent flooded canopy.

5. Natural wetlands. There are natural wetlands in the Sanjiang Plain due to long-term waterlogging.
When the temperature rises above 0 ◦C, natural wetlands start to flood due to snowmelt. Therefore,
wetland vegetation has grown a few weeks before the flooding signals appear in paddy rice
fields. The difference in EVI values between the wetland vegetation and paddy rice reaches to
the maximum around the middle of June (Figures 9 and 10). Therefore, if a pixel with flooding
signals had maximum EVI value ≥ 0.30 between LST > 0 ◦C and mid-June after excluding the
masks described above, then it was classified as natural wetlands.
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Google Earth images.
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Figure 10. Threshold selection for mask, (a) sparse vegetation mask, and the curves shows the maximum
EVI values of different land covers during nighttime LST >5 ◦C, (b) natural vegetation mask, and the
curve shows the maximum values of different land cover types before mid-to late May.

Finally, all of the pixels in the above mask were excluded from the preliminary paddy rice map
and obtain a final paddy rice maps (hereafter referred to as ‘the fusion-based paddy rice map’).

3.4. Evaluation of Fusion-and Phenology-Based Paddy Rice Map Strategy

3.4.1. Evaluation of STARFM Prediction

We evaluated the accuracy of STARFM predictions by comparing the STARFM-predicted images
with the real Landsat images. The images used as input data and validation data are shown in Table 1.
For example, the Landsat image on 27 May, the MODIS image on 17–25 May were used to predict
the Landsat-like image on 19 May, and then the Landsat-like image was compared with the original
Landsat image on 19 May for evaluation.
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Table 1. Images used in the STARFM for assessment.

Prediction Test Input Landsat tk Input MODIS tk Input MODIS t0 Validation Landsat t0

1 19/05/2018 17/05/2018 25/05/2018 27/05/2018
2 27/05/2018 25/05/2018 17/05/2018 19/05/2018
3 06/07/2018 04/07/2018 05/08/2018 07/08/2018

We selected three groups of data to evaluate the accuracy of STARFM-predicted images in different
situations, including (1) using one fine resolution image to predict the Landsat-like image of the latter
date (Prediction Tests 1 and 3), and (2) using one fine resolution image to predict the Landsat-like
image of the previous date (Prediction Test 2). In addition, the time interval between date tk and date
t0 was also taken into consideration: the time interval of the Prediction Test 3 was close to one month,
which was much longer than Prediction Test 1 and Prediction Test 2 (eight days).

We employed the root mean square error (RMSE), correlation coefficient (r) and absolute average
error (AAD) of predicted reflectance compared with real reflectance (including blue, green, red, NIR,
SWIR1 and SWIR2 bands) to quantitatively assess the accuracy. AAD can reflect the difference between
fusion images and real images. The closer the AAD is to zero, the better the prediction is. r can well
detect the consistency between fusion images and real images. The closer the r is to one, the more
similar the fusion images are to the real images. RMSE can well measure the deviation of fusion
images from real images. The smaller the RMSE, the better the prediction. The functions are shown in
Formulas (5)–(7).

AAD =
1
N

∑N

i=1
|(xi − yi)|, (5)

r =
cov(x, y)√

Var[x]Var[y]
=

∑
i=1 (xi − x) ∗ (yi − y)√[∑

i=1 (xi − x)2
]
∗

[∑
i=1 (yi − y)2

] , (6)

RMSE =

√∑N

i=1
(xi − yi)

2/N, (7)

where N is the number of pixels involved in the calculation, x is the value of each pixel in fusion
images, y is the value of each pixel in the corresponding real image, x, y are the mean values of x and
y, respectively. Moreover, the RMSE, r, AAD between fused NDVI/LSWI/EVI values and Landsat
NDVI/LSEI/EVI values were calculated to assess the performance of the key VIs used in the study.

3.4.2. Comparison with Other Classification Results

For comparison purposes, we used the same phenology-based strategies to generate two additional
maps from Landsat images only and from MODIS time series images, respectively. We also compared
the fusion-and phenology-based strategy with the random forest (RF) classification method. RF is a
well-known, widely used learning-based algorithm. In this study, RF was chosen for its stability since it
is not sensitive to noise. Then RF was employed based on the same set of features, i.e., time series NDVI,
EVI, LSWI and LSWI-EVI from each of the 13 Landsat and Landsat-like images. For the RF classifier,
we generated ROIs for all land cover types (i.e., paddy rice, upland crop, forest, wetland/swamp,
water body, and built-up land) in the same way described in Section 2.3 to support classification
(16,371 pixels). Two parameters were defined as follows: the number of the trees was set to 200,
and the number of the random variable to split each node of the individual tree was set to eight.
First, 200 bootstrap samples were drawn from the 2/3 of the training data set. The remaining 1/3
of the training data called out-of-bag data was used for evaluating the performance of RF. Then,
the decision trees were constructed based on randomly selected features of the bootstrapped sample.
Finally, the class label of each pixel was determined by the majority voting of the decision trees.
The classification result was divided into two categories as well: paddy rice and others. At the same
time, the feature importance (namely variable importance in RF) was obtained, which allowed us
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to analyze the importance of each image and different time windows. The feature importance was
estimated by the degradation of model prediction, caused by the random permutation [45]. Then we
used the same set of reference samples as in the accuracy assessment of the phenology-based paddy
rice map to evaluate the four classification results by comparing the map class and reference class at
the reference sample locations. The number of samples for training the models in RF was close to the
number of samples for accuracy assessment.

4. Result

4.1. Accuracy of the STARFM Predictions

Scatter density plots in Figure 11 show the relationships of the VIs between the predicted and
the actual values of Prediction Test 1/2/3. All the data in the scatter density plots fall close to the
1:1 line. Therefore, all the results show that the STARFM algorithm can predict the fine resolution
images with high accuracy and reliably express the spectral information of the Landsat image in the
corresponding period.
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Tables 2 and 3 list the results of AAD, RMSE and r calculations on the six bands and VIs between
the predicted images and the real images. For reflectance (six bands), the RMSE values vary from 0.01
to 0.08, r values range from 0.66 to 0.93, and AAD values vary from 0.01 to 0.05; for VIs, the RMSE
values vary from 0.05 to 0.27, r values range from 0.71 to 0.96, and AAD values vary from 0.03 to
0.16. Generally, the comparison between real Landsat and STARFM-predicted images show high
correlations and small biases, both for reflectance (six bands) and VIs. The fusion image of Prediction
Test 3 shows greater errors and lower correlations than the fusion images of Prediction Test 1 and 2.
The AAD and RMSE values of Prediction Test 3 (ranges from 0.01 to 0.05, and 0.01 to 0.08, respectively)
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were generally larger than Prediction Test 1 (ranges from 0.01 to 0.03, and 0.02 to 0.04, respectively) and
Prediction Test 2 (ranges from 0.02 to 0.04, and 0.01 to 0.05, respectively). The r values of prediction Test
3 (ranges from 0.65 to 0.73) were smaller than Prediction Test 1 (ranges from 0.79 to 0.93) and Prediction
Test 2 (ranges from 0.79 to 0.93). One potential explanation for the relatively low accuracy of Prediction
Test 3 may be due to that its time interval between base date and prediction date was larger than the
other two. In Prediction Test 3, the paddy rice has undergone more rapid growth around August,
which further makes the difference between the image on the base date and the image on the prediction
date larger and brings more errors to the fused image. There is a small difference between the image
predicted by the real image on the previous date and the image acquired by the real image on the later
date (Prediction Test 1 and 2). Therefore, when using real fine images to predict images, the images
before and after the prediction date both can be taken into consideration. However, the time interval
between the acquisition date and the prediction date needs to be taken into consideration. In the study,
all the situations above have been taken into consideration for more precise, predicted images.

Table 2. Root Mean Square Error (RMSE), Correlation Coefficient (r), and Absolute Average
Difference (AAD) between the STARFM-predicted surface reflectance and the corresponding Landsat
surface reflectance.

Band
Prediction Test 1 Prediction Test 2 Prediction Test 3

RMSE r AAD RMSE r AAD RMSE r AAD

Blue 0.02 0.80 0.01 0.02 0.79 0.01 0.01 0.68 0.01
Green 0.02 0.83 0.01 0.02 0.82 0.01 0.01 0.72 0.01
Red 0.02 0.89 0.02 0.02 0.88 0.02 0.02 0.74 0.01
NIR 0.04 0.93 0.03 0.04 0.91 0.03 0.08 0.67 0.05

SWIR1 0.04 0.92 0.03 0.04 0.92 0.03 0.04 0.73 0.03
SWIR2 0.04 0.91 0.03 0.04 0.92 0.03 0.04 0.66 0.02

Table 3. Root Mean Square Error (RMSE), Correlation Coefficient (r), and Absolute Average Difference
(AAD) between the STARFM-predicted NDVI/EVI/LSWI values and the corresponding Landsat
NDVI/EVI/LSWI values.

VI
Prediction Test 1 Prediction Test 2 Prediction Test 3

RMSE r AAD RMSE r AAD RMSE r AAD

NDVI 0.13 0.90 0.07 0.09 0.94 0.06 0.13 0.95 0.05
EVI 0.05 0.71 0.03 0.05 0.96 0.03 0.27 0.96 0.16

LSWI 0.20 0.86 0.11 0.15 0.89 0.09 0.14 0.82 0.06

Figure 12 shows an example of temporal profiles of paddy rice vegetation indices (NDVI, EVI,
and LSWI) extracted from fused time series data. We can see clearly the growing cycle of paddy rice,
with the growing season peaks around July 28, the flooding and transplanting period starts around
May 1 and ends around July 1. It is worth noting that if we only use Landsat data, we will get a much
narrower time window corresponding to the flooding and transplanting period and will have few
available scenes during the peak growing season.
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4.2. Comparisons with Non-Fusion-Based and RF Classification Results

In order to verify the availability of the new strategy in paddy rice field mapping, the MODIS and
the Landsat time series imagery were also used to map paddy rice by using the same classification
strategies described in Section 3, respectively (hereafter referred to as ‘the Landsat-based paddy rice
map’, ‘the MODIS-based paddy rice map’). In addition, the RF classification method was used to map
paddy rice based on the same fused time series data (hereafter referred to as ‘the RF-based paddy rice
map’). The results of the above four classifications are shown in Figure 13. Most of the paddy rice
fields were distributed in flat areas near rivers, which was consistent with the real situation.

All maps maintained good spatial consistency. Compared with the Landsat-based map
(Figure 13e,f), the map based on the fused time series data (Figure 13c,d) can better distinguish
paddy rice from wetland/swamp vegetation, and had higher classification accuracy for paddy rice
fields, especially the paddy rice fields near rivers, wetlands, and marshes. In addition, the fusion-based
classification can effectively remove the SLC-off gap effects by using the phenology-based algorithm.
However, the Landsat imagery can hardly exactly extract phenology information such as the maximum
EVI/NDVI value due to data limitation (Figure 12). Thus, there were some commission errors,
omissions errors and obvious SLC-off gap effects in the Landsat-based map. Compared with the
MODIS-based map (Figure 13g,h), the fusion-based map contained more spatial details. For example,
it can clearly show some patchy and fragmented paddy rice fields and the roads between paddy rice
fields, which were omitted on the MODIS-based map. Compared with the RF-based map (Figure 13i,j),
the fusion-based map also contained more spatial details for it can clearly show the roads between
fields. The paddy rice fields estimated from the Landsat-based map and the MODIS-based map
accounted for about 29.38% (6.48 × 104 ha), 32.11% (7.08 × 104 ha) of the study respectively, which were
smaller than that estimated from the fusion-based map (33.46%, 7.38 × 104 ha).
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Figure 13. The comparison of four paddy rice maps: (a) Landsat image (false color composite, include
red band, green band and blue band); (c) fusion-based paddy rice map, and (e) Landsat-based paddy
rice map; (g) MODIS-based paddy rice map; (i) RF-based paddy rice map. (b,d,f,h,j) display the spatial
details of (a,c,e,g,i) respectively within the black box.

Confusion matrices in Table 4 show that the overall accuracy and Kappa coefficient of the
fusion-based paddy rice map were 98.19% and 0.96 respectively, which were larger than the
MODIS-based paddy rice map (89.23%, 0.78) and the Landsat-based paddy rice map (92.12%, 0.84).
The difference between the fusion-based map and Landsat-based map mainly in the classification
of sparse vegetation in the areas of strips and wetlands. Greater commission and omission errors
were found in the MODIS-based map. Therefore, the combination of fusion images, Landsat ETM
+ and OLI can make the phenology-based algorithm more powerful in mapping paddy rice fields
and improve classification accuracy. Furthermore, for comparison purposes, the overall accuracy and
Kappa coefficient of the RF-based paddy rice map were calculated in the same way, and were 93.53%,
0.87 respectively. This further indicates that our classification strategy used in this paper can obtain
higher classification accuracy.
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Table 4. The confusion matrixes between the four maps and areas of interest (AOIs).

Paddy Rice Map Class PA (%) UA (%) OA (%) Kappa Coefficient

Fusion-based
Paddy rice 97.96 98.42

98.19 0.96Others 98.42 97.95

MODIS-based
Paddy rice 82.84 95.09

89.23 0.78Others 95.68 84.68

Landsat-based
Paddy rice 90.91 93.23

92.12 0.84Others 93.34 91.05

RF-based
Paddy rice 96.20 91.38

93.53 0.87Others 90.85 95.95

4.3. Evaluation of the Feature Importance

All 52 features were sort into six groups by variable importance in descending order. For all
features in one time window (e.g., each month), the number of features in each group was counted
and then its percentage in all features of the time window was calculated (hereafter referred to as
‘the percentages of each group’). The importance of each month and the entire transplanting and
flooding period was evaluated by the percentages of each group (Figure 14a): the higher the percentage
of the crucial groups in the time window, the higher the importance of the time window. The importance
of each image was presented by the average score of its feature importance (Figure 14b). On the
one hand, the result shows that April, May and June contributed more than other months to the
classification. Especially, the images within the transplanting and flooding period played an important
role in the classification, which shows the importance of the images in the key phenology period
for paddy rice identification. From Figures 8 and 12, the flooding and transplanting period starts
around May 1 and ends around July 1. This may explain why April, May and June were deemed as
the important time window in mapping paddy rice and prove the importance of the images from the
transplanting and flooding period. On the other hand, the result indicates that almost all the images
within the planting growing season have provided valuable information for distinguishing different
land cover types. Fused images were mostly ranked with higher importance. The potential explanation
for the relatively high importance of fused images may be due to it has filled the gap of data in the
flooding and transplanting period and peak growing season (Figure 12) that play an important role in
distinguishing different land cover types. This further proved the necessity and the importance of
those fusion images used in the classification.
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Figure 14. Contribution of different time windows and images to the classification. (a) Contribution of
each month and the entire transplanting and flooding period to the classification through evaluating its
feature importance. The top crucial features were colored in dark brown, while the least decisive features
were shown in dark green. (b) Contribution of each image to the classification by calculating the average
score of its feature importance. The rankings of importance for all images (in descending order) are marked.
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5. Discussion

5.1. Advantages of Fusion-and Phenology-Based Paddy Rice Mapping Strategy

High-quality observations during paddy rice growth period are essential for paddy rice field
mapping. There are persistent and heavy cloud coverages in most paddy rice planting regions,
which brings uncertainties and noises to paddy rice classification due to those unfavorable observing
conditions. Therefore, the ultimate goal of the study is to provide a pathway leading to an operational
strategy for paddy rice mapping by alleviating or overcoming the data limitation to some degree.
To achieve the goal, we presented a new strategy by integrating the STARFM spatiotemporal fusion
algorithm and phenology-based algorithm. Our results show that the strategy performs better
than the conventional phenology-based algorithm using MODIS data alone or using Landsat data
alone. The paddy rice map shows more spatial details and lower errors than the Landsat-based and
MODIS-based maps. This is mainly because that the fusion data helps recover the temporal profiles
of VIs, which play an essential role in identifying unique phenological characteristics of paddy rice.
The comparisons with the existing MODIS-map by Zhang et al., 2015 [17] and the existing Landsat-map
by Dong et al., 2015 [14] also confirm that our map has more spatial details and fewer omission errors
especially in SLC-off strip areas and regions with patchy and fragmented fields. Figure 15 compares the
temporal profiles of VIs extracted from time series Landsat and Landsat-like data with those extracted
from MODIS data at three sites (all the three sites were selected according to field photos). It can be seen
that the EVI/NDVI values from the fused time series data show similar trends with those from MODIS
data. Generally, the VIs based on the red-edge and NIR bands have strong correlations with LAI and
are sensitive to the dynamics of the canopy and surface water content [17,46]. Therefore, the NDVI,
EVI, LSWI should ideally capture the unique physical features of paddy rice during the flooding and
transplanting phases. However, the MODIS LSWI time series failed to depict the flooding signals
during the paddy rice transplanting and flooding period because of its low spatial resolution and
mixed pixels. During the flooding and transplanting period, the LSWI values from the MODIS time
series (the maximum LSWI value was lower than 0.40) were much smaller than those from the fused
time series data (the maximum LSWI value was over 0.60). Using Landsat data alone cannot capture
greening and maturing signals of rice plants. From Figure 15a,d,g, the increasing trend of NDVI/EVI
values from May to July and decreasing trend from July to November were well reconstructed by the
fused time series data. Therefore, the fusion images are desirable to capture phenological information
and for paddy rice classification.

Previous researches [23,32] reported that using all of the time-series Landsat and fused Landsat-like
data for land cover classification may be not a judicious choice. However, in our study, we found
that the utilization of time-series Landsat imagery is necessary. In their studies, SVM was used
for classification. Redundant information in the spectral time series might cause overfitting and
lower generalization power of SVM, thus leading to larger errors. Different from the training-based
classification, the phenology-based algorithm used in our strategy relies on a clear phenological
pattern to select the threshold suitable for paddy rice detection. Moreover, in our study, we found
that our strategy-based classification performed better than the RF-based classification. In the map
derived from RF, the roads between fields were misclassified as paddy rice, and there were obvious
omission errors caused by SLC-off gaps. In addition, our method does not need training samples and
is easy to implement. However, the RF-based map shows higher accuracy and lower errors than the
Landsat-based and MODIS-based maps, which may indicate the role of the fusion images. The feature
importance derived from the RF model reveals that features from fused Landsat-like data have higher
ranks, confirming the necessities of spatiotemporal fusion in paddy rice mapping, regardless of the
classification method used.

Previous research by Qin et al., 2015 [3] using both Landsat OLI and ETM+ images in the same
study area showed that there was reasonable agreement on the spatial distribution of the paddy rice
fields, although their results were generated for the year of 2012 and 2013. The overall accuracy and
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Kappa coefficient of their results were 97.32% and 0.94 respectively, which were smaller than our result
(98.19%, 0.96). According to the high-resolution images in Google Earth from 2012–2013 and 2018,
we found that areas which showed differences in the two paddy rice maps may be attributed to either
the omission error in the result by Qin et al. (associated with data limitation) or the expansion of rice
paddy fields in 2012–2018.Remote Sens. 2019, 11, x FOR PEER REVIEW 20 of 24 
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(132.32◦N, 47.31◦E). The locations and the dates of the field photos taken were marked in the photos.
The VIs values obtained from fused images were marked with black dots, and the VIs values obtained
from MODIS images were marked with hollow triangles.

5.2. Limitation and Future Opportunities

There are still some limitations in the strategy presented in this study. First, errors from STARFM
predictions may affect the classification results. How these errors affect the following phenology-based
classification results were not fully investigated in this study. Generally, the quality of predicted
Landsat-like images is affected by the time interval between the base pair and the time interval between
the acquisition date (tk) and the prediction date (t0) [47]. A greater time interval between tk and t0

indicates worse quality of the STARFM-predicted image. In our study, the fusion image of Prediction
Test 3 shows greater errors and lower correlations than the other two (Table 3). The rapid growth
period such as August would further enlarge the difference between images from different dates and
cause more errors in the fused image. It needs to be investigated in the future that how temporal
change intensity influences the performance of the fusion algorithm, and how errors in prediction
influence the construction of time-series phenology patterns. We recognize that there are continuous
efforts in improving the spatiotemporal fusion model [19,21,48]. For example, Zhu et al. developed the
enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) using two base pairs of
images and proved that the model can improve the prediction accuracy in heterogeneous regions [21].
However, the algorithm was based on the assumption that the reflectance changes linearly, which may
be not applicable for predicting images in different phenology periods. In addition, it has been shown
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that using two MODIS-Landsat base pairs does not necessarily improve the prediction, and even
increases the errors on some bands [23]. Future research may further improve the spatiotemporal
fusion algorithm based on only one pair of base images.

Second, the strategy presented in this study may not be directly used for other regions due to
different timing of phenological stages. Thresholds of the indices for paddy rice detection need to be
carefully examined and selected when applying to other regions. The strategy may also face challenges
for regions with very frequent cloud covers, such as in South Asia. Sparse availability of cloud-clear
observations will hinder the application of optical remote sensing images. In those regions, SAR data
that is not influenced by cloud may be a better choice for paddy rice mapping [18].

6. Conclusions

In this study, we presented a fusion- and phenology-based strategy for paddy rice mapping in areas
where severe cloud contamination limits data availability. MODIS LST data was first used to improve
the selection of images and determination of the fusion images date at appropriate phenological
stages. STARFM was used to predict Landsat-like images during rice growth period based on MODIS
and Landsat images. The fusion images help to reconstruct the time series VIs at 30 m resolution,
allowing for paddy rice mapping in patchy and fragmented fields. Auxiliary data including DEM
data and forest map were also used to further improve the accuracy of the paddy rice classification
result. The overall accuracy and the kappa coefficient of our paddy rice map were 98.19% and 0.96,
respectively, which were higher than the maps based on MODIS, Landsat only. Compared with paddy
rice maps based on low spatial resolution such as MODIS, our map has more spatial details information,
and greatly reduce the influence of mixed pixels on the accuracy; compared with maps based on
Landsat data alone, our map can effectively distinguish paddy rice fields from other crops, wetland
marshes, and identify the paddy rice fields within areas covered by SLC-off gaps, clouds, shadows,
et al. Our result shows that our strategy is effective and robust in the regions with limited available
images, as well as the areas with patchy and fragmented fields.

The results prove the role of the fusion images in mapping paddy rice and indicate the importance
of high-quality images within the growing season for paddy rice mapping. With the unprecedented
opportunities provided by fused time series imagery, it is believed that this proposed fusion-and
phenology-based classification strategy is promising to facilitate the long-term and effective monitoring
and mapping of paddy rice. Our future work will consider taking new satellite images, such as Landsat
and Sentinel-2 MSI data, as the input data of the spatiotemporal fusion algorithm in order to provide
higher spatial and higher temporal resolution time series data for the phenology-based algorithm.
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