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Abstract: The connection structure in the convolutional layers of most deep learning-based algorithms
used for the classification of hyperspectral images (HSIs) has typically been in the forward direction.
In this study, an end-to-end alternately updated spectral–spatial convolutional network (AUSSC) with
a recurrent feedback structure is used to learn refined spectral and spatial features for HSI classification.
The proposed AUSSC includes alternating updated blocks in which each layer serves as both an input
and an output for the other layers. The AUSSC can refine spectral and spatial features many times
under fixed parameters. A center loss function is introduced as an auxiliary objective function to
improve the discrimination of features acquired by the model. Additionally, the AUSSC utilizes smaller
convolutional kernels than other convolutional neural network (CNN)-based methods to reduce the
number of parameters and alleviate overfitting. The proposed method was implemented on four HSI
data sets, as follows: Indian Pines, Kennedy Space Center, Salinas Scene, and Houston. Experimental
results demonstrated that the proposed AUSSC outperformed the HSI classification accuracy obtained
by state-of-the-art deep learning-based methods with a small number of training samples.

Keywords: convolutional neural network (CNN); deep learning; hyperspectral image
(HSI) classification

1. Introduction

Hyperspectral images (HSIs) contain both spectral and spatial information and generally consist
of hundreds of spectral bands for the same observed scene [1]. Due to the vast amounts of information
they contain, HSIs have found important applications in a variety of fields, such as the non-contact
analysis of food materials [2], the detection and identification of plant diseases [3], multispectral change
detection [4], and medicine [5]. HSI classification is the core technology in these applications. However,
since HSIs include inherently high-dimensional structures, their classification remains a challenging
task in the remote sensing community.

Traditional classification methods involve feature engineering using a classifier. This process
aims to extract or select features from original HSI data, typically producing a classifier based on
low-dimensional features. Support vector machines (SVMs) are the most commonly used method in the
early stages of HSI classification, due to their low sensitivity to high dimensionality [6]. Spectral–spatial
classification methods have become predominant in recent years [7]. Mathematical-morphology-based
techniques [8], Markov random fields (MRFs) [9], and sparse representations [10] are also commonly
used branches. However, many of these techniques suffer from low classification accuracy due to
shallow feature extraction.
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Deep learning, a popular tool in multiple areas including remote sensing, has recently been
applied to HSI classification [11]. Traditional feature extraction methods have struggled to identify
high-level features in HSIs. However, deep learning frameworks have been proposed, in which stacked
auto-encoders (SAEs) were used to obtain useful deep features [11]. Deep learning-based methods
can extract deep spectral and spatial features from HSIs to obtain higher classification accuracies than
those of most traditional methods [12]. Consequently, in recent years, a variety of deep learning-based
methods have been used for classification [7]. For example, one study used a deep belief network
(DBN) that combined PCA with logistic regression to perform HSI classification, achieving competitive
classification accuracy [13].

Among these methods, deep convolutional neural network (CNN) algorithms have achieved
particularly high accuracy. Deep supervised methods using randomized PCA have also been proposed
to reduce the dimensionality of raw HSIs. Additionally, two-dimensional (2D) CNNs have been used
to encode spectral data, spatial information, and a multilayer perceptron (MLP) for classification
tasks [14]. Three-dimensional (3D) CNNs have also been used as feature extraction models to acquire
spectral–spatial features from HSIs [15]. Two-layer 3D CNNs have performed far better than 2D
CNN-based methods [16].

Recently, two deep convolutional spectral–spatial networks, the spectral–spatial residual network
(SSRN) [17] and the fast and dense spectral–spatial convolutional network (FDSSC) [18], achieved
unprecedented classification accuracy. This was due in part to the inclusion of deeper 3D CNN
architectures. SSRN and FDSSC achieved an overall accuracy of above 99% across three widely used
HSI data sets. As such, there appears to be little room for improvement in HSI classification. However,
deep supervised methods require large quantities of data. For example, SAE logistic regression
(SAE-LR) requires 60% of a data set to be labeled [11] and DBNs [13] and 3D CNNs [16] require 50%
to be labeled. In contrast, SSRN and FDSSC require only 20% and 10% of a data set to be labeled,
respectively. However, even a minimal labeling requirement (e.g., 10%) typically includes more than
a thousand samples. As a result, the cost of sample labeling remains high in remote sensing studies.

In contrast, semi-supervised methods require only limited labeled samples. Recently,
a semi-supervised model was introduced that labels samples based on local, global, and self-decisions.
As a result, test samples were labeled based on multiple decisions [19]. Generative adversarial
networks (GANs) can also be used for HSI classification. Real labeled HSIs and fake data generated
by a generative network can be used as inputs to a discriminative network. Trained discriminative
networks can then classify unlabeled samples [20]. Although GANs require only 200 real labeled
samples to train, their classification accuracy remains relatively low.

Attention mechanisms [21], a popular research topic in network structures, have also proven to be
effective for image classification [22]. These mechanisms mimic the internal processes of biological
systems by aligning internal experiences with objective sensations, thereby increasing the observational
fineness of subregions. When humans view a digital image, they do not observe every pixel in
the image simultaneously. Most viewers focus on specific regions according to their requirements.
Additionally, while viewing, their attentional focus is influenced by previously observed images.
Attention mechanisms implemented through feedback connections [23] in a network structure can
enable the network to re-weight target information and ignore background information and noise.
Cross-entropy loss is the most commonly used loss function in multi-objective classification tasks and
has achieved excellent performance. It increases the inter-class distance, yet neglects the intra-class
distance. However, sometimes the intra-class distance is even greater than the inter-class distance,
which reduces the discrimination of the extracted features. The objective function must ensure that these
extracted features are distinguishable. Furthermore, the center loss function [24], which is designed
to reduce the intra-class distance, has been shown to help the network extract more discriminant
features. However, to prevent the degradation of classification accuracy, center loss can only be used
as an auxiliary loss function.
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This study introduces an attention mechanism and a center loss function for HSI classification.
Inspired by previous studies [25], we propose a deep supervised method with an end-to-end alternately
updated convolutional spectral–spatial network (AUSSC). Unlike 3D CNN, SSRN, and FDSSC, which
include only forward connections in the convolutional layers, the AUSSC includes both forward and
feedback connections. Additionally, the convolutional kernels of the AUSSC are smaller than those of
3D CNN, SSRN, or FDSSC, as the kernels are decomposed into smaller kernels. Deeper spectral and
spatial features can be obtained in the AUSSC using a fixed number of parameters, due to the alternate
updating of blocks.

Due to the inclusion of attention mechanisms and factorization into smaller convolutions,
the AUSSC is more capable of spectral and spatial feature learning than other CNN-based methods.
Both forward and feedback connections are densely connected within the alternately updated blocks.
Consequently, spectral and spatial features are optimally learned and feature maps from different
blocks are repeatedly refined by attention. The classification results obtained using the proposed
method demonstrate that this AUSSC has been optimized for classification with a limited number of
training samples. The four principal contributions of this study are as follows:

(1) The proposed method includes a recurrent feedback spectral–spatial structure with fixed
parameters, in order to learn not only deep but also refined spectral and spatial features to
improve HSI classification accuracy.

(2) The effectiveness of the center loss function is validated as an auxiliary loss function used to
improve the results of hyperspectral image classification.

(3) The AUSSC decomposes a large 3D convolutional kernel into three smaller 1D convolutional
kernels, thereby saving a large number of parameters and reducing overfitting.

(4) The AUSSC achieves state-of-the-art classification accuracy across four widely used HSI data sets,
using limited training data with a fixed spatial size.

The remainder of this paper is organized as follows. Section 2 presents the framework of the
proposed AUSSC. Section 3 describes the experimental data sets. The details of the experimental results
and a discussion are given in Section 4. Conclusions and suggestions for future work are presented
in Section 5.

2. Methods

In this section, an alternately updated spectral–spatial convolutional network is proposed for HSI
classification. Figure 1 shows an overview of the proposed method. For HSI data with L channels
and a size of H ×W, a spatial size of s× s was selected from the raw HSI data and used as the input to
the AUSSC network. First, the AUSSC uses three smaller convolutional kernels to learn spectral and
spatial features from an original HSI patch. Second, the alternately updated spectral and spatial blocks
refine the deep spectral and spatial features using recurrent feedback. Finally, the model parameters
are optimized using the cross-entropy loss and center-loss loss functions. Details of each stage are
elaborated in the following subsections.
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Figure 1. An overview of the proposed end-to-end alternately updated spectral–spatial convolutional
network (AUSSC). “Conv” refers to the convolution operation. The operations denoted by “Some
operations” are presented in detail in Section 2.4. “Logits” refers to the output of the last fully connected
layer. Classification results are acquired after the Softmax operation.

2.1. Learning Spectral and Spatial Features with Smaller Convolutional Kernels

During HSI classification, deep CNN-based methods typically utilize preprocessing technology
such as PCA. This is often followed by several convolutional layers with multiple activation functions
and a classifier for obtaining classification maps. The convolution and activation can be formulated as

Xl+1
i = f (

N∑
j=1

Xl
j∗k

l+1
ji + bl+1

i ), (1)

where Xl
j is the ith input feature map for the (l + 1)th layer, N is the number of feature maps in the

(l + 1)th layer, * is the convolution operation, f (·) is an activation function, and kl+1
ji and bl+1

i are
learnable parameters that can be fine-tuned using the back-propagation (BP) algorithm.

The 3D CNN, SSRN, and FDSSC algorithms all demonstrate that an end-to-end 3D-CNN-based
framework outperforms 2D-CNN-based methods that include preprocessing or post-processing, as
well as other deep learning-based methods. One reason for this is that an end-to-end framework can
reduce pre-processing and subsequent post-processing, allowing the connection between the original
input and the final output to be as close as possible. The model then includes more space that can be
adjusted automatically by the data, thereby increasing the degree of fitness. Additionally, when applied
to HSIs with a 3D structure, 1D convolution operations focus on spectral features. 2D convolution
operations focus on spatial features and 3D convolution operations can learn both spatial and spectral
features. However, 3D kernel parameters are larger than 2D or 1D kernel parameters when the number
of convolutional layers and kernels is the same. As such, a large number of model parameters can lead
to overfitting.

As such, we propose an end-to-end CNN-based framework that uses smaller convolutional kernels
compared to other CNN-based methods. As shown in Figure 2, the AUSSC utilizes kernels for HSI
classification, ignoring other specific architectures. The 3D CNN method uses two similar convolutional
kernels with sizes of a × a ×m1 and a × a ×m2, with the two convolutional kernels differing only in
spectral dimension. SSRN uses a spectral kernel with a size of 1× 1×m and a spatial kernel with a size
of a× a× d to learn spectral and spatial representations, respectively. Convolutional kernels dictate
model parameters and determine which features are learned by the CNN. In contrast, we introduce
the idea of factorization into smaller convolutions from InceptionV3 [26]. In this process, a larger
3D convolutional kernel with a size of a× a×m was divided into three smaller convolutional kernels
with sizes of 1× 1×m, 1× a× 1, and a× 1× 1. This substantially reduced the number of parameters,
accelerated the operation, and reduced the possibility of overfitting. As shown in Table 1, in the
absence of bias (with all other conditions remaining the same), the convolutional kernel with a size
of a× a×m included a2m parameters. The smallest convolutional kernel only included parameters,
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which is more economical than the other two. This increased the nonlinear representation capabilities
of the model due to the use of multiple nonlinear activation functions.

Table 1. Parameters for different convolutional kernels.

Convolutional Kernels Parameters

a× a×m a2m

1× 1×m a× a× 1 a2 + m

1× 1×m a× 1× 1 1× a× 1 a + a + mRemote Sens. 2019, 11, x FOR PEER REVIEW 5 of 20 
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Figure 2. The structure of convolutional kernels in the 3D CNN-based method without a specific
architecture. (a) 3D-CNN; (b) SSRN; (c) The proposed method. “Concat” refers to the
concatenate operation.

2.2. Refining Spectral and Spatial Features via Alternately Updated Blocks

Deep CNN architectures have been used for HSI classification and have produced competitive
classification results [17]. However, the connection structure in the convolutional layers is typically in
the forward direction. Additionally, the convolutional kernels in SSRN and FDSSC increase with depth.
Alternately updated cliques have a recurrent feedback structure and go deeper into the convolutional
layers with a fixed number of parameters [25]. Therefore, we propose combining small convolutional
kernels with this loop structure and design two alternately updated blocks to learn refined spectral
and spatial features separately from HSIs.

As shown in Figure 3, there are two stages in the alternately updated spectral blocks. In the
initialization stage (stage 1), the 3D convolutional layers use k kernels with sizes of 1× 1×m to learn
deep spectral features. In stage 2, the 3D convolutional layers use k kernels with sizes of 1× 1×m to
learn refined spectral features. A feature map with a size of s× s× b and a number, n, was input to
the alternately updated spectral block. This input is denoted as X(1)

0 , where the subscript 0 represents
the feature map in the initial position of the alternately updated spectral block. The superscript (1)
indicates the feature map is in the first stage of the alternately updated process. In stage 1, the input



Remote Sens. 2019, 11, 1794 6 of 21

of every convolutional layer is the output of all the previous convolutional layers. Stage 1 can be
formulated as follows:

X(1)
l = f (

∑
j<l

X(1)
j ∗W jl), (2)

where X(1)
l is the output of the lth (l ≥ 1) convolutional layer in stage 1 of an alternately updated

spectral block, f (≥) is a nonlinear activation function, ∗ is the convolutional operation using the
padding method, and WW jl is a parameter reused in stage 2.

In the looping stage (stage 2), each convolutional layer (except the input convolutional layer) is
alternately updated to refine features. Stage 2 has a recurrent feedback structure, meaning that the
feature map can be refined several times using the same weights. Therefore, any two convolutional
layers in the alternately updated spectral block are connected bi-directionally. Stage 2 can then be
formulated as follows:

Xr
l = f (

∑
j<l

Xr
j ∗W jl +

∑
k>l

X(r−1)
k ∗Wkl), (3)

where r ≥ 2 since the feature map is in stage 2 and can be updated multiple times by the recurrent
feedback structure. Similarly, l ≥ 1 since the input feature map is not updated.
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Figure 3. Two stages of alternately updated spectral blocks with three convolutional layers.

After learning refined deep spectral features, the input convolutional layer and the updated
convolutional layer are concatenated in the alternately updated spectral block and transferred to the
next block. Once spectral information from the HSI has been learned, the high dimensions of the
feature map can be reduced by valid convolution and reshaping operations (see figure in Section 2.4.).
The resulting input to the alternately updated spatial block is a feature map with number, n, and size
t× t× 1.

As shown in Figure 4, there are two different convolutional kernels in the alternately updated
spatial block. The 3D convolutional layers use ka× 1× 1 and k1× a× 1 convolutional kernels to learn
deep refined spatial features with an alternately updated structure that is also used for the alternately
updated spectral block. In the spatial block, two different convolutional kernels learn spatial features
in parallel rather than in series. The convolutional relationship between the spatial block is the same as
for the previous block.

These alternately updated blocks achieve spectral and spatial attention due to the presence of
refined features obtained in the looping stages. Densely connected forward and feedback structures
allow the spectral and spatial information to flow in convolutional layers within the blocks. These
alternately updated blocks also include weight sharing. In stage 1, the weights increase linearly as the
number of convolutional layers increases. However, in stage 2, the weights are fixed since they are
shared. The partial weights from stage 1, such as W12, W13, and W23 (see Figure 2), are reused in stage
2. As features are cycled repeatedly in stage 2, the number of parameters remains unchanged.
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2.3. Optimization by the Cross-Entropy Loss and Center Loss Functions

HSI classification is inherently a multi-classification task and cross-entropy loss with a softmax
layer is a well-known objective function that is used for such problems. The softmax cross-entropy loss
can be written in the following form:

Lso f tmax = −
m∑

i=1

log
exp(WT

yi
xi + byi)

n∑
j=1

exp(WT
j xi + b j)

, (4)

where m is the size of the mini-batch, n is the number of classes, xi is the ith deep feature belonging
to the yith class, W j is the jth column of the weights W in the last fully connected layer, and b is
the bias. The last layer of the CNN-based model is typically fully connected, as it is difficult to
make the dimensions of the last layer equal to the number of categories without a fully connected
layer. Intuitively, one would expect that learning more discriminatory features would improve the
generalization performance. As such, we introduce an auxiliary loss function [24] to improve the
discrimination of features acquired by the model. This function can be formulated as follows:

Lcenter =
1
2

m∑
i=1

∥∥∥xi − cyi

∥∥∥2

2

, (5)

where cyi is the central feature in the yith class. The function decreases the quadratic sum of the
distance from the center of the feature to the features of each sample in one batch, which decreases the
intra-class distance. The center of feature cyi can then be updated through iterative training.
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When two loss functions are used together for HSI classification, the softmax cross-entropy loss is
considered to be responsible for increasing the inter-class distance. The center loss is then responsible
for reducing the intra-class distance, thus increasing the discriminant degree and generalization
abilities of learned features. Consequently, the objective function for the AUSSC can be written in the
following form:

L = Lsoftmax + λLcenter

= −
m∑

i=1
log

exp(WT
yi

xi+byi )
n∑

j=1
exp(WT

j xi+b j)

+λ
2

m∑
i=1

∥∥∥xi − cyi

∥∥∥2

2

(6)

where λ ∈ [0, 1) controls the proportion of center loss and the value of λ is determined experimentally,
as discussed in the following section. In summary, the cross-entropy loss is the principal objective
function and the inter-class distance is the principal component. The center loss is the auxiliary used to
reduce the intra-class distance.

2.4. Alternatively Updated Spectral–Spatial Convolutional Network

A flowchart is included below to explain the steps in the AUSSC end-to-end network. Considering
the cost and time requirements of the collection of HSI labeled samples, we propose a 3D CNN-based
framework that maximizes the flow and circulation of spectral and spatial information. Figure 5 shows
a 9× 9× L cube, which is used as input in our technique, where L is the number of HSI bands. Due to
high computational costs, two convolutional layers were used in the alternately updated blocks and
a single loop was used in stage 2.
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an input size of 9× 9× L. The value L is the number of HSI bands and C is the number of classes.

L2 loss and batch normalization (BN) [27] were used to improve the normalization of our model.
In a broad sense, L2 and other regularization parameter terms added to the loss function in machine
learning are essentially weighted norms. The goal of normalization with L2 loss is to effectively reduce
the size of the original parameter values in the model, with BN performing normalization operations
on input neuron values. The normalization target regularizes its input value to a normal distribution
with a mean value of zero and a variance of one. The blue layers and blue lines both refer to the BN,
rectified linear units (ReLU), and the convolution operation. The first convolutional layer lacks both
a BN and a ReLU.

The original HSI input, which has a size of 9× 9× L, flows to the first convolutional layer with
a kernel size of (1, 1, 7) and a stride of (1, 1, 2) to generate feature maps with a size of 6 49× 9× bThe
number of kernels in the convolutional layers of alternately updated spectral block was 36, the kernel
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size was (1, 1, 7), and the convolutional padding method was the same. As a result, the output size for
each layer remained 36 9× 9× b, which was unchanged in stage 1 and stage 2. After concatenating the
input and updated feature maps, the output of the alternately updated spectral blocks had a size of
136 9× 9× b.

A valid convolutional layer with 48 channels and a kernel size of 1× 1× b was included between
alternately updated spectral and spatial blocks. This reduced the dimensions of the output of alternately
updated spectral blocks, resulting in 48 feature maps with a size of 9 × 9 × 1. After reshaping the
third dimension and the channel dimension, 48 channels with a size of 9 × 9 × 1 were merged into
a single 9× 9× 48 channel. A valid convolutional layer with a kernel size of 3× 3× 48 and 64 kernels
transformed the feature map into 64 channels with a size of 7× 7× 1.

Similar to the alternately updated spectral blocks, the alternately updated spatial block featured
two convolutional kernels with sizes of 1× 3× 1 and 3× 1× 1In stage 1 and stage 2, the output of each
layer was 36 kernels with a size of 7 × 7 × 1. The results of two convolutional kernels were concatenated
into 272 kernels with a size of 7 × 7 × 1. Finally, the output passed through a 3D average pooling layer
with a pooling size of 7× 7× 1, which was converted into 272 feature maps with a size of 1 × 1 × 1.
After the flattening operation, a vector with a size of 1× 1×C was produced by the fully connected
layer, where C is the number of classes. Trainable AUSSC parameters were optimized by iterative
training using Equation (6) and used to compute the loss between the predicted and real values.

The following sections provide a summary of the advantages of this proposed AUSSC architecture.
First, the use of three different small convolutional kernels reduced both the number of parameters
and overfitting, thereby increasing the nonlinear representation ability of the model and the diversity
of features. Compared with symmetric splitting into several identical small convolutional kernels,
this asymmetric splitting can handle more and richer features. Second, refined deep features learned
by both forward and feedback connections between convolutional layers are more robust and have
more high-level spectral and spatial information. Additionally, SSRN and FDSSC learn deeper features
by increasing the number of convolutional layers in the blocks. However, unlike these conventional
models, AUSSC can go deeper with fixed parameters due to its loop structure and shared weights.
Finally, an auxiliary loss function was used to reduce the intra-class distance and increase the distinction
between features of different categories.

3. Experimental Data Sets and Framework Settings

3.1. Description of Experimental Data Sets

Three common HSI data sets were used to validate the proposed AUSSC, as follows: The Indiana
Pines (IP; northwestern Indiana, USA), Kennedy Space Center (KSC; Merritt Island, FL, USA),
and Salinas Scene (SS; Salinas Valley, CA, USA). These IP data were obtained by the NASA Airborne
Visible Imaging Spectrometer (AVIRIS) sensor. The size of the IP data was 145× 145, with 220 bands
containing 16 kinds of ground cover. The KSC data were collected by the AVIRIS sensor in 1996 and
had a size of 512× 614, with 176 bands and 13 ground truth classes. The SS data were also collected by
the AVIRIS sensor and had a size of 512× 217, with 204 bands and 9 ground truth classes. Table 2 lists
these classes and the corresponding false-color composite maps for three data sets.

However, with the development of state-of-art algorithms for hyperspectral image classification,
these three data sets are easily classified. When the number of training samples was more than 800,
SSRN and FDSSC achieved an accuracy higher than 98% for the three HSI data sets. The difference
between the classification accuracies of these methods is less than 1%. Therefore, in addition to the
three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which
was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult
as conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above
90% with 200 labeled training samples. The size of the Houston data was 349 ×1905, with 144 bands
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containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite
maps for this data set.

Table 2. Color codes for the classes, class types, and sample numbers (SN) for the ground truths of the
Indiana Pines (IP) data, Kennedy Space Center (KSC) data, and Salinas Scene (SS) data.

Color
IP Data KSC Data SS Data

Class SN Class SN Class SN
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each layer 367 × 7 × 1 was 36 kernels with a size of 7 × 7 × 1. The results of two convolutional kernels 
were concatenated into 272 kernels with a size of 7 × 7 × 1. Finally, the output passed through a 3D 
average pooling layer with a pooling size of 21 × 1 × 1, which was converted into 272 feature maps 
with a size of 1 × 1 × 1. After the flattening operation, a vector with a size of 1 × 1 × 𝐶 was produced 
by the fully connected layer, where C is the number of classes. Trainable AUSSC parameters were 
optimized by iterative training using Equation (6) and used to compute the loss between the 
predicted and real values. 

The following sections provide a summary of the advantages of this proposed AUSSC 
architecture. First, the use of three different small convolutional kernels reduced both the number of 
parameters and overfitting, thereby increasing the nonlinear representation ability of the model and 
the diversity of features. Compared with symmetric splitting into several identical small 
convolutional kernels, this asymmetric splitting can handle more and richer features. Second, refined 
deep features learned by both forward and feedback connections between convolutional layers are 
more robust and have more high-level spectral and spatial information. Additionally, SSRN and 
FDSSC learn deeper features by increasing the number of convolutional layers in the blocks. However, 
unlike these conventional models, AUSSC can go deeper with fixed parameters due to its loop 
structure and shared weights. Finally, an auxiliary loss function was used to reduce the intra-class 
distance and increase the distinction between features of different categories. 

3. Experimental Data Sets and Framework Settings 

3.1. Description of Experimental Data Sets 

Three common HSI data sets were used to validate the proposed AUSSC, as follows: The Indiana 
Pines (IP; northwestern Indiana, USA), Kennedy Space Center (KSC; Merritt Island, FL, USA), and 
Salinas Scene (SS; Salinas Valley, CA, USA). These IP data were obtained by the NASA Airborne 
Visible Imaging Spectrometer (AVIRIS) sensor. The size of the IP data was 145 × 145, with 220 bands 
containing 16 kinds of ground cover. The KSC data were collected by the AVIRIS sensor in 1996 and 
had a size of 512 × 614, with 176 bands and 13 ground truth classes. The SS data were also collected 
by the AVIRIS sensor and had a size of 512 × 217, with 204 bands and 9 ground truth classes. Table 
2 lists these classes and the corresponding false-color composite maps for three data sets.  

Table 2. Color codes for the classes, class types, and sample numbers (SN) for the ground truths of 
the Indiana Pines (IP) data, Kennedy Space Center (KSC) data, and Salinas Scene (SS) data. 

Color 
IP Data KSC Data SS Data 

Class SN Class SN Class SN 

 Alfalfa 46 Scrub 347 Brocoli_green_weeds_1 2009 
 Corn-notill 1426 Willow swamp 243 Brocoli_green_weeds_2 3726 
 Corn-mintill 830 CP hammock 256 Fallow 1976 
 Corn 237 Slash pine 252 Fallow_rough_plow 1394 
 Grass-pasture 483 Oak/Broadleaf 161 Fallow_smooth 2678 
 Grass-trees 730 Hardwood 229 Stubble 3959 
 Grass-pasture-mowed 28 Swamp 105 Celery 3579 

Grass-trees 730 Hardwood 229 Stubble 3959
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size for each layer remained 36 9 × 9 × 𝑏 , which was unchanged in stage 1 and stage 2. After 
concatenating the input and updated feature maps, the output of the alternately updated spectral 
blocks had a size of 136 9 × 9 × 𝑏. 

A valid convolutional layer with 48 channels and a kernel size of 1 × 1 × 𝑏  was included 
between alternately updated spectral and spatial blocks. This reduced the dimensions of the output 
of alternately updated spectral blocks, resulting in 48 feature maps with a size of 9 × 9 × 1. After 
reshaping the third dimension and the channel dimension, 48 channels with a size of 9 × 9 × 1 were 
merged into a single 9 × 9 × 48 channel. A valid convolutional layer with a kernel size of 3 × 3 × 48 
and 64 kernels transformed the feature map into 64 channels with a size of 7 × 7 × 1. 

Similar to the alternately updated spectral blocks, the alternately updated spatial block featured 
two convolutional kernels with sizes of 1 × 3 × 1 and 3 × 1 × 1. In stage 1 and stage 2, the output of 
each layer 367 × 7 × 1 was 36 kernels with a size of 7 × 7 × 1. The results of two convolutional kernels 
were concatenated into 272 kernels with a size of 7 × 7 × 1. Finally, the output passed through a 3D 
average pooling layer with a pooling size of 21 × 1 × 1, which was converted into 272 feature maps 
with a size of 1 × 1 × 1. After the flattening operation, a vector with a size of 1 × 1 × 𝐶 was produced 
by the fully connected layer, where C is the number of classes. Trainable AUSSC parameters were 
optimized by iterative training using Equation (6) and used to compute the loss between the 
predicted and real values. 

The following sections provide a summary of the advantages of this proposed AUSSC 
architecture. First, the use of three different small convolutional kernels reduced both the number of 
parameters and overfitting, thereby increasing the nonlinear representation ability of the model and 
the diversity of features. Compared with symmetric splitting into several identical small 
convolutional kernels, this asymmetric splitting can handle more and richer features. Second, refined 
deep features learned by both forward and feedback connections between convolutional layers are 
more robust and have more high-level spectral and spatial information. Additionally, SSRN and 
FDSSC learn deeper features by increasing the number of convolutional layers in the blocks. However, 
unlike these conventional models, AUSSC can go deeper with fixed parameters due to its loop 
structure and shared weights. Finally, an auxiliary loss function was used to reduce the intra-class 
distance and increase the distinction between features of different categories. 

3. Experimental Data Sets and Framework Settings 

3.1. Description of Experimental Data Sets 

Three common HSI data sets were used to validate the proposed AUSSC, as follows: The Indiana 
Pines (IP; northwestern Indiana, USA), Kennedy Space Center (KSC; Merritt Island, FL, USA), and 
Salinas Scene (SS; Salinas Valley, CA, USA). These IP data were obtained by the NASA Airborne 
Visible Imaging Spectrometer (AVIRIS) sensor. The size of the IP data was 145 × 145, with 220 bands 
containing 16 kinds of ground cover. The KSC data were collected by the AVIRIS sensor in 1996 and 
had a size of 512 × 614, with 176 bands and 13 ground truth classes. The SS data were also collected 
by the AVIRIS sensor and had a size of 512 × 217, with 204 bands and 9 ground truth classes. Table 
2 lists these classes and the corresponding false-color composite maps for three data sets.  

Table 2. Color codes for the classes, class types, and sample numbers (SN) for the ground truths of 
the Indiana Pines (IP) data, Kennedy Space Center (KSC) data, and Salinas Scene (SS) data. 

Color 
IP Data KSC Data SS Data 

Class SN Class SN Class SN 

 Alfalfa 46 Scrub 347 Brocoli_green_weeds_1 2009 
 Corn-notill 1426 Willow swamp 243 Brocoli_green_weeds_2 3726 
 Corn-mintill 830 CP hammock 256 Fallow 1976 
 Corn 237 Slash pine 252 Fallow_rough_plow 1394 
 Grass-pasture 483 Oak/Broadleaf 161 Fallow_smooth 2678 
 Grass-trees 730 Hardwood 229 Stubble 3959 
 Grass-pasture-mowed 28 Swamp 105 Celery 3579 Grass-pasture-mowed 28 Swamp 105 Celery 3579
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 Hay-windrowed 478 Graminoid marsh 390 Grapes_untrained 11271 
 Oats 20 Spartina marsh 520 Soil_vinyard_develop 6203 
 Soybean-notill 972 Cattail marsh 404 Corn_senesced_green_weeds 3278 
 Soybean-mintill 2455 Salt marsh 419 Lettuce_romaine_4wk 1068 
 Soybean-clean 593 Mud flats 503 Lettuce_romaine_5wk 1927 
 Wheat 205 Water 927 Lettuce_romaine_6wk 916 
 Woods 1265   Lettuce_romaine_7wk 1070 
 Buildings-Grass-Trees 386   Vinyard_untrained 7268 
 Stone-Steel-Towers 93   Vinyard_vertical_trellis 1807 

Total 10,249 5211 54,129 

However, with the development of state-of-art algorithms for hyperspectral image classification, 
these three data sets are easily classified. When the number of training samples was more than 800, 
SSRN and FDSSC achieved an accuracy higher than 98% for the three HSI data sets. The difference 
between the classification accuracies of these methods is less than 1%. Therefore, in addition to the 
three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which 
was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult as 
conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above 90% 
with 200 labeled training samples. The size of the Houston data was 349 × 1905, with 144 bands 
containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite 
maps for this data set. 

Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the 
Houston data. 

NO. Color Class SN 
1 Grass Healthy 1374 
2 Grass Stressed 1454 
3  Grass Synthetic 795 
4  Tree 1264 
5  Soil 1298 
6  Water 339 
7  Residential 1476 
8  Commercial 1354 
9  Road 1554 

10  Highway 1424 
11  Railway 1332 
12  Parking Lot 1 1429 
13  Parking Lot 2 632 
14  Tennis Court 513 
15  Running Track 798 

Total 17,036 

Quantitative analysis was performed with the same limited training samples using all methods. 
Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method 
under different conditions. A subset of 200 labeled samples were used for training and 100 labeled 
samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then 
included to test the robustness and generalizability of the proposed AUSSC.  

3.2. Framework Setting 

The framework for all data sets was established as follows. From 10 random seeds, all data sets 
were randomly divided into the three following groups: A training set, a validation set, and a test set. 
The training sets were used to optimize model parameters. The validation sets were not directly used 
in the training process and were only included to verify whether the model was overfitting. The 

Hay-windrowed 478 Graminoid
marsh 390 Grapes_untrained 11271
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However, with the development of state-of-art algorithms for hyperspectral image classification, 
these three data sets are easily classified. When the number of training samples was more than 800, 
SSRN and FDSSC achieved an accuracy higher than 98% for the three HSI data sets. The difference 
between the classification accuracies of these methods is less than 1%. Therefore, in addition to the 
three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which 
was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult as 
conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above 90% 
with 200 labeled training samples. The size of the Houston data was 349 × 1905, with 144 bands 
containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite 
maps for this data set. 

Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the 
Houston data. 

NO. Color Class SN 
1 Grass Healthy 1374 
2 Grass Stressed 1454 
3  Grass Synthetic 795 
4  Tree 1264 
5  Soil 1298 
6  Water 339 
7  Residential 1476 
8  Commercial 1354 
9  Road 1554 

10  Highway 1424 
11  Railway 1332 
12  Parking Lot 1 1429 
13  Parking Lot 2 632 
14  Tennis Court 513 
15  Running Track 798 

Total 17,036 

Quantitative analysis was performed with the same limited training samples using all methods. 
Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method 
under different conditions. A subset of 200 labeled samples were used for training and 100 labeled 
samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then 
included to test the robustness and generalizability of the proposed AUSSC.  

3.2. Framework Setting 

The framework for all data sets was established as follows. From 10 random seeds, all data sets 
were randomly divided into the three following groups: A training set, a validation set, and a test set. 
The training sets were used to optimize model parameters. The validation sets were not directly used 
in the training process and were only included to verify whether the model was overfitting. The 
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However, with the development of state-of-art algorithms for hyperspectral image classification, 
these three data sets are easily classified. When the number of training samples was more than 800, 
SSRN and FDSSC achieved an accuracy higher than 98% for the three HSI data sets. The difference 
between the classification accuracies of these methods is less than 1%. Therefore, in addition to the 
three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which 
was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult as 
conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above 90% 
with 200 labeled training samples. The size of the Houston data was 349 × 1905, with 144 bands 
containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite 
maps for this data set. 

Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the 
Houston data. 

NO. Color Class SN 
1 Grass Healthy 1374 
2 Grass Stressed 1454 
3  Grass Synthetic 795 
4  Tree 1264 
5  Soil 1298 
6  Water 339 
7  Residential 1476 
8  Commercial 1354 
9  Road 1554 

10  Highway 1424 
11  Railway 1332 
12  Parking Lot 1 1429 
13  Parking Lot 2 632 
14  Tennis Court 513 
15  Running Track 798 

Total 17,036 

Quantitative analysis was performed with the same limited training samples using all methods. 
Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method 
under different conditions. A subset of 200 labeled samples were used for training and 100 labeled 
samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then 
included to test the robustness and generalizability of the proposed AUSSC.  

3.2. Framework Setting 

The framework for all data sets was established as follows. From 10 random seeds, all data sets 
were randomly divided into the three following groups: A training set, a validation set, and a test set. 
The training sets were used to optimize model parameters. The validation sets were not directly used 
in the training process and were only included to verify whether the model was overfitting. The 
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However, with the development of state-of-art algorithms for hyperspectral image classification, 
these three data sets are easily classified. When the number of training samples was more than 800, 
SSRN and FDSSC achieved an accuracy higher than 98% for the three HSI data sets. The difference 
between the classification accuracies of these methods is less than 1%. Therefore, in addition to the 
three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which 
was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult as 
conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above 90% 
with 200 labeled training samples. The size of the Houston data was 349 × 1905, with 144 bands 
containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite 
maps for this data set. 

Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the 
Houston data. 

NO. Color Class SN 
1 Grass Healthy 1374 
2 Grass Stressed 1454 
3  Grass Synthetic 795 
4  Tree 1264 
5  Soil 1298 
6  Water 339 
7  Residential 1476 
8  Commercial 1354 
9  Road 1554 

10  Highway 1424 
11  Railway 1332 
12  Parking Lot 1 1429 
13  Parking Lot 2 632 
14  Tennis Court 513 
15  Running Track 798 

Total 17,036 

Quantitative analysis was performed with the same limited training samples using all methods. 
Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method 
under different conditions. A subset of 200 labeled samples were used for training and 100 labeled 
samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then 
included to test the robustness and generalizability of the proposed AUSSC.  

3.2. Framework Setting 

The framework for all data sets was established as follows. From 10 random seeds, all data sets 
were randomly divided into the three following groups: A training set, a validation set, and a test set. 
The training sets were used to optimize model parameters. The validation sets were not directly used 
in the training process and were only included to verify whether the model was overfitting. The 

Soybean-mintill 2455 Salt marsh 419 Lettuce_romaine_4wk 1068
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However, with the development of state-of-art algorithms for hyperspectral image classification, 
these three data sets are easily classified. When the number of training samples was more than 800, 
SSRN and FDSSC achieved an accuracy higher than 98% for the three HSI data sets. The difference 
between the classification accuracies of these methods is less than 1%. Therefore, in addition to the 
three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which 
was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult as 
conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above 90% 
with 200 labeled training samples. The size of the Houston data was 349 × 1905, with 144 bands 
containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite 
maps for this data set. 

Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the 
Houston data. 

NO. Color Class SN 
1 Grass Healthy 1374 
2 Grass Stressed 1454 
3  Grass Synthetic 795 
4  Tree 1264 
5  Soil 1298 
6  Water 339 
7  Residential 1476 
8  Commercial 1354 
9  Road 1554 

10  Highway 1424 
11  Railway 1332 
12  Parking Lot 1 1429 
13  Parking Lot 2 632 
14  Tennis Court 513 
15  Running Track 798 

Total 17,036 

Quantitative analysis was performed with the same limited training samples using all methods. 
Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method 
under different conditions. A subset of 200 labeled samples were used for training and 100 labeled 
samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then 
included to test the robustness and generalizability of the proposed AUSSC.  

3.2. Framework Setting 

The framework for all data sets was established as follows. From 10 random seeds, all data sets 
were randomly divided into the three following groups: A training set, a validation set, and a test set. 
The training sets were used to optimize model parameters. The validation sets were not directly used 
in the training process and were only included to verify whether the model was overfitting. The 

Soybean-clean 593 Mud flats 503 Lettuce_romaine_5wk 1927
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However, with the development of state-of-art algorithms for hyperspectral image classification, 
these three data sets are easily classified. When the number of training samples was more than 800, 
SSRN and FDSSC achieved an accuracy higher than 98% for the three HSI data sets. The difference 
between the classification accuracies of these methods is less than 1%. Therefore, in addition to the 
three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which 
was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult as 
conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above 90% 
with 200 labeled training samples. The size of the Houston data was 349 × 1905, with 144 bands 
containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite 
maps for this data set. 

Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the 
Houston data. 

NO. Color Class SN 
1 Grass Healthy 1374 
2 Grass Stressed 1454 
3  Grass Synthetic 795 
4  Tree 1264 
5  Soil 1298 
6  Water 339 
7  Residential 1476 
8  Commercial 1354 
9  Road 1554 

10  Highway 1424 
11  Railway 1332 
12  Parking Lot 1 1429 
13  Parking Lot 2 632 
14  Tennis Court 513 
15  Running Track 798 

Total 17,036 

Quantitative analysis was performed with the same limited training samples using all methods. 
Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method 
under different conditions. A subset of 200 labeled samples were used for training and 100 labeled 
samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then 
included to test the robustness and generalizability of the proposed AUSSC.  

3.2. Framework Setting 

The framework for all data sets was established as follows. From 10 random seeds, all data sets 
were randomly divided into the three following groups: A training set, a validation set, and a test set. 
The training sets were used to optimize model parameters. The validation sets were not directly used 
in the training process and were only included to verify whether the model was overfitting. The 
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However, with the development of state-of-art algorithms for hyperspectral image classification, 
these three data sets are easily classified. When the number of training samples was more than 800, 
SSRN and FDSSC achieved an accuracy higher than 98% for the three HSI data sets. The difference 
between the classification accuracies of these methods is less than 1%. Therefore, in addition to the 
three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which 
was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult as 
conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above 90% 
with 200 labeled training samples. The size of the Houston data was 349 × 1905, with 144 bands 
containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite 
maps for this data set. 

Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the 
Houston data. 

NO. Color Class SN 
1 Grass Healthy 1374 
2 Grass Stressed 1454 
3  Grass Synthetic 795 
4  Tree 1264 
5  Soil 1298 
6  Water 339 
7  Residential 1476 
8  Commercial 1354 
9  Road 1554 

10  Highway 1424 
11  Railway 1332 
12  Parking Lot 1 1429 
13  Parking Lot 2 632 
14  Tennis Court 513 
15  Running Track 798 

Total 17,036 

Quantitative analysis was performed with the same limited training samples using all methods. 
Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method 
under different conditions. A subset of 200 labeled samples were used for training and 100 labeled 
samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then 
included to test the robustness and generalizability of the proposed AUSSC.  

3.2. Framework Setting 

The framework for all data sets was established as follows. From 10 random seeds, all data sets 
were randomly divided into the three following groups: A training set, a validation set, and a test set. 
The training sets were used to optimize model parameters. The validation sets were not directly used 
in the training process and were only included to verify whether the model was overfitting. The 
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However, with the development of state-of-art algorithms for hyperspectral image classification, 
these three data sets are easily classified. When the number of training samples was more than 800, 
SSRN and FDSSC achieved an accuracy higher than 98% for the three HSI data sets. The difference 
between the classification accuracies of these methods is less than 1%. Therefore, in addition to the 
three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which 
was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult as 
conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above 90% 
with 200 labeled training samples. The size of the Houston data was 349 × 1905, with 144 bands 
containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite 
maps for this data set. 

Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the 
Houston data. 

NO. Color Class SN 
1 Grass Healthy 1374 
2 Grass Stressed 1454 
3  Grass Synthetic 795 
4  Tree 1264 
5  Soil 1298 
6  Water 339 
7  Residential 1476 
8  Commercial 1354 
9  Road 1554 

10  Highway 1424 
11  Railway 1332 
12  Parking Lot 1 1429 
13  Parking Lot 2 632 
14  Tennis Court 513 
15  Running Track 798 

Total 17,036 

Quantitative analysis was performed with the same limited training samples using all methods. 
Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method 
under different conditions. A subset of 200 labeled samples were used for training and 100 labeled 
samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then 
included to test the robustness and generalizability of the proposed AUSSC.  

3.2. Framework Setting 

The framework for all data sets was established as follows. From 10 random seeds, all data sets 
were randomly divided into the three following groups: A training set, a validation set, and a test set. 
The training sets were used to optimize model parameters. The validation sets were not directly used 
in the training process and were only included to verify whether the model was overfitting. The 

Buildings-Grass-Trees 386 Vinyard_untrained 7268
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 Hay-windrowed 478 Graminoid marsh 390 Grapes_untrained 11271 
 Oats 20 Spartina marsh 520 Soil_vinyard_develop 6203 
 Soybean-notill 972 Cattail marsh 404 Corn_senesced_green_weeds 3278 
 Soybean-mintill 2455 Salt marsh 419 Lettuce_romaine_4wk 1068 
 Soybean-clean 593 Mud flats 503 Lettuce_romaine_5wk 1927 
 Wheat 205 Water 927 Lettuce_romaine_6wk 916 
 Woods 1265   Lettuce_romaine_7wk 1070 
 Buildings-Grass-Trees 386   Vinyard_untrained 7268 
 Stone-Steel-Towers 93   Vinyard_vertical_trellis 1807 

Total 10,249 5211 54,129 

However, with the development of state-of-art algorithms for hyperspectral image classification, 
these three data sets are easily classified. When the number of training samples was more than 800, 
SSRN and FDSSC achieved an accuracy higher than 98% for the three HSI data sets. The difference 
between the classification accuracies of these methods is less than 1%. Therefore, in addition to the 
three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which 
was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult as 
conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above 90% 
with 200 labeled training samples. The size of the Houston data was 349 × 1905, with 144 bands 
containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite 
maps for this data set. 

Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the 
Houston data. 

NO. Color Class SN 
1 Grass Healthy 1374 
2 Grass Stressed 1454 
3  Grass Synthetic 795 
4  Tree 1264 
5  Soil 1298 
6  Water 339 
7  Residential 1476 
8  Commercial 1354 
9  Road 1554 

10  Highway 1424 
11  Railway 1332 
12  Parking Lot 1 1429 
13  Parking Lot 2 632 
14  Tennis Court 513 
15  Running Track 798 

Total 17,036 

Quantitative analysis was performed with the same limited training samples using all methods. 
Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method 
under different conditions. A subset of 200 labeled samples were used for training and 100 labeled 
samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then 
included to test the robustness and generalizability of the proposed AUSSC.  

3.2. Framework Setting 

The framework for all data sets was established as follows. From 10 random seeds, all data sets 
were randomly divided into the three following groups: A training set, a validation set, and a test set. 
The training sets were used to optimize model parameters. The validation sets were not directly used 
in the training process and were only included to verify whether the model was overfitting. The 

Stone-Steel-Towers 93 Vinyard_vertical_trellis 1807

Total 10,249 5211 54,129

Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the
Houston data.

NO. Color Class SN
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size for each layer remained 36 9 × 9 × 𝑏 , which was unchanged in stage 1 and stage 2. After 
concatenating the input and updated feature maps, the output of the alternately updated spectral 
blocks had a size of 136 9 × 9 × 𝑏. 

A valid convolutional layer with 48 channels and a kernel size of 1 × 1 × 𝑏  was included 
between alternately updated spectral and spatial blocks. This reduced the dimensions of the output 
of alternately updated spectral blocks, resulting in 48 feature maps with a size of 9 × 9 × 1. After 
reshaping the third dimension and the channel dimension, 48 channels with a size of 9 × 9 × 1 were 
merged into a single 9 × 9 × 48 channel. A valid convolutional layer with a kernel size of 3 × 3 × 48 
and 64 kernels transformed the feature map into 64 channels with a size of 7 × 7 × 1. 

Similar to the alternately updated spectral blocks, the alternately updated spatial block featured 
two convolutional kernels with sizes of 1 × 3 × 1 and 3 × 1 × 1. In stage 1 and stage 2, the output of 
each layer 367 × 7 × 1 was 36 kernels with a size of 7 × 7 × 1. The results of two convolutional kernels 
were concatenated into 272 kernels with a size of 7 × 7 × 1. Finally, the output passed through a 3D 
average pooling layer with a pooling size of 21 × 1 × 1, which was converted into 272 feature maps 
with a size of 1 × 1 × 1. After the flattening operation, a vector with a size of 1 × 1 × 𝐶 was produced 
by the fully connected layer, where C is the number of classes. Trainable AUSSC parameters were 
optimized by iterative training using Equation (6) and used to compute the loss between the 
predicted and real values. 

The following sections provide a summary of the advantages of this proposed AUSSC 
architecture. First, the use of three different small convolutional kernels reduced both the number of 
parameters and overfitting, thereby increasing the nonlinear representation ability of the model and 
the diversity of features. Compared with symmetric splitting into several identical small 
convolutional kernels, this asymmetric splitting can handle more and richer features. Second, refined 
deep features learned by both forward and feedback connections between convolutional layers are 
more robust and have more high-level spectral and spatial information. Additionally, SSRN and 
FDSSC learn deeper features by increasing the number of convolutional layers in the blocks. However, 
unlike these conventional models, AUSSC can go deeper with fixed parameters due to its loop 
structure and shared weights. Finally, an auxiliary loss function was used to reduce the intra-class 
distance and increase the distinction between features of different categories. 

3. Experimental Data Sets and Framework Settings 

3.1. Description of Experimental Data Sets 

Three common HSI data sets were used to validate the proposed AUSSC, as follows: The Indiana 
Pines (IP; northwestern Indiana, USA), Kennedy Space Center (KSC; Merritt Island, FL, USA), and 
Salinas Scene (SS; Salinas Valley, CA, USA). These IP data were obtained by the NASA Airborne 
Visible Imaging Spectrometer (AVIRIS) sensor. The size of the IP data was 145 × 145, with 220 bands 
containing 16 kinds of ground cover. The KSC data were collected by the AVIRIS sensor in 1996 and 
had a size of 512 × 614, with 176 bands and 13 ground truth classes. The SS data were also collected 
by the AVIRIS sensor and had a size of 512 × 217, with 204 bands and 9 ground truth classes. Table 
2 lists these classes and the corresponding false-color composite maps for three data sets.  

Table 2. Color codes for the classes, class types, and sample numbers (SN) for the ground truths of 
the Indiana Pines (IP) data, Kennedy Space Center (KSC) data, and Salinas Scene (SS) data. 

Color 
IP Data KSC Data SS Data 

Class SN Class SN Class SN 

 Alfalfa 46 Scrub 347 Brocoli_green_weeds_1 2009 
 Corn-notill 1426 Willow swamp 243 Brocoli_green_weeds_2 3726 
 Corn-mintill 830 CP hammock 256 Fallow 1976 
 Corn 237 Slash pine 252 Fallow_rough_plow 1394 
 Grass-pasture 483 Oak/Broadleaf 161 Fallow_smooth 2678 
 Grass-trees 730 Hardwood 229 Stubble 3959 
 Grass-pasture-mowed 28 Swamp 105 Celery 3579 

Grass Healthy 1374
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size for each layer remained 36 9 × 9 × 𝑏 , which was unchanged in stage 1 and stage 2. After 
concatenating the input and updated feature maps, the output of the alternately updated spectral 
blocks had a size of 136 9 × 9 × 𝑏. 

A valid convolutional layer with 48 channels and a kernel size of 1 × 1 × 𝑏  was included 
between alternately updated spectral and spatial blocks. This reduced the dimensions of the output 
of alternately updated spectral blocks, resulting in 48 feature maps with a size of 9 × 9 × 1. After 
reshaping the third dimension and the channel dimension, 48 channels with a size of 9 × 9 × 1 were 
merged into a single 9 × 9 × 48 channel. A valid convolutional layer with a kernel size of 3 × 3 × 48 
and 64 kernels transformed the feature map into 64 channels with a size of 7 × 7 × 1. 

Similar to the alternately updated spectral blocks, the alternately updated spatial block featured 
two convolutional kernels with sizes of 1 × 3 × 1 and 3 × 1 × 1. In stage 1 and stage 2, the output of 
each layer 367 × 7 × 1 was 36 kernels with a size of 7 × 7 × 1. The results of two convolutional kernels 
were concatenated into 272 kernels with a size of 7 × 7 × 1. Finally, the output passed through a 3D 
average pooling layer with a pooling size of 21 × 1 × 1, which was converted into 272 feature maps 
with a size of 1 × 1 × 1. After the flattening operation, a vector with a size of 1 × 1 × 𝐶 was produced 
by the fully connected layer, where C is the number of classes. Trainable AUSSC parameters were 
optimized by iterative training using Equation (6) and used to compute the loss between the 
predicted and real values. 

The following sections provide a summary of the advantages of this proposed AUSSC 
architecture. First, the use of three different small convolutional kernels reduced both the number of 
parameters and overfitting, thereby increasing the nonlinear representation ability of the model and 
the diversity of features. Compared with symmetric splitting into several identical small 
convolutional kernels, this asymmetric splitting can handle more and richer features. Second, refined 
deep features learned by both forward and feedback connections between convolutional layers are 
more robust and have more high-level spectral and spatial information. Additionally, SSRN and 
FDSSC learn deeper features by increasing the number of convolutional layers in the blocks. However, 
unlike these conventional models, AUSSC can go deeper with fixed parameters due to its loop 
structure and shared weights. Finally, an auxiliary loss function was used to reduce the intra-class 
distance and increase the distinction between features of different categories. 

3. Experimental Data Sets and Framework Settings 

3.1. Description of Experimental Data Sets 

Three common HSI data sets were used to validate the proposed AUSSC, as follows: The Indiana 
Pines (IP; northwestern Indiana, USA), Kennedy Space Center (KSC; Merritt Island, FL, USA), and 
Salinas Scene (SS; Salinas Valley, CA, USA). These IP data were obtained by the NASA Airborne 
Visible Imaging Spectrometer (AVIRIS) sensor. The size of the IP data was 145 × 145, with 220 bands 
containing 16 kinds of ground cover. The KSC data were collected by the AVIRIS sensor in 1996 and 
had a size of 512 × 614, with 176 bands and 13 ground truth classes. The SS data were also collected 
by the AVIRIS sensor and had a size of 512 × 217, with 204 bands and 9 ground truth classes. Table 
2 lists these classes and the corresponding false-color composite maps for three data sets.  

Table 2. Color codes for the classes, class types, and sample numbers (SN) for the ground truths of 
the Indiana Pines (IP) data, Kennedy Space Center (KSC) data, and Salinas Scene (SS) data. 

Color 
IP Data KSC Data SS Data 

Class SN Class SN Class SN 

 Alfalfa 46 Scrub 347 Brocoli_green_weeds_1 2009 
 Corn-notill 1426 Willow swamp 243 Brocoli_green_weeds_2 3726 
 Corn-mintill 830 CP hammock 256 Fallow 1976 
 Corn 237 Slash pine 252 Fallow_rough_plow 1394 
 Grass-pasture 483 Oak/Broadleaf 161 Fallow_smooth 2678 
 Grass-trees 730 Hardwood 229 Stubble 3959 
 Grass-pasture-mowed 28 Swamp 105 Celery 3579 

Grass Stressed 1454
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size for each layer remained 36 9 × 9 × 𝑏 , which was unchanged in stage 1 and stage 2. After 
concatenating the input and updated feature maps, the output of the alternately updated spectral 
blocks had a size of 136 9 × 9 × 𝑏. 

A valid convolutional layer with 48 channels and a kernel size of 1 × 1 × 𝑏  was included 
between alternately updated spectral and spatial blocks. This reduced the dimensions of the output 
of alternately updated spectral blocks, resulting in 48 feature maps with a size of 9 × 9 × 1. After 
reshaping the third dimension and the channel dimension, 48 channels with a size of 9 × 9 × 1 were 
merged into a single 9 × 9 × 48 channel. A valid convolutional layer with a kernel size of 3 × 3 × 48 
and 64 kernels transformed the feature map into 64 channels with a size of 7 × 7 × 1. 

Similar to the alternately updated spectral blocks, the alternately updated spatial block featured 
two convolutional kernels with sizes of 1 × 3 × 1 and 3 × 1 × 1. In stage 1 and stage 2, the output of 
each layer 367 × 7 × 1 was 36 kernels with a size of 7 × 7 × 1. The results of two convolutional kernels 
were concatenated into 272 kernels with a size of 7 × 7 × 1. Finally, the output passed through a 3D 
average pooling layer with a pooling size of 21 × 1 × 1, which was converted into 272 feature maps 
with a size of 1 × 1 × 1. After the flattening operation, a vector with a size of 1 × 1 × 𝐶 was produced 
by the fully connected layer, where C is the number of classes. Trainable AUSSC parameters were 
optimized by iterative training using Equation (6) and used to compute the loss between the 
predicted and real values. 

The following sections provide a summary of the advantages of this proposed AUSSC 
architecture. First, the use of three different small convolutional kernels reduced both the number of 
parameters and overfitting, thereby increasing the nonlinear representation ability of the model and 
the diversity of features. Compared with symmetric splitting into several identical small 
convolutional kernels, this asymmetric splitting can handle more and richer features. Second, refined 
deep features learned by both forward and feedback connections between convolutional layers are 
more robust and have more high-level spectral and spatial information. Additionally, SSRN and 
FDSSC learn deeper features by increasing the number of convolutional layers in the blocks. However, 
unlike these conventional models, AUSSC can go deeper with fixed parameters due to its loop 
structure and shared weights. Finally, an auxiliary loss function was used to reduce the intra-class 
distance and increase the distinction between features of different categories. 

3. Experimental Data Sets and Framework Settings 

3.1. Description of Experimental Data Sets 

Three common HSI data sets were used to validate the proposed AUSSC, as follows: The Indiana 
Pines (IP; northwestern Indiana, USA), Kennedy Space Center (KSC; Merritt Island, FL, USA), and 
Salinas Scene (SS; Salinas Valley, CA, USA). These IP data were obtained by the NASA Airborne 
Visible Imaging Spectrometer (AVIRIS) sensor. The size of the IP data was 145 × 145, with 220 bands 
containing 16 kinds of ground cover. The KSC data were collected by the AVIRIS sensor in 1996 and 
had a size of 512 × 614, with 176 bands and 13 ground truth classes. The SS data were also collected 
by the AVIRIS sensor and had a size of 512 × 217, with 204 bands and 9 ground truth classes. Table 
2 lists these classes and the corresponding false-color composite maps for three data sets.  

Table 2. Color codes for the classes, class types, and sample numbers (SN) for the ground truths of 
the Indiana Pines (IP) data, Kennedy Space Center (KSC) data, and Salinas Scene (SS) data. 

Color 
IP Data KSC Data SS Data 

Class SN Class SN Class SN 

 Alfalfa 46 Scrub 347 Brocoli_green_weeds_1 2009 
 Corn-notill 1426 Willow swamp 243 Brocoli_green_weeds_2 3726 
 Corn-mintill 830 CP hammock 256 Fallow 1976 
 Corn 237 Slash pine 252 Fallow_rough_plow 1394 
 Grass-pasture 483 Oak/Broadleaf 161 Fallow_smooth 2678 
 Grass-trees 730 Hardwood 229 Stubble 3959 
 Grass-pasture-mowed 28 Swamp 105 Celery 3579 

Grass Synthetic 795
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size for each layer remained 36 9 × 9 × 𝑏 , which was unchanged in stage 1 and stage 2. After 
concatenating the input and updated feature maps, the output of the alternately updated spectral 
blocks had a size of 136 9 × 9 × 𝑏. 

A valid convolutional layer with 48 channels and a kernel size of 1 × 1 × 𝑏  was included 
between alternately updated spectral and spatial blocks. This reduced the dimensions of the output 
of alternately updated spectral blocks, resulting in 48 feature maps with a size of 9 × 9 × 1. After 
reshaping the third dimension and the channel dimension, 48 channels with a size of 9 × 9 × 1 were 
merged into a single 9 × 9 × 48 channel. A valid convolutional layer with a kernel size of 3 × 3 × 48 
and 64 kernels transformed the feature map into 64 channels with a size of 7 × 7 × 1. 

Similar to the alternately updated spectral blocks, the alternately updated spatial block featured 
two convolutional kernels with sizes of 1 × 3 × 1 and 3 × 1 × 1. In stage 1 and stage 2, the output of 
each layer 367 × 7 × 1 was 36 kernels with a size of 7 × 7 × 1. The results of two convolutional kernels 
were concatenated into 272 kernels with a size of 7 × 7 × 1. Finally, the output passed through a 3D 
average pooling layer with a pooling size of 21 × 1 × 1, which was converted into 272 feature maps 
with a size of 1 × 1 × 1. After the flattening operation, a vector with a size of 1 × 1 × 𝐶 was produced 
by the fully connected layer, where C is the number of classes. Trainable AUSSC parameters were 
optimized by iterative training using Equation (6) and used to compute the loss between the 
predicted and real values. 

The following sections provide a summary of the advantages of this proposed AUSSC 
architecture. First, the use of three different small convolutional kernels reduced both the number of 
parameters and overfitting, thereby increasing the nonlinear representation ability of the model and 
the diversity of features. Compared with symmetric splitting into several identical small 
convolutional kernels, this asymmetric splitting can handle more and richer features. Second, refined 
deep features learned by both forward and feedback connections between convolutional layers are 
more robust and have more high-level spectral and spatial information. Additionally, SSRN and 
FDSSC learn deeper features by increasing the number of convolutional layers in the blocks. However, 
unlike these conventional models, AUSSC can go deeper with fixed parameters due to its loop 
structure and shared weights. Finally, an auxiliary loss function was used to reduce the intra-class 
distance and increase the distinction between features of different categories. 

3. Experimental Data Sets and Framework Settings 

3.1. Description of Experimental Data Sets 

Three common HSI data sets were used to validate the proposed AUSSC, as follows: The Indiana 
Pines (IP; northwestern Indiana, USA), Kennedy Space Center (KSC; Merritt Island, FL, USA), and 
Salinas Scene (SS; Salinas Valley, CA, USA). These IP data were obtained by the NASA Airborne 
Visible Imaging Spectrometer (AVIRIS) sensor. The size of the IP data was 145 × 145, with 220 bands 
containing 16 kinds of ground cover. The KSC data were collected by the AVIRIS sensor in 1996 and 
had a size of 512 × 614, with 176 bands and 13 ground truth classes. The SS data were also collected 
by the AVIRIS sensor and had a size of 512 × 217, with 204 bands and 9 ground truth classes. Table 
2 lists these classes and the corresponding false-color composite maps for three data sets.  

Table 2. Color codes for the classes, class types, and sample numbers (SN) for the ground truths of 
the Indiana Pines (IP) data, Kennedy Space Center (KSC) data, and Salinas Scene (SS) data. 

Color 
IP Data KSC Data SS Data 

Class SN Class SN Class SN 

 Alfalfa 46 Scrub 347 Brocoli_green_weeds_1 2009 
 Corn-notill 1426 Willow swamp 243 Brocoli_green_weeds_2 3726 
 Corn-mintill 830 CP hammock 256 Fallow 1976 
 Corn 237 Slash pine 252 Fallow_rough_plow 1394 
 Grass-pasture 483 Oak/Broadleaf 161 Fallow_smooth 2678 
 Grass-trees 730 Hardwood 229 Stubble 3959 
 Grass-pasture-mowed 28 Swamp 105 Celery 3579 

Tree 1264
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size for each layer remained 36 9 × 9 × 𝑏 , which was unchanged in stage 1 and stage 2. After 
concatenating the input and updated feature maps, the output of the alternately updated spectral 
blocks had a size of 136 9 × 9 × 𝑏. 

A valid convolutional layer with 48 channels and a kernel size of 1 × 1 × 𝑏  was included 
between alternately updated spectral and spatial blocks. This reduced the dimensions of the output 
of alternately updated spectral blocks, resulting in 48 feature maps with a size of 9 × 9 × 1. After 
reshaping the third dimension and the channel dimension, 48 channels with a size of 9 × 9 × 1 were 
merged into a single 9 × 9 × 48 channel. A valid convolutional layer with a kernel size of 3 × 3 × 48 
and 64 kernels transformed the feature map into 64 channels with a size of 7 × 7 × 1. 

Similar to the alternately updated spectral blocks, the alternately updated spatial block featured 
two convolutional kernels with sizes of 1 × 3 × 1 and 3 × 1 × 1. In stage 1 and stage 2, the output of 
each layer 367 × 7 × 1 was 36 kernels with a size of 7 × 7 × 1. The results of two convolutional kernels 
were concatenated into 272 kernels with a size of 7 × 7 × 1. Finally, the output passed through a 3D 
average pooling layer with a pooling size of 21 × 1 × 1, which was converted into 272 feature maps 
with a size of 1 × 1 × 1. After the flattening operation, a vector with a size of 1 × 1 × 𝐶 was produced 
by the fully connected layer, where C is the number of classes. Trainable AUSSC parameters were 
optimized by iterative training using Equation (6) and used to compute the loss between the 
predicted and real values. 

The following sections provide a summary of the advantages of this proposed AUSSC 
architecture. First, the use of three different small convolutional kernels reduced both the number of 
parameters and overfitting, thereby increasing the nonlinear representation ability of the model and 
the diversity of features. Compared with symmetric splitting into several identical small 
convolutional kernels, this asymmetric splitting can handle more and richer features. Second, refined 
deep features learned by both forward and feedback connections between convolutional layers are 
more robust and have more high-level spectral and spatial information. Additionally, SSRN and 
FDSSC learn deeper features by increasing the number of convolutional layers in the blocks. However, 
unlike these conventional models, AUSSC can go deeper with fixed parameters due to its loop 
structure and shared weights. Finally, an auxiliary loss function was used to reduce the intra-class 
distance and increase the distinction between features of different categories. 

3. Experimental Data Sets and Framework Settings 

3.1. Description of Experimental Data Sets 

Three common HSI data sets were used to validate the proposed AUSSC, as follows: The Indiana 
Pines (IP; northwestern Indiana, USA), Kennedy Space Center (KSC; Merritt Island, FL, USA), and 
Salinas Scene (SS; Salinas Valley, CA, USA). These IP data were obtained by the NASA Airborne 
Visible Imaging Spectrometer (AVIRIS) sensor. The size of the IP data was 145 × 145, with 220 bands 
containing 16 kinds of ground cover. The KSC data were collected by the AVIRIS sensor in 1996 and 
had a size of 512 × 614, with 176 bands and 13 ground truth classes. The SS data were also collected 
by the AVIRIS sensor and had a size of 512 × 217, with 204 bands and 9 ground truth classes. Table 
2 lists these classes and the corresponding false-color composite maps for three data sets.  

Table 2. Color codes for the classes, class types, and sample numbers (SN) for the ground truths of 
the Indiana Pines (IP) data, Kennedy Space Center (KSC) data, and Salinas Scene (SS) data. 

Color 
IP Data KSC Data SS Data 

Class SN Class SN Class SN 

 Alfalfa 46 Scrub 347 Brocoli_green_weeds_1 2009 
 Corn-notill 1426 Willow swamp 243 Brocoli_green_weeds_2 3726 
 Corn-mintill 830 CP hammock 256 Fallow 1976 
 Corn 237 Slash pine 252 Fallow_rough_plow 1394 
 Grass-pasture 483 Oak/Broadleaf 161 Fallow_smooth 2678 
 Grass-trees 730 Hardwood 229 Stubble 3959 
 Grass-pasture-mowed 28 Swamp 105 Celery 3579 

Soil 1298
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size for each layer remained 36 9 × 9 × 𝑏 , which was unchanged in stage 1 and stage 2. After 
concatenating the input and updated feature maps, the output of the alternately updated spectral 
blocks had a size of 136 9 × 9 × 𝑏. 

A valid convolutional layer with 48 channels and a kernel size of 1 × 1 × 𝑏  was included 
between alternately updated spectral and spatial blocks. This reduced the dimensions of the output 
of alternately updated spectral blocks, resulting in 48 feature maps with a size of 9 × 9 × 1. After 
reshaping the third dimension and the channel dimension, 48 channels with a size of 9 × 9 × 1 were 
merged into a single 9 × 9 × 48 channel. A valid convolutional layer with a kernel size of 3 × 3 × 48 
and 64 kernels transformed the feature map into 64 channels with a size of 7 × 7 × 1. 

Similar to the alternately updated spectral blocks, the alternately updated spatial block featured 
two convolutional kernels with sizes of 1 × 3 × 1 and 3 × 1 × 1. In stage 1 and stage 2, the output of 
each layer 367 × 7 × 1 was 36 kernels with a size of 7 × 7 × 1. The results of two convolutional kernels 
were concatenated into 272 kernels with a size of 7 × 7 × 1. Finally, the output passed through a 3D 
average pooling layer with a pooling size of 21 × 1 × 1, which was converted into 272 feature maps 
with a size of 1 × 1 × 1. After the flattening operation, a vector with a size of 1 × 1 × 𝐶 was produced 
by the fully connected layer, where C is the number of classes. Trainable AUSSC parameters were 
optimized by iterative training using Equation (6) and used to compute the loss between the 
predicted and real values. 

The following sections provide a summary of the advantages of this proposed AUSSC 
architecture. First, the use of three different small convolutional kernels reduced both the number of 
parameters and overfitting, thereby increasing the nonlinear representation ability of the model and 
the diversity of features. Compared with symmetric splitting into several identical small 
convolutional kernels, this asymmetric splitting can handle more and richer features. Second, refined 
deep features learned by both forward and feedback connections between convolutional layers are 
more robust and have more high-level spectral and spatial information. Additionally, SSRN and 
FDSSC learn deeper features by increasing the number of convolutional layers in the blocks. However, 
unlike these conventional models, AUSSC can go deeper with fixed parameters due to its loop 
structure and shared weights. Finally, an auxiliary loss function was used to reduce the intra-class 
distance and increase the distinction between features of different categories. 

3. Experimental Data Sets and Framework Settings 

3.1. Description of Experimental Data Sets 

Three common HSI data sets were used to validate the proposed AUSSC, as follows: The Indiana 
Pines (IP; northwestern Indiana, USA), Kennedy Space Center (KSC; Merritt Island, FL, USA), and 
Salinas Scene (SS; Salinas Valley, CA, USA). These IP data were obtained by the NASA Airborne 
Visible Imaging Spectrometer (AVIRIS) sensor. The size of the IP data was 145 × 145, with 220 bands 
containing 16 kinds of ground cover. The KSC data were collected by the AVIRIS sensor in 1996 and 
had a size of 512 × 614, with 176 bands and 13 ground truth classes. The SS data were also collected 
by the AVIRIS sensor and had a size of 512 × 217, with 204 bands and 9 ground truth classes. Table 
2 lists these classes and the corresponding false-color composite maps for three data sets.  

Table 2. Color codes for the classes, class types, and sample numbers (SN) for the ground truths of 
the Indiana Pines (IP) data, Kennedy Space Center (KSC) data, and Salinas Scene (SS) data. 

Color 
IP Data KSC Data SS Data 

Class SN Class SN Class SN 

 Alfalfa 46 Scrub 347 Brocoli_green_weeds_1 2009 
 Corn-notill 1426 Willow swamp 243 Brocoli_green_weeds_2 3726 
 Corn-mintill 830 CP hammock 256 Fallow 1976 
 Corn 237 Slash pine 252 Fallow_rough_plow 1394 
 Grass-pasture 483 Oak/Broadleaf 161 Fallow_smooth 2678 
 Grass-trees 730 Hardwood 229 Stubble 3959 
 Grass-pasture-mowed 28 Swamp 105 Celery 3579 

Water 339
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size for each layer remained 36 9 × 9 × 𝑏 , which was unchanged in stage 1 and stage 2. After 
concatenating the input and updated feature maps, the output of the alternately updated spectral 
blocks had a size of 136 9 × 9 × 𝑏. 

A valid convolutional layer with 48 channels and a kernel size of 1 × 1 × 𝑏  was included 
between alternately updated spectral and spatial blocks. This reduced the dimensions of the output 
of alternately updated spectral blocks, resulting in 48 feature maps with a size of 9 × 9 × 1. After 
reshaping the third dimension and the channel dimension, 48 channels with a size of 9 × 9 × 1 were 
merged into a single 9 × 9 × 48 channel. A valid convolutional layer with a kernel size of 3 × 3 × 48 
and 64 kernels transformed the feature map into 64 channels with a size of 7 × 7 × 1. 

Similar to the alternately updated spectral blocks, the alternately updated spatial block featured 
two convolutional kernels with sizes of 1 × 3 × 1 and 3 × 1 × 1. In stage 1 and stage 2, the output of 
each layer 367 × 7 × 1 was 36 kernels with a size of 7 × 7 × 1. The results of two convolutional kernels 
were concatenated into 272 kernels with a size of 7 × 7 × 1. Finally, the output passed through a 3D 
average pooling layer with a pooling size of 21 × 1 × 1, which was converted into 272 feature maps 
with a size of 1 × 1 × 1. After the flattening operation, a vector with a size of 1 × 1 × 𝐶 was produced 
by the fully connected layer, where C is the number of classes. Trainable AUSSC parameters were 
optimized by iterative training using Equation (6) and used to compute the loss between the 
predicted and real values. 

The following sections provide a summary of the advantages of this proposed AUSSC 
architecture. First, the use of three different small convolutional kernels reduced both the number of 
parameters and overfitting, thereby increasing the nonlinear representation ability of the model and 
the diversity of features. Compared with symmetric splitting into several identical small 
convolutional kernels, this asymmetric splitting can handle more and richer features. Second, refined 
deep features learned by both forward and feedback connections between convolutional layers are 
more robust and have more high-level spectral and spatial information. Additionally, SSRN and 
FDSSC learn deeper features by increasing the number of convolutional layers in the blocks. However, 
unlike these conventional models, AUSSC can go deeper with fixed parameters due to its loop 
structure and shared weights. Finally, an auxiliary loss function was used to reduce the intra-class 
distance and increase the distinction between features of different categories. 

3. Experimental Data Sets and Framework Settings 

3.1. Description of Experimental Data Sets 

Three common HSI data sets were used to validate the proposed AUSSC, as follows: The Indiana 
Pines (IP; northwestern Indiana, USA), Kennedy Space Center (KSC; Merritt Island, FL, USA), and 
Salinas Scene (SS; Salinas Valley, CA, USA). These IP data were obtained by the NASA Airborne 
Visible Imaging Spectrometer (AVIRIS) sensor. The size of the IP data was 145 × 145, with 220 bands 
containing 16 kinds of ground cover. The KSC data were collected by the AVIRIS sensor in 1996 and 
had a size of 512 × 614, with 176 bands and 13 ground truth classes. The SS data were also collected 
by the AVIRIS sensor and had a size of 512 × 217, with 204 bands and 9 ground truth classes. Table 
2 lists these classes and the corresponding false-color composite maps for three data sets.  

Table 2. Color codes for the classes, class types, and sample numbers (SN) for the ground truths of 
the Indiana Pines (IP) data, Kennedy Space Center (KSC) data, and Salinas Scene (SS) data. 

Color 
IP Data KSC Data SS Data 

Class SN Class SN Class SN 

 Alfalfa 46 Scrub 347 Brocoli_green_weeds_1 2009 
 Corn-notill 1426 Willow swamp 243 Brocoli_green_weeds_2 3726 
 Corn-mintill 830 CP hammock 256 Fallow 1976 
 Corn 237 Slash pine 252 Fallow_rough_plow 1394 
 Grass-pasture 483 Oak/Broadleaf 161 Fallow_smooth 2678 
 Grass-trees 730 Hardwood 229 Stubble 3959 
 Grass-pasture-mowed 28 Swamp 105 Celery 3579 Residential 1476
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However, with the development of state-of-art algorithms for hyperspectral image classification, 
these three data sets are easily classified. When the number of training samples was more than 800, 
SSRN and FDSSC achieved an accuracy higher than 98% for the three HSI data sets. The difference 
between the classification accuracies of these methods is less than 1%. Therefore, in addition to the 
three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which 
was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult as 
conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above 90% 
with 200 labeled training samples. The size of the Houston data was 349 × 1905, with 144 bands 
containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite 
maps for this data set. 

Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the 
Houston data. 

NO. Color Class SN 
1 Grass Healthy 1374 
2 Grass Stressed 1454 
3  Grass Synthetic 795 
4  Tree 1264 
5  Soil 1298 
6  Water 339 
7  Residential 1476 
8  Commercial 1354 
9  Road 1554 

10  Highway 1424 
11  Railway 1332 
12  Parking Lot 1 1429 
13  Parking Lot 2 632 
14  Tennis Court 513 
15  Running Track 798 

Total 17,036 

Quantitative analysis was performed with the same limited training samples using all methods. 
Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method 
under different conditions. A subset of 200 labeled samples were used for training and 100 labeled 
samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then 
included to test the robustness and generalizability of the proposed AUSSC.  

3.2. Framework Setting 

The framework for all data sets was established as follows. From 10 random seeds, all data sets 
were randomly divided into the three following groups: A training set, a validation set, and a test set. 
The training sets were used to optimize model parameters. The validation sets were not directly used 
in the training process and were only included to verify whether the model was overfitting. The 
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three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which 
was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult as 
conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above 90% 
with 200 labeled training samples. The size of the Houston data was 349 × 1905, with 144 bands 
containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite 
maps for this data set. 

Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the 
Houston data. 

NO. Color Class SN 
1 Grass Healthy 1374 
2 Grass Stressed 1454 
3  Grass Synthetic 795 
4  Tree 1264 
5  Soil 1298 
6  Water 339 
7  Residential 1476 
8  Commercial 1354 
9  Road 1554 
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15  Running Track 798 

Total 17,036 

Quantitative analysis was performed with the same limited training samples using all methods. 
Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method 
under different conditions. A subset of 200 labeled samples were used for training and 100 labeled 
samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then 
included to test the robustness and generalizability of the proposed AUSSC.  

3.2. Framework Setting 

The framework for all data sets was established as follows. From 10 random seeds, all data sets 
were randomly divided into the three following groups: A training set, a validation set, and a test set. 
The training sets were used to optimize model parameters. The validation sets were not directly used 
in the training process and were only included to verify whether the model was overfitting. The 
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SSRN and FDSSC achieved an accuracy higher than 98% for the three HSI data sets. The difference 
between the classification accuracies of these methods is less than 1%. Therefore, in addition to the 
three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which 
was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult as 
conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above 90% 
with 200 labeled training samples. The size of the Houston data was 349 × 1905, with 144 bands 
containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite 
maps for this data set. 

Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the 
Houston data. 

NO. Color Class SN 
1 Grass Healthy 1374 
2 Grass Stressed 1454 
3  Grass Synthetic 795 
4  Tree 1264 
5  Soil 1298 
6  Water 339 
7  Residential 1476 
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Quantitative analysis was performed with the same limited training samples using all methods. 
Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method 
under different conditions. A subset of 200 labeled samples were used for training and 100 labeled 
samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then 
included to test the robustness and generalizability of the proposed AUSSC.  

3.2. Framework Setting 

The framework for all data sets was established as follows. From 10 random seeds, all data sets 
were randomly divided into the three following groups: A training set, a validation set, and a test set. 
The training sets were used to optimize model parameters. The validation sets were not directly used 
in the training process and were only included to verify whether the model was overfitting. The 
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between the classification accuracies of these methods is less than 1%. Therefore, in addition to the 
three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which 
was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult as 
conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above 90% 
with 200 labeled training samples. The size of the Houston data was 349 × 1905, with 144 bands 
containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite 
maps for this data set. 

Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the 
Houston data. 

NO. Color Class SN 
1 Grass Healthy 1374 
2 Grass Stressed 1454 
3  Grass Synthetic 795 
4  Tree 1264 
5  Soil 1298 
6  Water 339 
7  Residential 1476 
8  Commercial 1354 
9  Road 1554 

10  Highway 1424 
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12  Parking Lot 1 1429 
13  Parking Lot 2 632 
14  Tennis Court 513 
15  Running Track 798 

Total 17,036 

Quantitative analysis was performed with the same limited training samples using all methods. 
Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method 
under different conditions. A subset of 200 labeled samples were used for training and 100 labeled 
samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then 
included to test the robustness and generalizability of the proposed AUSSC.  

3.2. Framework Setting 

The framework for all data sets was established as follows. From 10 random seeds, all data sets 
were randomly divided into the three following groups: A training set, a validation set, and a test set. 
The training sets were used to optimize model parameters. The validation sets were not directly used 
in the training process and were only included to verify whether the model was overfitting. The 
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SSRN and FDSSC achieved an accuracy higher than 98% for the three HSI data sets. The difference 
between the classification accuracies of these methods is less than 1%. Therefore, in addition to the 
three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which 
was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult as 
conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above 90% 
with 200 labeled training samples. The size of the Houston data was 349 × 1905, with 144 bands 
containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite 
maps for this data set. 

Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the 
Houston data. 

NO. Color Class SN 
1 Grass Healthy 1374 
2 Grass Stressed 1454 
3  Grass Synthetic 795 
4  Tree 1264 
5  Soil 1298 
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Quantitative analysis was performed with the same limited training samples using all methods. 
Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method 
under different conditions. A subset of 200 labeled samples were used for training and 100 labeled 
samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then 
included to test the robustness and generalizability of the proposed AUSSC.  

3.2. Framework Setting 

The framework for all data sets was established as follows. From 10 random seeds, all data sets 
were randomly divided into the three following groups: A training set, a validation set, and a test set. 
The training sets were used to optimize model parameters. The validation sets were not directly used 
in the training process and were only included to verify whether the model was overfitting. The 
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SSRN and FDSSC achieved an accuracy higher than 98% for the three HSI data sets. The difference 
between the classification accuracies of these methods is less than 1%. Therefore, in addition to the 
three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which 
was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult as 
conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above 90% 
with 200 labeled training samples. The size of the Houston data was 349 × 1905, with 144 bands 
containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite 
maps for this data set. 

Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the 
Houston data. 

NO. Color Class SN 
1 Grass Healthy 1374 
2 Grass Stressed 1454 
3  Grass Synthetic 795 
4  Tree 1264 
5  Soil 1298 
6  Water 339 
7  Residential 1476 
8  Commercial 1354 
9  Road 1554 
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Total 17,036 

Quantitative analysis was performed with the same limited training samples using all methods. 
Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method 
under different conditions. A subset of 200 labeled samples were used for training and 100 labeled 
samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then 
included to test the robustness and generalizability of the proposed AUSSC.  

3.2. Framework Setting 

The framework for all data sets was established as follows. From 10 random seeds, all data sets 
were randomly divided into the three following groups: A training set, a validation set, and a test set. 
The training sets were used to optimize model parameters. The validation sets were not directly used 
in the training process and were only included to verify whether the model was overfitting. The 
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SSRN and FDSSC achieved an accuracy higher than 98% for the three HSI data sets. The difference 
between the classification accuracies of these methods is less than 1%. Therefore, in addition to the 
three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which 
was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult as 
conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above 90% 
with 200 labeled training samples. The size of the Houston data was 349 × 1905, with 144 bands 
containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite 
maps for this data set. 

Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the 
Houston data. 

NO. Color Class SN 
1 Grass Healthy 1374 
2 Grass Stressed 1454 
3  Grass Synthetic 795 
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Total 17,036 

Quantitative analysis was performed with the same limited training samples using all methods. 
Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method 
under different conditions. A subset of 200 labeled samples were used for training and 100 labeled 
samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then 
included to test the robustness and generalizability of the proposed AUSSC.  

3.2. Framework Setting 

The framework for all data sets was established as follows. From 10 random seeds, all data sets 
were randomly divided into the three following groups: A training set, a validation set, and a test set. 
The training sets were used to optimize model parameters. The validation sets were not directly used 
in the training process and were only included to verify whether the model was overfitting. The 
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Quantitative analysis was performed with the same limited training samples using all methods. 
Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method 
under different conditions. A subset of 200 labeled samples were used for training and 100 labeled 
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3.2. Framework Setting 

The framework for all data sets was established as follows. From 10 random seeds, all data sets 
were randomly divided into the three following groups: A training set, a validation set, and a test set. 
The training sets were used to optimize model parameters. The validation sets were not directly used 
in the training process and were only included to verify whether the model was overfitting. The 
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under different conditions. A subset of 200 labeled samples were used for training and 100 labeled
samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then
included to test the robustness and generalizability of the proposed AUSSC.

3.2. Framework Setting

The framework for all data sets was established as follows. From 10 random seeds, all data sets
were randomly divided into the three following groups: A training set, a validation set, and a test
set. The training sets were used to optimize model parameters. The validation sets were not directly
used in the training process and were only included to verify whether the model was overfitting. The
testing sets were used to test the performance of the model after the training was completed. The
number of validation sets was half the number of training sets and the remainder of the sets were test
sets. The batch size was set to 16 and the Adam [29] optimizer was used for stochastic optimization.
The initialization of model weights was performed using the He normal distribution method [30] for all
3D convolutional layers and the Xavier normal distribution method for the fully connected layer [31].
We used a variable learning rate, which was gradually reduced during the optimization process. This
was done because the learning rate must be smaller when closer to the valley. The number of training
epochs was set to 400 and the initial learning rate was set to 0.0001 for IP, KSC, and SS data sets and
0.0003 for the Houston data set. The learning rate was halved when the validation loss did not decrease
after 10 epochs.

In addition to these basic settings, four key factors were used to configure the AUSSC framework
for HSI classification. Namely, (1) the number of convolutional layers and loops in one block of stage
2; (2) the number of convolutional kernels in alternately updated blocks; (3) the spatial size of input
cubes; and (4) the coefficients of the center loss function. These four factors are discussed by the OA of
IP, KSC, and SS below.

First, the number of convolutional layers and loops in each block of stage 2 determined the depth
of the entire network, which consequently affected classification accuracy and runtime. As shown
in Figure 6, appropriately increasing the number of convolutional layers and the number of loops
improved classification. However, the network depth had a significant impact on training time and
was almost linearly related to the training time. Therefore, we used two convolutional layers and only
loop in each block to conserve training time.
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set; SS: Salinas Scene data set.
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Second, increasing the number of convolutional kernels often extracted more rich features.
If enough convolutional kernels were provided, abstract high-order structures could be efficiently
learned from the convolutional layer. As shown in Figure 7, the overall accuracy (OA) of the AUSSC
was weakly positively related to the number of convolutional kernels, which had little effect on training
time. Combining the performance of the AUSSC for the three data sets, the number of kernels in
the first convolutional layer was set to 64 in each block and the number of kernels was set to 36 in
two blocks.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 20 
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Third, a larger input space allowed more spatial information to be extracted. Input samples with
spatial sizes of 5× 5, 7× 7, 9× 9, and 11× 11 were used in the three data sets. As shown in Figure 8, the
OAs of the IP, KSC, and SS data sets increased with increasing input spatial size. However, for inputs
with spatial sizes greater than or equal to 9 × 9, the increase in OA was less than 1%. Considering the
cost of calculation, the 9× 9 spatial size was selected for all data sets to test the performance of the
AUSSC framework.
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Moreover, the coefficient of center loss also played an important role in our proposed AUSSC.
The coefficient of L2 loss was set to 0.0001 and the possible values of the coefficients for center loss



Remote Sens. 2019, 11, 1794 13 of 21

were set to 0, 0.1, 0.01, and 0.001. As shown in Figure 9, the center loss could not be used directly as
an objective function. However, as an auxiliary objective function, the center loss can slightly increase
the overall classification accuracy. When the coefficient of center loss was set to 0.001, the OA of the
AUSSC using the IP and SS data sets increased slightly. However, the OA of the AUSSC using the KSC
data set increased by nearly 1%. As such, the coefficient of center loss was set to 0.001.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 20 
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4. Classification Results and Discussion

4.1. Experimental Results

In this section, we compare the proposed AUSSC framework with deep learning-based methods,
including SAE-LR [14], CNN [18], SSRN [21], 3D-GAN [24], and FDSSC [22]. As SSRN, FDSSC, and
the proposed AUSSC are all 3D CNN-based methods, the input spatial size was fixed at 9 × 9 to allow
a fair comparison. Ten groups of 200 training samples were randomly selected from the IP, KSC,
SS, and Houston data sets. The classification accuracy indices for the experiment included the OA,
average accuracy (AA), and kappa coefficient (K). The results of these three metrics are displayed in
the form of mean ± standard deviation. The original hyperspectral data were normalized to a zero
mean and standard deviation of one. The dimensions of the image block were the same as those of the
original hyperspectral data. Figures 10–13 show classification results obtained from the IP, KSC, SS,
and Houston data sets using different algorithms.
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Tables 4–7 display the results of the OA, AA, kappa coefficient, and accuracy of each category for
the IP, KSC, SS, and Houston data sets and the best accuracy is shown in bold. These experimental
results show that our proposed AUSSC method is superior to early deep learning methods (SAE-LR
and CNN), novel 3D-GAN, and recent 3D CNN-based methods (SSRN and FDSSC).
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Table 4. Overall accuracy (OA), average accuracy (AA), kappa coefficient (K), and accuracy for each
HSI category in the Indiana Pines (IP) data set. Data are given as mean ± standard deviation.

Methods SAE-LR CNN SSRN 3D-GAN FDSSC AUSSC

OA (%) 57.44 ± 0.56 59.84 ± 0.98 90.47 ± 2.24 90.69 ± 0.86 92.12 ± 1.05 94.55 ± 1.09
AA (%) 46.30 ± 1.17 51.60 ± 1.17 88.46 ± 3.29 83.14 ± 1.82 83.16 ± 5.08 94.44 ± 1.11
K ×100 51.04 ± 0.58 53.97 ± 1.03 89.12 ± 2.54 89.62 ± 0.26 91.02 ± 1.18 93.77 ± 1.25

1 22.89 ± 7.33 1.33 ± 1.09 90.00 ± 30.0 30.21 ± 1.03 70.00 ± 45.8 98.33 ± 5.00
2 45.46 ± 3.80 41.53 ± 3.04 87.35 ± 11.6 81.79 ± 0.26 90.38 ± 4.87 94.60 ± 3.04
3 26.69 ± 2.61 30.91 ± 8.28 87.18 ± 7.24 75.93 ± 1.26 86.48 ± 3.99 90.06 ± 4.53
4 33.80 ± 10.2 13.28 ± 4.16 94.28 ± 6.63 90.08 ± 1.23 92.34 ± 6.67 93.73 ± 5.98
5 46.82 ± 7.78 70.80 ± 1.59 95.89 ± 3.66 86.39 ± 2.12 96.65 ± 1.95 98.59 ± 2.55
6 79.64 ± 1.71 90.78 ± 0.78 94.09 ± 2.07 93.28 ± 0.23 95.11 ± 2.44 97.84 ± 0.81
7 41.45 ± 10.5 20.74 ± 8.95 71.98 ± 37.8 40.71 ± 1.05 40.00 ± 49.0 86.57 ± 13.0
8 96.57 ± 1.26 94.93 ± 4.04 94.13 ± 3.30 98.11 ± 0.21 92.51 ± 2.06 97.22 ± 2.11
9 38.82 ± 23.4 0.00 ± 0.00 50.0 ± 50.0 20.00 ± 1.96 10.00 ± 30.0 91.61 ± 9.49
10 50.47 ± 1.91 52.53 ± 1.24 86.47 ± 7.69 74.28 ± 0.89 84.87 ± 9.39 92.40 ± 2.86
11 70.89 ± 2.49 61.88 ± 4.33 91.88 ± 5.03 91.12 ± 0.25 95.32 ± 2.12 93.97 ± 3.29
12 28.41 ± 6.67 26.57 ± 2.96 88.93 ± 6.27 84.99 ± 1.46 92.45 ± 4.35 94.52 ± 2.55
13 22.57 ± 8.28 94.03 ± 1.33 97.15 ± 4.18 49.75 ± 2.45 99.70 ± 0.90 97.67 ± 2.99
14 78.23 ± 5.89 93.74 ± 1.40 96.03 ± 3.11 94.38 ± 0.26 96.39 ± 2.74 96.65 ± 1.49
15 39.57 ± 7.08 33.46 ± 3.23 92.00 ± 6.50 94.47 ± 0.79 90.36 ± 9.55 94.63 ± 1.59
16 18.59 ± 21.6 99.12 ± 0.82 97.98 ± 2.71 84.22 ± 1.16 98.01 ± 1.33 92.70 ± 5.28

Table 5. OA, AA, K, and accuracy for each HSI category in the Kennedy Space Center (KSC) data set.

Methods SAE-LR CNN SSRN 3D-GAN FDSSC AUSSC

OA (%) 57.68 ± 1.74 69.87 ± 0.36 96.23 ± 1.40 96.89 ± 1.24 96.28 ± 1.26 98.26 ± 0.70
AA (%) 44.99 ± 4.59 69.59 ± 0.44 94.58 ± 1.53 94.14 ± 0.40 94.58 ± 1.70 97.48 ± 1.01
K ×100 52.45 ± 1.94 65.87 ± 0.37 95.80 ± 1.56 96.52 ± 0.26 95.86 ± 1.41 98.0 ± 0.78

1 81.87 ± 15.5 4.09 ± 2.79 97.87 ± 3.50 98.29 ± 0.42 97.99 ± 2.24 99.02 ± 1.02
2 52.83 ± 29.6 85.29 ± 1.91 94.29 ± 5.66 79.84 ± 1.45 93.01 ± 4.35 96.35 ± 6.83
3 35.82 ± 33.2 69.38 ± 1.94 85.31 ± 13.7 98.44 ± 0.14 86.65 ± 10.3 98.98 ± 3.05
4 0.00 ± 0.00 32.06 ± 1.78 84.11 ± 11.4 86.51 ± 1.12 76.02 ± 10.7 87.54 ± 6.86
5 21.22 ± 22.4 52.50 ± 2.09 82.92 ± 16.0 98.7 ± 0.14 86.61 ± 11.2 94.24 ± 8.50
6 0.37 ± 0.51 58.60 ± 1.40 96.51 ± 5.23 100.00 ± 0.00 96.23 ± 5.82 97.53 ± 4.94
7 23.56 ± 19.0 99.23 ± 1.54 93.14 ± 8.05 97.14 ± 1.06 97.32 ± 4.68 96.12 ± 8.69
8 66.24 ± 10.1 62.13 ± 2.46 97.83 ± 1.67 72.95 ± 2.10 97.28 ± 2.27 98.58 ± 0.87
9 51.76 ± 25.0 86.69 ± 0.31 99.84 ± 0.22 99.23 ± 0.09 99.84 ± 0.18 99.92 ± 0.13
10 20.00 ± 14.4 73.47 ± 2.67 99.02 ± 2.38 100.00 ± 0.00 100.00 ± 0.00 99.97 ± 0.08
11 89.64 ± 3.48 90.00 ± 0.00 99.50 ± 0.73 100.00 ± 0.00 98.70 ± 1.63 99.18 ± 1.29
12 51.24 ± 12.0 93.25 ± 0.43 99.25 ± 0.85 96.48 ± 1.23 99.87 ± 0.22 99.83 ± 0.25
13 90.44 ± 3.00 97.93 ± 0.22 99.91 ± 0.21 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
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Table 6. OA, AA, K, and accuracy for each HSI category in the Salinas Scene (SS) data set.

Methods SAE-LR CNN SSRN 3D-GAN FDSSC AUSSC

OA (%) 71.51 ± 0.10 85.92 ± 2.79 94.02 ± 2.79 93.02 ± 1.54 95.50 ± 0.69 96.13 ± 0.57
AA (%) 78.03 ± 0.14 91.14 ± 2.02 97.39 ± 0.63 89.15 ± 0.39 97.41 ± 0.32 97.37 ± 0.53
K ×100 68.48 ± 0.11 84.42 ± 3.03 93.34 ± 3.10 92.07 ± 1.22 94.99 ± 0.77 95.70 ± 0.64

1 99.26 ± 0.26 100.00 ± 0.00 100.00 ± 0.00 98.12 ± 1.02 100.00 ± 0.00 100 ± 0.00
2 98.90 ± 0.22 99.42 ± 0.77 98.90 ± 2.00 94.11 ± 0.12 99.82 ± 0.42 99.82 ± 0.45
3 80.92 ± 0.84 64.65 ± 20.8 98.38 ± 1.40 76.46 ± 0.28 95.40 ± 2.60 95.04 ± 4.35
4 98.71 ± 0.11 98.74 ± 0.34 98.97 ± 0.94 100.00 ± 0.47 98.08 ± 1.55 97.99 ± 1.47
5 74.30 ± 0.19 97.69 ± 1.63 98.92 ± 1.46 88.25 ± 1.89 99.42 ± 0.61 98.69 ± 2.31
6 99.8 ± 0.03 99.97 ± 0.06 99.94 ± 0.16 99.34 ± 0.36 99.99 ± 0.01 99.98 ± 0.05
7 99.22 ± 0.09 99.74 ± 0.17 99.97 ± 0.01 99.90 ± 0.67 99.44 ± 0.79 99.56 ± 0.65
8 78.78 ± 3.10 56.58 ± 19.7 89.97 ± 9.86 89.44 ± 1.13 90.27 ± 4.42 92.83 ± 2.96
9 0.00 ± 0.00 99.99 ± 0.01 99.49 ± 0.66 100.00 ± 0.00 99.51 ± 0.43 99.41 ± 0.21
10 74.08 ± 0.84 86.06 ± 4.35 98.71 ± 1.75 98.13 ± 1.00 96.29 ± 3.27 98.25 ± 2.22
11 93.68 ± 0.28 85.14 ± 4.31 96.07 ± 2.01 96.69 ± 2.12 96.33 ± 1.51 93.90 ± 4.29
12 99.99 ± 0.03 92.66 ± 8.38 99.05 ± 0.65 99.06 ± 1.04 98.06 ± 1.72 98.40 ± 1.60
13 99.18 ± 0.06 98.16 ± 3.06 98.43 ± 1.88 77.92 ± 1.68 99.08 ± 1.22 98.59 ± 1.41
14 94.28 ± 0.49 97.46 ± 1.87 98.23 ± 1.64 78.21 ± 0.67 98.35 ± 1.66 96.13 ± 4.98
15 57.39 ± 0.96 85.57 ± 8.72 83.26 ± 11.8 70.88 ± 0.45 88.62 ± 5.21 89.32 ± 4.69
16 0.00 ± 0.00 96.43 ± 5.90 100.00 ± 0.00 90.0 ± 0.12 99.85 ± 0.30 99.94 ± 1.70

Table 7. OA, AA, K, and accuracy for each HSI category in the Houston data set.

Methods SAE-LR CNN SSRN FDSSC AUSSC

OA (%) 76.18 ± 3.22 75.01 ± 0.75 88.89 ± 2.25 89.40 ± 1.26 91.21 ± 1.57
AA (%) 75.44 ± 0.14 76.45 ± 0.58 91.35 ± 1.71 91.39 ± 1.02 93.30 ± 1.04
K ×100 74.06 ± 3.82 72.98 ± 0.81 87.99 ± 2.43 88.55 ± 1.36 90.50 ± 1.70

1 95.96 ± 0.54 86.61 ± 2.38 91.44 ± 5.19 90.91 ± 5.66 96.17 ± 2.18
2 85.84 ± 0.17 99.19 ± 0.12 94.92 ± 3.06 93.02 ± 8.54 94.55 ± 3.26
3 95.35 ± 0.41 95.42 ± 0.81 99.50 ± 0.55 99.49 ± 1.03 99.61 ± 0.60
4 95.52 ± 0.17 83.06 ± 1.08 97.46 ± 2.82 99.16 ± 0.39 97.81 ± 2.37
5 94.28 ± 0.54 100 ± 0.00 96.55 ± 2.40 96.61 ± 4.08 97.84 ± 2.78
6 69.91 ± 1.26 87.58 ± 0.24 99.75 ± 0.74 100 ± 0.00 100 ± 0.00
7 70.46 ± 0.64 70.69 ± 3.08 83.18 ± 8.13 89.19 ± 3.07 90.14 ± 7.56
8 68.31 ± 2.05 62.17 ± 1.69 96.18 ± 4.10 95.81 ± 4.23 95.89 ± 4.09
9 65.76 ± 0.19 72.56 ± 4.66 78.42 ± 6.49 83.22 ± 7.48 78.91 ± 6.99
10 59.64 ± 0.19 49.79 ± 3.45 78.51 ± 8.40 79.95 ± 5.48 87.78 ± 5.84
11 76.71 ± 0.56 76.32 ± 3.62 82.14 ± 87.23 82.99 ± 7.12 89.28 ± 7.02
12 88.03 ± 0.79 36.12 ± 8.41 88.03 ± 6.54 82.97 ± 6.57 81.04 ± 8.89
13 11.58 ± 0.42 32.51 ± 5.44 88.52 ± 8.26 82.59 ± 8.27 96.11 ± 0.40
14 58.75 ± 0.33 94.75 ± 1.36 97.42 ± 3.62 97.26 ± 3.11 96.60 ± 3.25
15 95.46 ± 0.57 100 ± 0.00 98.32 ± 0.88 97.68 ± 1.56 97.75 ± 1.46

As shown in Table 4, the values of OA, AA, and K, obtained using the AUSSC, were 2.43%, 11.28%,
and 2.75% higher than those obtained using FDSSC, which exhibited the second-best performance
for the IP data set. AUSSC also achieved the best classification accuracy in 10 categories of the
IP data set. AUSSC achieved an accuracy similar to SSRN and 3D-GAN for Class 4 (Corn) and
Class 8 (Hay-windrowed), respectively. FDSSC achieved significantly better results for Class 11
(Soybean-mintill) and Class 13 (Wheat). However, FDSSC (like other methods), achieved poor results
for Class 9 (Oats), with an average accuracy of only 10%. In contrast, AUSSC achieved excellent results
with an average accuracy of 92.61%. CNN achieved the best results for Class 16 (Stone-Steel-Towers)
but produced 0% for Class 9 (Oats) and performed poorly in four other categories.

As shown in Table 5, the values of OA, AA, and K obtained using AUSSC were respectively
1.37%, 3.34%, and 1.48% higher than those produced by 3D-GAN, which exhibited the second-best
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performance for the KSC data set. AUSSC also achieved the best accuracy in 7 of 13 KSC categories,
producing results similar to those of 3D-GAN for Class 10 (Cattail marsh) and Class 11 (Salt marsh).
3D-GAN achieved significantly better results for Class 5 (Oak), Class 6 (Hardwood), and Class 7
(Swamp). However, its accuracy for Class 2 (Willow swamp) and Class 8 (Graminoid marsh) was ~20%
lower than that of our method.

As shown in Table 6, the values of OA and K obtained using AUSSC were 0.63% and 0.71% higher
than those produced by FDSSC, which exhibited the second-best performance for the SS data set.
AUSSC achieved similar or better results than FDSSC across all 16 categories in the SS data set. As
shown in Table 7, the values of OA, AA, and K, obtained using AUSSC, were 1.81%, 1.91%, and 1.95%
higher than those obtained by FDSSC, which exhibited the second-best performance for the Houston
data set. CNN achieved excellent results for Class 2 (Grass Stressed), Class 5 (Soil), and Class 15
(Running Track). However, the accuracy of CNN in Category 10 (Highway), Class 12 (Parking Lot 1),
and Class 13 (Parking Lot 2) was ~40% lower than that of our method.

These experimental results indicate AUSSC achieved the best performance in terms of OA and
K for all four HSI data sets. Other methods, especially CNN, were superior to our methods in some
categories, but performed poorly in others. These poorly performing categories dramatically reduced
the OA, AA, and K.

With the exception of the 3D-GAN data, which were obtained from the literature, these classification
results shown in Tables 4–7 were trained and tested using a desktop computer with 32 GB of memory
equipped with an NVIDA GTX 1080Ti GPU. Table 8 shows the mean and standard deviation of the
training time and testing time for 10 runs using CNN-based methods and the minimum time is shown
in bold. As shown in the tables, the training times for deep 3D CNN-based methods were longer than
those of other deep learning-based methods. The AUSSC required a longer training time than SSRN
or FDSSC. For AUSSC applied to the IP data set, the number of floating-point operations per second
(FLOPs) was 5362.386 K and the number of parameters was 761.064 K.

Table 8. Training and testing times for CNN-based methods across the four data sets.

Data set Time CNN SSRN FDSSC AUSSC

IP
Training/sec 9.25 ± 0.40 73.9 ± 5.32 63.5 ± 3.72 439 ± 4.16
Testing/sec 0.71 ± 0.11 6.84 ± 0.20 7.91 ± 0.11 11.1 ± 0.21

KSC
Training/sec 8.10 ± 0.51 72.0 ± 2.50 57.1 ± 4.95 420 ± 4.21
Testing/sec 0.46 ± 0.16 2.18 ± 0.07 3.40 ± 0.06 4.83 ± 0.07

SS
Training/sec 10.1 ± 0.59 77.9 ± 3.00 63.5 ± 4.02 433 ± 3.99
Testing/sec 2.05 ± 0.11 27.0 ± 0.86 43.1 ± 0.50 58.9 ± 0.47

Houston
Training/sec 10.2 ± 0.55 149 ± 4.34 83.5 ± 1.26 594 ± 4.80
Testing/sec 1.52 ± 0.05 13.9 ± 0.49 10.9 ± 0.13 11.9 ± 0.18

To corroborate the robustness and generalizability of the proposed method, Figures 14 and 15
show the OA obtained using different methods for different training samples. When the number of
training samples was higher than 400, our method performed similarly to SSRN and FDSSC. This is
because the OA of SSRN and FDSSC reached more than 98%, creating a small gap between our method
and these conventional techniques. This also demonstrates that the three datasets published more than
10 years ago are easily classified by state-of-the-art methods. The Houston data set, provided by the
University of Houston for the 2013 IEEE GRSS Data Fusion Contest, is more challenging. As shown
in Figure 15, it is more discriminant than the three datasets in comparing AUSSC with other methods.
The resulting difference in OA between AUSSC, FDSSC, and SSRN was more than 1%.
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4.2. Discussion

In this study, a highly limited number of training samples (200) was used to demonstrate that our
proposed method can reduce data dependence. Insufficiently labeled data are unavoidable in remote
sensing applications. Additionally, the collection and labeling of remote sensing data is complex and
expensive. Thus, it is very difficult to build large-scale, high-quality labeled sets. The number of
labeled samples used for training is the most important factor in deep-learning supervised methods, as
data dependence is one of the most serious problems in deep learning. Compared with traditional
machine-learning methods, deep learning relies heavily on large-scale training data, which are necessary
to understand potential patterns. Semi-supervised 3D-GANs also require ~200 training samples;
however, their classification accuracy is significantly lower.

The proposed method offers three principal benefits. First, it provides an end-to-end framework
for HSI classification. SAE-LR, CNN, and 3D-GAN all require PCA to preprocess hyperspectral data.
Second, deep CNN architectures and convolutional kernels were used to determine classification
accuracy in 3D CNN-based methods [20]. These networks include only two convolutional layers with
3 × 3 ×m convolutional kernels. SSRN and FDSSC use residual blocks, dense blocks, and two different
convolutional kernels to learn deep spectral and spatial features. The biggest difference between
AUSSC and the 3D CNN-based methods discussed above is its use of recurrent CNN architectures
and three 1D convolutional kernels. Alternately updated blocks can not only learn deep spectral
and spatial features but also refined spectral and spatial features. As a result, three 1D convolutional
kernels can be combined to generate more abundant features. As a result, AUSSC achieved better
classification accuracy than current state-of-the-art deep learning-based methods. Finally, unlike these
other methods, only cross-entropy objective functions were used in the AUSSC. We also introduced
center loss in the AUSSC as an auxiliary objective function to learn more discriminating features.

Although the proposed method provides better performance than conventional architectures
(especially SSRN and FDSSC), it has a much higher computational requirement (see Table 8). There
are three primary reasons for this. First, AUSSC uses more convolutional kernels in two blocks than
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SSRN and FDSSC. Second, the use of the center loss function increases the computational cost. Finally,
and most importantly, more training epochs are used in AUSSC than in SSRN and FDSSC. In fact,
the training time for one epoch in AUSSC is only slightly longer than in FDSSC or SSRN. However,
AUSSC requires far more training epochs. The regular updating of graphics cards and the use of
high performance graphics cards, such as the NVIDIA GeForce RTX 2080Ti, could effectively alleviate
this problem.

5. Conclusions

In this study, refined spectral and spatial features in HSIs were used as core concepts to design
an end-to-end CNN-based framework for HSI classification. This alternately updated convolutional
spectral–spatial network utilizes alternately updated spectral and spatial blocks and primarily includes
small convolutional kernels in three different dimensions to learn HIS features, combining them into
advanced features.

The learning of deep refined spectral and spatial features by alternately updated blocks makes our
method superior to other deep learning-based methods, as this allows it to achieve a high classification
accuracy. Furthermore, experimental results also demonstrated that the center loss function can
slightly improve the classification accuracy of hyperspectral images. Results showed that when 200
training samples were used from different HSI data sets, the AUSSC achieved the highest classification
accuracy among the deep learning-based methods for all three data sets. Additionally, using different
training samples, the AUSSC was also found to be the best method in terms of OA for all HSI data sets.
However, the AUSSC has a longer training time than other conventional algorithms. In a future study,
network pruning will be used to reduce the heavy calculation of the deep model.
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