Remote Sensing-Based Assessment of the Crop, Energy and Water Nexus in the Central Valley, California
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Crop Yield Estimation
2.3. Water Use Estimation
2.3.1. Estimate Groundwater Abstraction
2.3.2. Estimate ETa for Specific Crops
2.4. Energy Use Estimation
2.5. Water and Energy Footprints Estimation
3. Results and Discussion
3.1. Historical Precipitation and Cropping Patterns
3.2. Historical Changes in Groundwater Use
3.3. Spatial and Temporal Variation in Water Footprints
3.4. Spatial and Temporal Variation in Energy Footprints
3.5. Spatial and Temporal Variation in Energy Use for Water
4. Conclusions
- The Central Valley has experienced increased stress of water and energy supplies to meet ever-increasing agricultural demand, which was worsened during the two major droughts in the past decade. The highest impact (negative) of droughts occurred in water-scarce southern regions, San Joaquine and Tulare. The GWFs of high water consumptive tree crop (almond) in Tulare and San Joaquine are around 84% and 92% higher than those in Sacramento on average.
- The water footprint of almond in recent years is higher than almost all other crops. The total blue water footprint for almond has been increasing, with the highest increasing rate in San Joaquine. In contrast, the total blue water footprint for cotton has decreased in recent years. The groundwater footprint in Tulare increased during both droughts (with the highest magnitude during the most recent megadrought). Groundwater footprint in Sacramento is relatively less than that in the other subregions, but has a modest increasing trend.
- The energy footprint (energy for groundwater pumping) for all crops scenario in Tulare is substantially higher than other regions. For almond and cotton, both Tulare and San Joaquine subregions have higher energy footprints than the scenario of all crops. On average, energy footprints under almond and cotton crops are around 3 to 3.9 times as much as the energy footprint under all crops scenario.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations (UN) 2015 Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sustainable development.un.org/post2015/transformingourworld (accessed on 12 May 2019).
- Lawford, R.; Bogardi, J.; Marx, S.; Jain, S.; Wostl, C.P.; Knuppe, K.; Ringler, C.; Lansigan, F.; Meza, F. Basin perspectives on the water–energy–food security nexus. Curr. Opin. Environ. Sustain. 2013, 5, 607–616. [Google Scholar] [CrossRef]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerström, R.; Alfstad, T.; Gielen, D.; Rogner, H.; Fischer, G.; Van Velthuizen, H.; et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Chang. 2013, 3, 621. [Google Scholar] [CrossRef]
- Scott, C.A. The water-energy-climate nexus: Resources and policy outlook for aquifers in Mexico. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Smajgl, A.; Ward, J.; Pluschke, L. The water–food–energy Nexus–Realizing a new paradigm. J. Hydrol. 2016, 533, 533–540. [Google Scholar] [CrossRef]
- Biggsa, E.M.; Bruceb, E.; Boruffc, B.; Duncana, J.M.; Horsleyc, J.; Paulic, N.; McNeilld, K.; Neefd, A.; Ogtrope, F.V.; Curnowf, J.; et al. Imanarig Sustainable development and the water–energy–food nexus: A perspective on livelihoods. Environ. Sci. Policy 2015, 54, 389–397. [Google Scholar] [CrossRef]
- Maupin, M.; Kenny, J.; Hutson, S.; Lovelace, J.; Barber, N.; Linsey, K. Estimated Use of Water in the United States in 2010; U.S. Geological Survey: Reston, VA, USA, 2014; Volume 1405, p. 53.
- Howitt, R.; Medellın-Azuara, J.; MacEwan, D.; Lund, J.; Sumner, D. Economic Analysis of the 2014 Drought for California Agriculture; University of California, Davis-Center for Watershed Sciences: Yolo, CA, USA, 2014. [Google Scholar]
- Xiao, M.; Koppa, A.; Mekonnen, Z.; Pagán, B.R.; Zhan, S.; Cao, Q.; Aierken, A.; Lee, H.; Lettenmaier, D.P. How much groundwater did California’s Central Valley lose during the 2012–2016 drought? Geophys. Res. Lett. 2017, 44, 4872–4879. [Google Scholar] [CrossRef]
- Dale, L. Quantifying Groundwater Pumping Energy Use and Costs in California to Improve Energy and Water Systems Reliability; ETA Seminar, Lawrence Berkeley National Laboratory Technical report; University of California, Davis-Center for Watershed Sciences: Yolo, CA, USA, 2016. [Google Scholar]
- Diffenbaugh, N.S.; Swain, D.L.; Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. USA 2015, 112, 3931–3936. [Google Scholar] [CrossRef] [Green Version]
- Mubako, S.T.; Lant, C.L. Agricultural virtual water trade and water footprint of U.S. States. Ann. Assoc. Am. Geogr. 2013, 103, 385–396. [Google Scholar] [CrossRef]
- Mekonnen, M.; Hoekstra, A. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Fulton, J.; Cooley, H.; Gleick, P.H. California’s Water Footprint; Technical Report; Pacific Institute: Oakland, CA, USA, 2012. [Google Scholar]
- Fulton, J.; Cooley, H.; Gleick, P.H. Water footprint outcomes and policy relevance change with scale considered: Evidence from California. Water Resour. Manag. 2014, 28, 3637–3649. [Google Scholar] [CrossRef]
- Mubako, S.T.; Lahiri, S.; Lant, C.L. Input-output analysis of virtual water transfers: Case study of California and Illinois. Ecol. Econ. 2013, 93, 230–238. [Google Scholar] [CrossRef]
- Marston, L.; Konar, M. Drought impacts to water footprints and virtual water transfers of the Central Valley of California. Water Resour. Res. 2017, 53, 5756–5773. [Google Scholar] [CrossRef]
- CPUC (California Public Utilities Commission). Embedded Energy in Water Studies: Study 3 End-Use Water Demand Profiles; California Public Utilities Commission: San Francisco, CA, USA, 2011. Available online: ftp://ftp.cpuc.ca.gov/gopherdata/energy%20efficiency/Water%20Studies%203/End%20Use%20Water%20Demand%20Profiles%20 Study%203%20FINAL.PDF (accessed on 27 April 2017).
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Li, X.-H.; Zhang, Q.; Xu, C.-Y. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin. J. Hydrol. 2012, 426, 28–38. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Sheffield, J.; Pan, M.; Wood, E.F. Evaluation of the tropical rainfall measuring mission multi-satellite precipitation analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens. Environ. 2015, 159, 181–193. [Google Scholar] [CrossRef]
- Zhang, A.; Jia, G. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Senay, G.B.; Budde, M.; Verdin, J.P. Enhancing the Simplified Surface Energy Balance (SSEB) approach for estimating landscape ET: Validation with the METRIC model. Agric. Water Manag. 2011, 98, 606–618. [Google Scholar] [CrossRef]
- Senay, G.B.; Bohms, S.; Singh, R.; Gowda, P.A.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. J. Am. Water Resour. Res. 2013, 49, 577–591. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. The surface energy balance algorithm for land (SEBAL): Part 1 formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC–Model. ASCE J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- USDA NASS CDL. CropScape–Cropland Data Layer. 2018. Available online: https://nassgeodata.gmu.edu/CropScape (accessed on 5 March 2019).
- Han, W.; Yang, Z.; Di, L.; Zhang, B.; Peng, C. Enhancing agricultural geospatial data dissemination and applications using geospatial Web services. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4539–4547. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Daggupati, P.; Douglas-Mankin, K.R.; Sheshukov, A.Y.; Barnes, P.L.; Devlin, D.L. Field-level targeting using SWAT: Mapping output from HRUs to fields and assessing limitations of GIS input data. Trans. ASABE 2011, 54, 501–514. [Google Scholar] [CrossRef]
- Johnson, D.M. A 2010 map estimate of annually tilled cropland within the conterminous United States. Agric. Syst. 2013, 114, 95–105. [Google Scholar] [CrossRef]
- Stern, A.; Doraiswamy, P.C.; Hunt, E.R. Changes of crop rotation in Iowa determined from the United States Department of Agriculture, National Agricultural Statistics Service cropland data layer product. J. Appl. Remote Sens. 2012, 6, 063590. [Google Scholar] [CrossRef]
- Han, W.; Yang, Z.; Di, L.; Mueller, R. CropScape: A Web service-based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Comput. Electron. Agric. 2012, 84, 111–123. [Google Scholar] [CrossRef]
- USDA NASS. 2016, Quick Stats. Available online: http://quickstats.nass.usda.gov (accessed on 10 March 2013).
- Velpuri, N.M.; Senay, G.B. Partitioning evapotranspiration into green and blue water sources in the conterminous United States. Sci. Rep. 2017, 7, 6191. [Google Scholar] [CrossRef] [PubMed]
- Brush, C.F.; Dogrul, E.C.; Kadir, T.N. Development and Calibration of the California Central Valley Groundwater-Surface Water Simulation Model (C2VSim); Version 3.02-CG; Bay-Delta Office, California Department of Water Resources: Sacramento, CA, USA, 2013.
- Prieto, C.; Le Vine, N.; Kavetski, D.; Garcia, E.; Medina, R. Flow prediction in ungauged catchments using probabilistic Random Forests regionalization and new statistical adequacy tests. Water Resour. Res. 2019, 55, 4364–4392. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by random forest. R News 2002, 2, 18–22. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L.; FriedmanJ, H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Peñas, F.J.; Barquín, J.; Snelder, T.H.; Booker, D.J.; Álvarez, C. The influence of methodological procedures on hydrological classification performance. Hydrol. Earth Syst. Sci. 2014, 18, 3393–3409. [Google Scholar] [CrossRef]
- Li, R.; Ou, G.; Pun, M.; Larson, L. Evaluation of Groundwater Resources in Response to Agricultural Management Scenarios in the Central Valley, California. J. Water Resour. Plan. Manag. 2018, 144, 04018078. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual. Setting the Global Standard; Earthscan: London, UK, 2011; Volume 1, p. 224. [Google Scholar]
- Cooper, M.G.; Schaperow, J.R.; Cooley, S.W.; Alam, S.; Smith, L.C.; Lettenmaier, D.P. Climate Elasticity of Low Flows in the Maritime Western US Mountains. Water Resour. Res. 2018, 54, 5602–5619. [Google Scholar] [CrossRef]
- Fulton, J.; Norton, M.; Shilling, F. Water-indexed benefits and impacts of California almonds. Ecol. Indic. 2019, 96, 711–717. [Google Scholar] [CrossRef]
Data Type | Data Name | Minimum Mapping Unit | Temporal Resolution | Source Type |
---|---|---|---|---|
Precipitation | TRMM-3B43 | 0.25 degree | Monthly | Remote Sensing Products |
Actual evapotranspiration | SSEBop | 8 km | Monthly | Remote Sensing Products |
Crop yield | USDA-NASS | County level | Yearly | Existing Database |
Land Use | USDA-NASS CDL | 30 m (for most years) | Yearly | Remote Sensing Products |
Groundwater abstraction | CDWR records | Subregion scale | Monthly | C2VSIM model |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, S.; Gebremichael, M.; Li, R. Remote Sensing-Based Assessment of the Crop, Energy and Water Nexus in the Central Valley, California. Remote Sens. 2019, 11, 1701. https://doi.org/10.3390/rs11141701
Alam S, Gebremichael M, Li R. Remote Sensing-Based Assessment of the Crop, Energy and Water Nexus in the Central Valley, California. Remote Sensing. 2019; 11(14):1701. https://doi.org/10.3390/rs11141701
Chicago/Turabian StyleAlam, Sarfaraz, Mekonnen Gebremichael, and Ruopu Li. 2019. "Remote Sensing-Based Assessment of the Crop, Energy and Water Nexus in the Central Valley, California" Remote Sensing 11, no. 14: 1701. https://doi.org/10.3390/rs11141701
APA StyleAlam, S., Gebremichael, M., & Li, R. (2019). Remote Sensing-Based Assessment of the Crop, Energy and Water Nexus in the Central Valley, California. Remote Sensing, 11(14), 1701. https://doi.org/10.3390/rs11141701