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Abstract: Understanding the information on land conditions and especially green vegetation cover
is important for monitoring ecosystem dynamics. The fraction of vegetation cover (FVC) is a key
variable that can be used to observe vegetation cover trends. Conventionally, satellite data are utilized
to compute these variables, although computations in regions such as the tropics can limit the amount
of available observation information due to frequent cloud coverage. Unmanned aerial systems
(UASs) have become increasingly prominent in recent research and can remotely sense using the
same methods as satellites but at a lower altitude. UASs are not limited by clouds and have a much
higher resolution. This study utilizes a UAS to determine the emerging trends for FVC estimates at
an industrial plantation site in Indonesia, which utilizes fast-growing Acacia trees that can rapidly
change the land conditions. First, the UAS was utilized to collect high-resolution RGB imagery and
multispectral images for the study area. The data were used to develop general land use/land cover
(LULC) information for the site. Multispectral data were converted to various vegetation indices,
and within the determined resolution grid (5, 10, 30 and 60 m), the fraction of each LULC type was
analyzed for its correlation between the different vegetation indices (Vis). Finally, a simple empirical
model was developed to estimate the FVC from the UAS data. The results show the correlation
between the FVC (acacias) and different Vis ranging from R2 = 0.66–0.74, 0.76–0.8, 0.84–0.89 and
0.93–0.94 for 5, 10, 30 and 60 m grid resolutions, respectively. This study indicates that UAS-based
FVC estimations can be used for observing fast-growing acacia trees at a fine scale resolution, which
may assist current restoration programs in Indonesia.
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1. Introduction

Quantitative assessments of the green vegetative covers of terrestrial environments are essential
for understanding ecosystem dynamics. The functions of green environments (e.g., vegetation, forests)
provide important benefits to ecosystems, such as controlling air quality through photosynthesis,
generating an energy supply from woody biomass, preventing soil erosion, improving water quality
and balancing the heat fluxes of the earth [1–5]. The worldwide terrestrial environment is currently
showing rapid changes in particular regions from anthropogenic activities, causing land degradations
that engulf the natural environment [6]. Some areas show transitions away from green areas, which
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results in substantial impacts on local to global ecosystems, sociocultural and economic impacts [7,8].
To mitigate these impacts, known cooperative agencies and organizations are planning actions for
the recovery of green areas [9,10]. Consistent monitoring of the rapid environmental changes in
green vegetative coverages is important for conservation and maintaining the sustainability of the
natural environment.

Indonesia’s landmass includes approximately 24 million hectares (Mha) of peatlands, which
represents approximately 83% of the peatlands found in Southeast Asia. Peatlands in Indonesia
are distributed mainly among the four large islands of Sumatera (9.2 Mha), Kalimantan (4.8 Mha),
Sulawesi (0.06 Mha) and Papua (6.6 Mha) [11]. One of the common uses of peatlands in Indonesia
is for Industrial Forest Plantations (IFP). The area of IFP concessions in Indonesia, which are located
on peatlands, is 2 Mha [12], or 54.79% of the total IFP area in 2006, which reached 3.65 Mha [13], and
Acacia crassicarpa is a fast-growing species that has been developed as a staple plant for most IFPs on
peatlands [14].

Indonesia peatland forests provide important local and global benefits. However, their drainage
and conversion into agricultural lands without well-planned management has caused considerable and
irreversible environmental, social and economic damage. The catastrophic 2015 fires in Indonesia [15]
drew national and international attention. That event reinforced the commitments of the Indonesian
government to both reduce peatland deforestation and fires and to rehabilitate and restore degraded
peatlands via reforestation. Strategic and operational approaches for monitoring the peat ecosystem
together with the conditions of the green vegetation are crucial.

Various researchers and institutions have performed related studies of quantitative analyzations of
both local and global vegetation coverage. The products of MODIS Vegetation Continuous Fields or the
fCover (fraction of vegetation cover, hereafter denoted as FVC) [16] were used, while other researchers
utilized the MODIS reflectance data provided by Land Processes Distributed Active Archive Center (LP
DAAC) for developing improved FVC data [17]. The remote sensing techniques for FVC development
utilize the multispectral information observed from space and validates its product with ground truth
information (e.g., field surveys). The estimation methods can vary depending on the model type
used, including simple empirical models [18], linear spectral models [19], decision tree method [20],
machine learning techniques [21], and so on. Although the input information is rather simple, remote
sensing can use various spectral information or the computed vegetation indices (Vis) for its estimation,
although correctly delineating the FVC for various regions of the world is still a challenge.

Many studies have indicated the capability of space-borne remotely sensed data for mapping
and/or monitoring of regional to global vegetation cover. However, depending on the products or
specific locations used, there can be constraints and challenges in processing or accurately estimating a
fractional cover. One of the conventional issues observed is the cloud cover, which blocks otherwise
available information for analyzing a terrestrial environment [22]. The missing information can be
aided with a gap-filling technique [17] for including continuous land information. However, this
technique can result in large differences in the spectral information of the area, and then the possibility
of an incorrect FVC estimation rises. In tropical regions including Indonesia, obtaining sufficient
land information from areas with lesser cloud cover can be challenging; even when cloud removal
and gap filling are performed, correct land information for a certain period of time can be lacking.
If a large area of peatlands in Indonesia is observed in IFPs with fast-growing trees, then even a
small temporal gap of land information may show erroneous assumptions of the vegetation coverage
(Figure 1). To accurately and effectively detect green areas, considering different platforms or sensors
is an important step for effectively monitoring the tropical areas. This is especially true in Indonesia
where rapid land transitions are occurring.
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Figure 1. Example of temporal differences for fast-growing species. The left image shows the fast-
growing Acacia trees in its early stages in August, 2018, while the right image shows its rapid growth 
in October, 2018. Even with small temporal differences, the situation of the land area would change 
dramatically. 

In recent years, many studies using unmanned aerial systems (UASs) were carried out. The UAS 
platform provides alternatives to space-borne platforms since optical data can be observed in a clear-
high spatial/temporal resolution for the region of interest [23]. This technique has been used in 
research on ecology [24], precision agriculture/forestry [25,26] and even analyses for estimating 
vegetation cover [27–29]. UAS was successful [27] in clearly estimating vegetation fractions and 
flower fractions in crop fields with the changing VIs, and work by Chen et al. [28] showed that 
utilizing UAS-captured imagery may clearly detect grassy vegetation covers due to its high-
resolution data. Riihimäkia et al. [29] showed that the UAV-derived information can be aided by 
satellite-observed information in FVC estimations. As Indonesia is exposed to high and frequent 
cloud coverage nationwide, obtaining clear satellite information is often difficult. Even if this 
information is collected, radiometric corrections for both atmospheric and topographic data are 
mandatory, which is a difficult task [30]. Riihimäkia et al. [29] recently showed an approach for 
estimating the FVC at arctic vegetation using UAS and satellite data through multiple spatial scaling’s 
and different indices. They have expressed that there is a strong correlation between the UAS-based 
FVC for validation data that can be used to bridge with the satellite data and noted that the sensitivity 
of VIs was better when using Red-edge or Short Wave Infrared (SWIR) information. The prior study 
of Riihimäkia et al. [29] shows a relationship analysis between the VIs and FVC that is based on only 
a single class that classified the area into vegetation/non-vegetation. Depending on regions where 
heterogeneous land use/land cover (LULC) types are seen, there may be more classes requiring 
further analysis and how those classes affect the VI response. Minimal research has been conducted 
in rapid changing environments such as Indonesia for estimating the fractional cover of green 
vegetation by utilizing UASs, especially in rapidly growing industrial forest plantations (IFP). Higher 
spatial/temporal resolution imagery may have a high potential to analyze where the changes in green 
vegetative cover are occurring. 

The objective of this study is to develop a method for retrieving the FVC by utilizing UAS and 
multispectral sensors for the fast-growing Acacia plantation forests in Indonesia. Several VIs are 
computed using the raw band information to compare the sensitivity of the VIs to FVC, moreover, 
the result is also compared at different spatial resolutions and with other LULC types. The developed 
product is compared with the existing method for computing FVC by using satellite imagery, and it 
examines how the UAS observed product can compensate for conventional space-borne products. 
This work mainly focus on if UAV-based FVC can be obtained in the forested area, while it is out of 
the scope at the moment for generalizing the result which could be utilized for global estimations. 
This study may present advances in UAS research in developing FVC estimations and the possibility 
of utilizing the platform for collecting ground truth information to bridge airborne sensing with 
space-borne sensing.  

Figure 1. Example of temporal differences for fast-growing species. The left image shows the
fast-growing Acacia trees in its early stages in August, 2018, while the right image shows its rapid
growth in October, 2018. Even with small temporal differences, the situation of the land area would
change dramatically.

In recent years, many studies using unmanned aerial systems (UASs) were carried out. The UAS
platform provides alternatives to space-borne platforms since optical data can be observed in a
clear-high spatial/temporal resolution for the region of interest [23]. This technique has been used
in research on ecology [24], precision agriculture/forestry [25,26] and even analyses for estimating
vegetation cover [27–29]. UAS was successful [27] in clearly estimating vegetation fractions and flower
fractions in crop fields with the changing VIs, and work by Chen et al. [28] showed that utilizing
UAS-captured imagery may clearly detect grassy vegetation covers due to its high-resolution data.
Riihimäkia et al. [29] showed that the UAV-derived information can be aided by satellite-observed
information in FVC estimations. As Indonesia is exposed to high and frequent cloud coverage
nationwide, obtaining clear satellite information is often difficult. Even if this information is collected,
radiometric corrections for both atmospheric and topographic data are mandatory, which is a difficult
task [30]. Riihimäkia et al. [29] recently showed an approach for estimating the FVC at arctic vegetation
using UAS and satellite data through multiple spatial scaling’s and different indices. They have
expressed that there is a strong correlation between the UAS-based FVC for validation data that can
be used to bridge with the satellite data and noted that the sensitivity of VIs was better when using
Red-edge or Short Wave Infrared (SWIR) information. The prior study of Riihimäkia et al. [29] shows a
relationship analysis between the VIs and FVC that is based on only a single class that classified the
area into vegetation/non-vegetation. Depending on regions where heterogeneous land use/land cover
(LULC) types are seen, there may be more classes requiring further analysis and how those classes
affect the VI response. Minimal research has been conducted in rapid changing environments such
as Indonesia for estimating the fractional cover of green vegetation by utilizing UASs, especially in
rapidly growing industrial forest plantations (IFP). Higher spatial/temporal resolution imagery may
have a high potential to analyze where the changes in green vegetative cover are occurring.

The objective of this study is to develop a method for retrieving the FVC by utilizing UAS and
multispectral sensors for the fast-growing Acacia plantation forests in Indonesia. Several VIs are
computed using the raw band information to compare the sensitivity of the VIs to FVC, moreover, the
result is also compared at different spatial resolutions and with other LULC types. The developed
product is compared with the existing method for computing FVC by using satellite imagery, and it
examines how the UAS observed product can compensate for conventional space-borne products.
This work mainly focus on if UAV-based FVC can be obtained in the forested area, while it is out of
the scope at the moment for generalizing the result which could be utilized for global estimations.
This study may present advances in UAS research in developing FVC estimations and the possibility
of utilizing the platform for collecting ground truth information to bridge airborne sensing with
space-borne sensing.
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2. Study Area

The study site is located in West Kalimantan and is the same area used in Iizuka et al. [31] (Figure 2).
The large plantation area is managed by an industrial plantation company. The area was planted in
January 2017 with Acacia crassicarpa as the main commercial species, which is one of the fast-growing
species that can grow from saplings to up to a few meters in one year. Usually, the plantation site has a
cycle of planting to logging in four-year intervals, which is a dramatic change rate. One section of the
compartment site is considered for the test. Brief details of the area are explained in Iizuka et al. [31].
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3. Materials and Methods

The overall workflow is shown in Figure 3. The data from the UAS were collected for RGB
imagery and multispectral data. These data were used to produce a LULC map of the study area and
to compute the fractions of the LULC classes. The multispectral data were used to further compute
multiple VIs. Different scaled polygons were generated and within each grid, the fractional coverage
and VI values were analyzed for their relationships. The data were further divided into training and
validation sets, and an estimation of FVC was implemented for different spatial resolutions.
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3.1. Coordinate Observation for Ground Control Points

3.1.1. GCP Collection Using Low Cost GNSS

For improving the 3D modeling and georeferencing, ground control points (GCPs) were placed
and coordinates were collected before the flight campaign. The Reach (Emlid, Hong Kong, China)
global navigation satellite system (GNSS) was utilized for collecting the XYZ geographical coordinates
(Figure 4). A total of two stations were used. One was set on the tip of a long envy pipe and was
fixed at 4 m high off the ground so the surrounding obstacles would not block the GNSS signals; this
station was used as a base station. The other receiver was placed on a tripod and utilized as a rover
station during the collection of coordinates at each GCP target. A total of six GCPs were observed and
the GNSS signals at each GCP were recorded for 5 min. The signals were further processed with a
post-processing kinematic (PPK) method to enhance the XYZ coordinate precision. Depending on the
satellite signals and processing, the coordinate data can enhance the precision using the PPK method
up to a centimeter-level error; when using non-processed GNSS data, the precision can result in a 10 m
error (when only using the GPS [32]). The Reach GNSS was set to observe GNSS signals from GPS,
QZSS, Galileo and Beidou at a logging frequency of 5 Hz.
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3.1.2. PPK Processing for Precise GCP Coordinates

For the postprocessing of the GNSS signals, the open source RTKLIB software [33] was used.
RTKLIB is a program package for standard and precise positioning with GNSS and can perform a
PPK analysis by using Receiver Independent Exchange Format (RINEX) files. First, using the RTKLIB,
the log files for both the base and rover stations were opened and examined for the GNSS signal
quality. The signals were checked for each satellite, and the only satellites that seemed to receive
continuous L1 frequency signals during the recording were included for further processing, and the
other satellites were omitted (Figure 5). Each observation of the GCP targets was postprocessed with
the “static” option in the positioning mode, “combined” in the filter type, “Fixed and Held” for the
integer ambiguity resolution and 15 degrees for the elevation mask, and 35 dB for SNR (signal-to-noise
ratio) filtering were used. After the coordinate of each GCP was computed, the coordinate logs were
averaged from the fixed solution (Q1) and the ratio factor of ambiguity validation =500. However, if
there were no logs for Q1 then a float solution (Q2) was used.
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3.2. UAS Flights Data Collection

3.2.1. Fixed-Wing RGB Acquisition and Processing

On 17 October, 2018, a flight campaign was conducted at one of the compartment areas in the
plantation site. A Firefly6 Pro (BirdsEyeView Aerobotics, New Hampshire, US) fixed-wing VTOL
(vertical takeoff and landing) UAS was utilized to collect the aerial photography of the area. For the
photo shoot, the SONY α6000 camera was embedded in the gimbal attached beneath the fixed-wing
UAS and collected throughout the flight path. The flight path of the UAS was set to a south-north
direction with the camera time-lapse set to two seconds, corresponding to a forward (side) overlap
of 75% (70%), and flying at 140 m at altitude with an approximate 3 cm ground sampling distance
(GSD). The flight course did not consider the wind direction. The collected aerial images were further
processed with the software Photoscan Version 1.4.5 (Agisoft, St. Petersburg, Russia) for 3D modeling
and mosaicking of the whole study area. The Photoscan parameter was considered with a “High”
alignment with default tie and key points, and a dense point cloud of “High” with “Mild” depth
filtering. A digital surface model (DSM) was generated using the dense-point cloud and an orthoimage
was computed using the DSM. The first routine was processed without adding the GCP information.
After the first orthoimage was generated, the GCPs were additionally added and the model was
reconstructed by adjusting the point clouds with the GCP information. Furthermore, DSM and the
orthoimage was reconstructed based on the GCP-provided point clouds. This processing method
makes placing manual GCPs throughout the software easier, especially when a large quantity of images
is used.

3.2.2. Multispectral Data Collection and Processing

On 17 October 2018, the flight campaign was conducted at the compartment area in the plantation
site, which is the same as the corresponding area for the RGB acquisition. Right after the RGB collection
flight, another flight was conducted to collect multispectral images of the area. The SlantRange 3p
(SlantRange, San Diego, CA, USA) sensor was embedded in the gimbal of the VTOL UAS and images
were collected throughout the flight path. The path was the same as the RGB flight. However, the
forward (side) overlap was set to 40% (40%), and the flying altitude as 150 m, corresponding to
an approximate 6 cm GSD. The SlantRange 3p can collect four bands, namely green, red, red-edge
and near infrared. The ambient illumination sensor is placed on top of the VTOL UAS during the
shooting (Figure 6) and the information is later used for calibrating each image for solar illuminations.
The metadata of each image was processed with the SlantView software, which calibrates each image
for solar illumination and includes coordinate information. The preprocessed data were exported and
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further processed via Photoscan to generate the overall view of the study area. The parameter slightly
changes from RGB processing, where the alignment is “Very High”, the dense point cloud is “Ultra
high,” while the other process stays the same. The multispectral data again performed its first routine
without GCP and the second process was added with GCP calibration.
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3.3. Image Classification

The study area is a small section of the compartment area of the Acacia plantation. However, there is
a variety of LULC types in the area, as not only acacias but also water bodies, bare soils and grassy shrubs
can be observed. Using the RGB image and multispectral imagery, a conventional supervised image
classification was performed to develop a categorical map that shows the distribution of the general
LULC types of the site. The Multilayer-Perceptron (MLP) classification [31] was implemented to classify
each LULC class, which is a classifier that can handle even nonlinear trends between variables. A total
of four classes were classified: Acacia trees, bare soil, water bodies and grass/shrubs. For the validation
of the classified map, an accuracy assessment was additionally performed. Using the developed RGB
orthoimage and ground information for the study area, 600 evenly distributed sampled points per class
were manually collected throughout the scene, and the error matrix was computed. The LULC map
was further used to compute the fraction of LULC classes within each gridded location. Other authors
indicate that UAS information is highly correlated with traditional ground-based hemispherical
photography, which can be used as reference for ground-truth information [34]. Therefore, the
UAS-based classification result will be further used likewise as ground-truthing.

3.4. Relationship Analysis of VIs and Fraction of LULC

3.4.1. Various Vegetation Indices

Three different VIs were computed from the multispectral bands collected using SlantRange.
Namely, the Normalized Difference Vegetation Index (NDVI), Green NDVI (GNDVI) and Red-edge
NDVI (ReNDVI) were used, where each index can be computed using the following formula:

NDVI =
IR−R
IR + R

, (1)

GNDVI =
IR−G
IR + G

, (2)

ReNDVI =
IR−Re
IR + Re

, (3)

where IR is the infrared band, R is the red band, G is the green band and Re is the red-edge band.
The indices all have similar functions. However, they use slightly different characteristics of the
electromagnetic spectra. The IR and R are used often and characterize the vegetation function where
the leaves’ chlorophyll absorbs the red spectra and reflects infrared spectra [35]. Using this information
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one can sense the vegetation activity (greenness) of the area. GNDVI utilizes the green band instead of
the red band. The GNDVI is considered an alternative index to NDVI, as it has a wider dynamic range
and a higher sensitivity to chlorophyll [36]. ReNDVI also uses the slightly longer wavelength from the
red channel instead of R or G, which corresponds to vegetation status information, especially water
stress [37]. These three indices were examined with the fractions of the LULC classes to understand
the sensitivity of the VIs.

3.4.2. Various Grid Scaling for Relationship Analysis

Four differently scaled square gridded polygons were continuously constructed along the study
area with 5, 10, 30 and 60 m grid sizes. The 5 m resolution grid corresponds to satellites such as
Rapideye, while the 10 m resolution grid corresponds to Sentinel-2 and the 30 m resolution corresponds
to the satellites from the LANDSAT series. The 60 m grid is an additional size used to examine the
viewability when the resolution is upscaled to a coarser grid size, which is almost the maximum
size that can be determined in the current study area for a relevant analysis. Within each grid, the
percentage of LULC classes and the average values of each VI were extracted and examined for the
relationship analysis.

3.4.3. Estimating FVC Using UAS Data and Comparison with Satellite-Based FVC

The sample dataset that was used for relationship analysis is divided into sets of training and
validation data. For the 5, 10, 30 and 60 m grid data, the samples were randomly divided into 50% for
training and the remaining 50% for validating the estimated UAS-derived FVC. The model evaluation
is considered by computing the R2 and the root mean square error (RMSE) and the relative RMSE for
each grid scale model [38].

Furthermore, Sentinel-2 imagery was downloaded via the webpage and processed through
the Sentinel Application Platform (SNAP) software ver. 6.0.5 to compute the satellite-based FVC.
The imagery was observed on 14 September, 2018, just one month before the UAS observation.
The biophysical processor module within the SNAP software is used for computing biophysical
parameters. While the UAS-based FVC uses a simple empirical model, the SNAP FVC is considered
via the neural network method [39]. The satellite-based FVC is later compared with the result from the
UAS-based FVC.

4. Results

4.1. UAS Photogrammetry and GCP

4.1.1. PPK Processing for Coordinate Precision

Using the base station and rover GNSS log collected through a small GNSS unit, postprocessing of
the GNSS signals was performed using the RTKLIB. A total of six points were processed. Most of the
targets are showing fixed positioning of the GNSS equipment (<1 cm precision in XYZ direction), while
some GCPs give slightly larger errors when using the float solution. However, even though not all
observations give a clear fixed solution, the PPK method can nonetheless give much higher precision than
just a single GNSS observation, even with an extremely lightweight, small unit GNSS. The geolocation
(XYZ coordinates) computed from the PPK process was used for each GCP target location.

4.1.2. Orthoimagery from UAS Flights for RGB and Multispectral Data

From the flight using the VTOL UAS, totals of 567 and 1204 images were obtained for RGB and
multispectral data, respectively. Figure 7 shows the same location of the mosaicked images for the
RGB and multispectral data. Due to the irrelevant overlap from the multispectral sensor, there are
some gaps in the southern part of the compartment site. However, the procedure succeeded overall in
developing an orthorectified image. Gap areas are omitted from further analysis.
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camera and (b) the false color composite (RGB: NIR, Red and Green) imagery from the multispectral
sensor. The resolution is reduced to 0.2 m from the original resolution for visual purposes.

4.2. LULC Map of the Study Area and Its Errors

Utilizing the RGB imagery and multispectral data, image classification was performed to develop
a categorical map. A total of four classes were generated that consisted of the general landscape of the
plantation site. Figure 8 shows the result of the mapping. For the validation of the map, an accuracy
assessment was performed, and the error matrix is computed in Table 1. The result indicates the
overall accuracy of the categorical map as 90.07%. The user accuracies (Producers accuracy) for Acacia
forest, bare land, water bodies and grass/shrubs were 83% (96%), 96% (83%), 91% (95%) and 94%
(89%), respectively.
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Table 1. Accuracy assessment and the error matrix of the generated LULC map. Error C is the error of
commission, and Error O is the error of omission. The overall accuracy of the categorical map results
is 90.7%.

Classified
Acacia Bare Soil Water Body Grass/Shrub Total Error C

Reference

Acacia 575 38 9 67 689 0.17
Bare Soil 0 500 20 1 521 0.04

Water Body 0 57 570 0 627 0.09
Grass/Shrub 25 5 1 532 563 0.06

Total 600 600 600 600 2400
Error O 0.04 0.17 0.05 0.11 0.093

4.3. Sensitivity of VI to the Fraction of Vegetation Cover (FVC)

Figure 9 shows the relationship analysis between the VIs and fractions of LULC covers for different
scaling resolutions. Each VI is examined for three different LULC types: Acacia, grass/shrubs and
non-vegetation (i.e., bare soil + water bodies). Each degree of correlation can be seen within the figure.
In general, for the Acacia class, a clear exponential relationship occurs between the FVC and VIs. At the
5 and 10 m grid scales, ReNDVI shows the highest correlation, with GNDVI and NDVI showing lower
R2 values. With the resolution becoming coarser, the sensitivity of the VIs to FVC shows a lesser error
among all VIs, and for the 60 m grid, all VIs show a strong correlation (R2 > 0.9). The grass/shrub
class, which is classified as another vegetation type, does not show a clearer trend than the Acacia
trees. The trend line for the grass/shrub type is shown with a second order polynomial for reference.
The polynomial appears to not show many relevant relationships, but it does seem to show a combined
trend of the area that has different land conditions. One example is a segment that shows a positive
correlation between FVC and VIs, which is shown at areas such as on the west side of the study
site, along with the track of the bare soils and water body that crosses from north to south direction.
This area shows a simple positive correlation between vegetation and the VIs. Another segment is
found within the compartment of the plantation area that shows a negative correlation between the
FVC and VIs. In such areas, larger fractions of acacias are found when the grass/shrub class reduces,
resulting in higher VIs. Other than the vegetative classes, non-vegetative areas were also examined for
the sensitivity of VIs. Interestingly, at all grid scales, a clear negative correlation is observed between
the fraction of non-vegetation cover (denoted hereafter as FnVC) and VIs. Similar to the Acacia class,
the errors obviously reduce with coarser grids. However, instead of ReNDVI being more sensitive
for acacias, the NDVI shows a higher correlation throughout different VIs and at different grid scales
for FnVC.
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4.4. FVC Estimation and Satellite-Derived FVC vs. UAS-Derived FVC

Figure 10 shows both the estimated FVC from the model training and the evaluation of the
model for each grid scale together with the comparison of satellite-derived to UAS-derived FVC at
the 10 m scale. The RMSE values of the model for 5, 10, 30 and 60 m were 0.107, 0.112, 0.085 and 0.05,
respectively. The visual interpretation shows that the higher resolution image gives more detail of
the area. However, the 30 m resolution data can characterize the overall trend of the site, as the bare
soils on the west side can be seen clearly, and the difference between the north compartment with the
lower FVC and the southern compartment with the higher FVC is acknowledged. The 60 m resolution
can also characterize the area to some degree, however within the spatial extent of the study area, the
information is much more aggregated compared to the other, finer resolutions.

The FVC computed from Sentinel-2 is shown in Figure 10e. The evaluation of the Sentinel-2
FVC is compared with the UAS FVC (Figure 10b). From the visual interpretation, the Sentinel-2
FVC shows a more smoothened result than the sharper UAS FVC. Since the Sentinel-2 FVC uses the
neural network method for all different bands, the resampled information of the bands appears in the
image (RGB is 10 m, however IR and SWIR are 20–30 m and the aerosol/water vapor bands are 60 m).
The model validation shows overestimations for lower FVCs and underestimations for higher FVCs
for the Sentinel-2 data. Two potential explanations can be made for the FVC difference. One is the
error from the neural network approach, and the other is the temporal difference between the satellite
and UAS. This subject will be discussed in the next section.
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5. Discussion

We will first discuss the trends of FVC to the sensitivity of VIs and the resolution. The resolution
(grid scale) shows a straightforward trend, where a coarser resolution shows a stronger correlation.
This also coincides with the findings of Riihimaki et al. (2019), which explains that when the finer data
is aggregated to a larger unit, the variation in the data decreases, resulting in a higher correlation [29,40].
Starting from the 5 m up to the 60 m resolution, the R2 improves for the explanatory power and
the estimated FVC shows a much lower RMSE for coarser resolutions. This indicates that utilizing
UAS data can improve the efficiency and quality of collected ground-truth information for validating
coarser imagery FVCs. This approach may outperform expectations by using high-resolution Google
Earth scenes [30] or direct observations in the field [28]; this dynamic remains in issues such as the
temporal difference of scenes, coarse resolution images that make delineating fractional covers difficult
and sampling scale/registration differences between field plots and imagery [29,30]. Since these issues
can be controlled for UAS data, new possibilities in bridging to larger-scale earth observations may
occur [41].

The sensitivity of VIs to FVC and FnVC was also clear. For the Acacia trees, an exponential
increase of FVC occurred with increasing VIs, while for the FnVC, the decreasing trend of FVC with
increasing VIs was seen throughout different grid scales. The grass/shrub class showed almost no
trends when an overall trend is shown for the whole study area. However, their characteristics can
be seen at two different segments, where the pure grass/shrub cover is dominant or if it is mixed
within the Acacia plantation area. Many authors have indicated the issues caused by the mixing
reflectance from vegetation or the background response to the spectral variability that is observed
within the grid [42–44]. The background soil reflectance brings errors in observing correct vegetation
signatures [42,44], and the mixture of vegetation types can lead to errors due to the spectral difference,
especially for woody vegetation and green grass [43]. In our study, Acacia and grass/shrubs were mixed
within the compartment area. When the FVC as separated clearly by species, it gave a strong correlation
for woody vegetation between the VIs taken from UAS. As expressed by Xiao and Moody [43], the
mixture of the vegetation types will result in uncertainties in the estimation. When both the Acacia and
grass/shrub classes are aggregated, the R2 of the exponential model was reduced from a minimum
of 0.008 to a maximum of 0.086 depending on the grid scales (for ReNDVI). On the other hand, the
correlation between the aggregated FVC (Acacia + Grass/Shrub) and VIs was the strongest for NDVI
compared to other the VIs for all grid scales. Estimating single species fractions via satellite data also
seems to show stronger correlations when using ReNDVI. However, when considering all vegetation
types, NDVI is preferred, although the overall correlation would decrease if all vegetation types were
considered. However, depending on different biomes this dynamic may also show trend changes [17].
Therefore, the relationship found here may be suitable mainly for IFP sites within Indonesia for the
Acacia species. Notably, estimating the FnVC seems to also be possible, as it has a superior explanatory
power compared to directly estimating the vegetation cover. The prospects of estimating the vegetation
cover by inversely estimating FnVC look probable, although a large-scale analysis would need to be
made for further confirmation.

The comparison between the satellite FVC and UAS FVC gave interesting results. The satellite
FVC was based on the neural network approach, which generally tends to show a high accuracy [21,45].
However, from our observation, the lower boundary of the FVC was overestimated and the higher FVC
was underestimated. The neural network approach needs to be treated with care during the training
phase, as it can produce poor results if poor information is used during the training [46]. Therefore, the
neural network approach might also show strong results in other areas, but this was not the case here.
Another potential issue is the temporal difference between the satellite data and UAS. The observation
period was valid for similar months. However, due to clouds, the data were unusable, which forced
us to use only September’s data. Although it is only a 1-month difference, the fast-growing acacias
may show differences in the FVC result, hence, the validation between the UAS-FVC and satellite
FVC could have had shown such a trend. This is the conventional issue of satellite data, where clouds
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and haze limit data collection on preferable observation dates. We would like to emphasize that this
result does not conclude that the FVC estimation via regression is better than the neural network, but
the conventional platforms could limit the desired information of the environment at various scenes.
The UAS data can overcome this issue and may collect data at any occasion, time and resolution [31,47].
Thus, the UAS FVC may become a potential method for future FVC developments. The potential
obstacles posed to future studies would be aviation law and engineering issues [47]. For example,
the available flight time per UASs would limit the spatial extent, and the aviation law that limits the
flight altitude would also limit the spatial extent. Even collecting land information at a 5 m resolution
can provide sufficient green cover information, but expanding the observation area with a limited
flight time would be constrained by the flying altitude, as it is mainly regulated by the law. Further
investigation will be performed for more precise comparison between the satellite and UAS data in the
future by coinciding both data sets.

6. Conclusions

This work demonstrated utilizing UAS to observe the RGB and multispectral data for analyzing
the LULC of the plantation area, and further examined the relationship between the fraction of each
LULC class with comparison to different VIs at multiple spatial resolutions. UAS observation was
successful for RGB and multispectral data. An LULC map of the area was developed using the
orthorectified RGB and multispectral data, and the fraction of each LULC type was extracted within
different resolution grids. A comparison of the fractional vegetation cover (FVC) to NDVI, GNDVI and
ReNDVI was performed. The result indicates the possibilities of computing the vegetation cover of
terrestrial environments through UAS-derived data at IFP in Indonesia. The differences between the
FVC and the grid scale and VIs were clear. ReNDVI showed a stronger correlation at a finer resolution
for Acacia classes and NDVI was superior for estimating non-vegetation classes. Methods to delineate
or monitor the land environment through UAS tended to show promising results and the possibility
exists of expanding their potential applications to various fields and approaches. The emerging trend of
UAS remote sensing is increasing globally. While airborne and spaceborne sensing are still developing,
we hope that the new technology of UAS can integrate with the conventional sensing technology for
new findings and developments in the near future. We believe our methods can also be useful for
related restoration programs that are currently in progress in Indonesia. We will continue with the
approach next to generalize the UAS result and modify the relationships using, for example, radiative
transfer models.

Author Contributions: K.I. took the lead in designing, processing the research and writing the manuscript; T.K.
arranged for the field surveys, research grants and revising the paper; S.S. and A.Y.S. contributed in field surveying,
data collection, data process and revising/editing the manuscript; O.K. contributed in field surveys, research
grants and revising of the paper; and all authors have substantially contributed to the work.

Funding: This research was funded by the Research Institute for Humanity and Nature (RIHN: a constituent
member of NIHU) Project No.14200117 and by IDH The Sustainable Trade Initiative.

Acknowledgments: We thank PT. Wana Subur Lestari (WSL) and PT. Mayangkara Tanaman Industri (MTI) for all
the support during the field work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yao, J.; He, X.Y.; Li, X.Y.; Chen, W.; Tao, D.L. Monitoring responses of forest to climate variations by MODIS
NDVI: A case study of Hun River upstream, northeastern China. Eur. J. Res. 2012, 131, 705–716. [CrossRef]

2. Iizuka, K.; Tateishi, R. Estimation of CO2 Sequestration by the Forests in Japan by Discriminating Precise
Tree Age Category using Remote Sensing Techniques. Remote Sens. 2015, 7, 15082–15113. [CrossRef]

3. Masocha, M.; Murwira, A.; Magadza, C.H.D.; Hirji, R.; Dube, T. Remote sensing of surface water quality in
relation to catchment condition in Zimbabwe. Phys. Chem. Earth Parts A/B/C 2017, 100, 13–18. [CrossRef]

http://dx.doi.org/10.1007/s10342-011-0543-z
http://dx.doi.org/10.3390/rs71115082
http://dx.doi.org/10.1016/j.pce.2017.02.013


Remote Sens. 2019, 11, 1816 16 of 18

4. Liu, Y.; Xue, Y.; MacDonald, G.; Cox, P.; Zhang, Z. Global vegetation variability and its response to elevated
CO2, global warming, and climate variability—a study using the offline SSiB4/TRIFFID model and satellite
data. Earth Syst. Dyn. 2019, 10, 9–29. [CrossRef]

5. Gomes, L.; Simões, S.J.C.; Dalla Nora, E.L.; de Sousa-Neto, E.R.; Forti, M.C.; Ometto, J.P.H.B. Agricultural
Expansion in the Brazilian Cerrado: Increased Soil and Nutrient Losses and Decreased Agricultural
Productivity. Land 2019, 8, 12. [CrossRef]

6. Taubenböck, H.; Esch, T.; Felbier, A.; Wiesner, M.; Roth, A.; Dech, S. Monitoring urbanization in mega cities
from space. Remote Sens. Environ. 2012, 117, 162–176. [CrossRef]

7. Satterthwaite, D.; McGranahan, G.; Tacoli, C. Urbanization and its implications for food and farming.
Philos. Trans. R. Soc. B. 2010, 365, 2809–2820. [CrossRef] [PubMed]

8. Iizuka, K.; Johnson, B.A.; Onishi, A.; Magcale-Macandog, D.B.; Endo, I.; Bragais, M. Modeling Future Urban
Sprawl and Landscape Change in the Laguna de Bay Area, Philippines. Land 2017, 6, 26. [CrossRef]

9. Climate Focus. Forests and Land Use in the Paris Agreement. The Paris Agreement Summary. Available
online: http://www.climatefocus.com/publications/cop21-paris-2015-climate-focus-overall-summary-and-
client-briefs (accessed on 22 December 2015).

10. Di Lallo, G.; Mundhenk, P.; Zamora López, S.E.; Marchetti, M.; Köhl, M. REDD+: Quick Assessment of
Deforestation Risk Based on Available Data. Forests 2017, 8, 29. [CrossRef]

11. Ministry of Environment and Forestry (MoEF). Decree of the Minister of Environment and Forestry of the Republic
of Indonesia Number: No.129/MenLHK/Setjen/PKL.0/2/2017 Concerning Determination of Maps of National Peat
Hydrological Units; Ministry of Environment and Forestry: Jakarta, Indonesia, 2017.

12. Hooijer, A.; Silvius, M.; Wösten, H.; Page, S. PEAT-CO2: Assessment of CO2 Emission from Drained Peatlands
in SE Asia; Delft Delft Hydraulics report Q3943, prepared in cooperation with Wetlands International and
Alterra; Delf Hydraulics: Delft, The Netherland, 2006.

13. Department of Forestry. Indonesian Forestry Statistics; Department of Forestry of The Republic of Indonesia:
Jakarta, Indonesia, 2007.

14. Haneda, N.F.; Retmadhona, I.Y.; Nandika, D.; Arinana, A. Biodiversity of subterranean termites on the
Acacia crassicarpa plantation. Biodivers. J. Biol. Divers. 2017, 18, 1657–1662.

15. Atwood, E.C.; Englhart, S.; Lorenz, E.; Halle, W.; Wiedemann, W.; Siegert, F. Detection and Characterization
of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity
Fire Monitoring Satellite Sensor (FireBird). PLoS ONE 2016, 11, e0159410. [CrossRef] [PubMed]

16. DiMiceli, C.M.; Carroll, M.L.; Sohlberg, R.A.; Huang, C.; Hansen, M.C.; Townshend, J.R.G. Annual Global
Automated MODIS Vegetation Continuous Fields (MOD44B) at 250 m Spatial Resolution for Data Years Beginning
Day 65, 2000–2010; Collection 5 Percent Tree Cover; University of Maryland: College Park, MD, USA, 2011.

17. Filipponi, F.; Valentini, E.; Nguyen Xuan, A.; Guerra, C.A.; Wolf, F.; Andrzejak, M.; Taramelli, A. Global
MODIS Fraction of Green Vegetation Cover for Monitoring Abrupt and Gradual Vegetation Changes.
Remote Sens. 2018, 10, 653. [CrossRef]

18. Dymond, J.R.; Stephens, P.R.; Newsome, P.F.; Wilde, R.H. Percentage vegetation cover of a degrading
rangeland from SPOT. Int. J. Remote Sens. 1992, 13, 1999–2007. [CrossRef]

19. Kobayashi, T.; Tsend-Ayush, J.; Tateishi, R. A new global tree-cover percentage map using MODIS data. Int. J.
Remote Sens. 2016, 37, 969–992. [CrossRef]

20. Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R.A.; Dimiceli, C.; Carroll, M.L. Towards an
operational MODIS continuous field of percent tree cover algorithm: Examples using AVHRR and MODIS
data. Remote Sens. Environ. 2002, 83, 303–319. [CrossRef]

21. Yang, L.; Jia, K.; Liang, S.; Liu, J.; Wang, X. Comparison of Four Machine Learning Methods for Generating
the GLASS Fractional Vegetation Cover Product from MODIS Data. Remote Sens. 2016, 8, 682. [CrossRef]

22. Asner, G.P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 2001, 22,
3855–3862. [CrossRef]

23. Turner, D.; Lucieer, A.; Watson, C. An Automated Technique for Generating Georectified Mosaics from
Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM)
Point Clouds. Remote Sens. 2012, 4, 1392–1410. [CrossRef]

24. Guo, Q.; Wu, F.; Hu, T.; Chen, L.; Liu, J.; Zhao, X.; Gao, S.; Pang, S. Perspectives and prospects of unmanned
aerial vehicle in remote sensing monitoring of biodiversity. Biodivers. Sci. 2016, 24, 1267–1278. [CrossRef]

http://dx.doi.org/10.5194/esd-10-9-2019
http://dx.doi.org/10.3390/land8010012
http://dx.doi.org/10.1016/j.rse.2011.09.015
http://dx.doi.org/10.1098/rstb.2010.0136
http://www.ncbi.nlm.nih.gov/pubmed/20713386
http://dx.doi.org/10.3390/land6020026
http://www.climatefocus.com/publications/cop21-paris-2015-climate-focus-overall-summary-and-client-briefs
http://www.climatefocus.com/publications/cop21-paris-2015-climate-focus-overall-summary-and-client-briefs
http://dx.doi.org/10.3390/f8010029
http://dx.doi.org/10.1371/journal.pone.0159410
http://www.ncbi.nlm.nih.gov/pubmed/27486664
http://dx.doi.org/10.3390/rs10040653
http://dx.doi.org/10.1080/01431169208904248
http://dx.doi.org/10.1080/01431161.2016.1142684
http://dx.doi.org/10.1016/S0034-4257(02)00079-2
http://dx.doi.org/10.3390/rs8080682
http://dx.doi.org/10.1080/01431160010006926
http://dx.doi.org/10.3390/rs4051392
http://dx.doi.org/10.17520/biods.2016105


Remote Sens. 2019, 11, 1816 17 of 18

25. Iizuka, K.; Yonehara, T.; Itoh, M.; Kosugi, Y. Estimating Tree Height and Diameter at Breast Height (DBH)
from Digital Surface Models and Orthophotos Obtained with an Unmanned Aerial System for a Japanese
Cypress (Chamaecyparis obtusa) Forest. Remote Sens. 2018, 10, 13. [CrossRef]

26. Csillik, O.; Cherbini, J.; Johnson, R.; Lyons, A.; Kelly, M. Identification of Citrus Trees from Unmanned Aerial
Vehicle Imagery Using Convolutional Neural Networks. Drones 2018, 2, 39. [CrossRef]

27. Fang, S.; Tang, W.; Peng, Y.; Gong, Y.; Dai, C.; Chai, R.; Liu, K. Remote Estimation of Vegetation Fraction and
Flower Fraction in Oilseed Rape with Unmanned Aerial Vehicle Data. Remote Sens. 2016, 8, 416. [CrossRef]

28. Chen, J.; Yi, S.; Qin, Y.; Wang, X. Improving estimates of fractional vegetation cover based on UAV in alpine
grassland on the Qinghai–Tibetan Plateau. Int. J. Remote Sens. 2016, 37, 1922–1936. [CrossRef]

29. Riihimäkia, H.; Luotoa, M.; Heiskanena, J. Estimating fractional cover of tundra vegetation at multiple
scales using unmanned aerial systems and optical satellite data. Remote Sens. Environ. 2019, 224, 119–132.
[CrossRef]

30. Kobayashi, S.; Sanga-Ngoie, K. A comparative study of radiometric correction methods for optical remote
sensing imagery: The IRC vs. other image-based C-correction methods. Int. J. Remote Sens. 2009, 30, 285–314.
[CrossRef]

31. Iizuka, K.; Watanabe, K.; Kato, T.; Putri, N.A.; Silsigia, S.; Kameoka, T.; Kozan, O. Visualizing the
Spatiotemporal Trends of Thermal Characteristics in a Peatland Plantation Forest in Indonesia: Pilot
Test Using Unmanned Aerial Systems (UASs). Remote Sens. 2018, 10, 1345. [CrossRef]

32. Yoshimura, T.; Hasegawa, H. Comparing the precision and accuracy of GPS positioning in forested areas.
J. For. Res. 2003, 8, 147–152. [CrossRef]

33. Takasu, T.; Yasuda, A. Development of the low-cost RTK-GPS receiver with an open source program package
RTKLIB. In Proceedings of the International symposium on GPS/GNSS, Seogwipo-si Jungmun-dong, Korea,
4–6 November 2009.

34. Khokthon, W.; Zemp, D.C.; Irawan, B.; Sundawati, L.; Kreft, H.; Hölscher, D. Drone-Based Assessment of
Canopy Cover for Analyzing Tree Mortality in an Oil Palm Agroforest. Front. For. Glob. Chang. 2019, 2, 12.
[CrossRef]

35. Tucker, G.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens.
Environ. 1979, 8, 127–150. [CrossRef]

36. Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of green channel in remote sensing of global vegetation
from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [CrossRef]

37. Eitel, J.U.H.; Vierling, L.A.; Litvak, M.E.; Long, D.S.; Schulthess, U.; Ager, A.A.; Krofcheck, D.J.; Stoscheck, L.
Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer
woodland. Remote Sens. Environ. 2011, 115, 3640–3646. [CrossRef]

38. Shen, X.; Cao, L.; Yang, B.; Xu, Z.; Wang, G. Estimation of Forest Structural Attributes Using Spectral Indices
and Point Clouds from UAS-Based Multispectral and RGB Imageries. Remote Sens. 2019, 11, 800. [CrossRef]

39. Weiss, M.; Baret, F. S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER. Available online: https://step.esa.int/
docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (accessed on 2 May 2016).

40. Dark, S.J.; Bram, D. The modifiable areal unit problem (MAUP) in physical geography. Prog. Phys. Geogr.
2007, 31, 471–479. [CrossRef]

41. Walker, D.A.; Daniëls, F.J.A.; Alsos, I.; Bhatt, U.S.; Breen, A.L.; Buchhorn, M.; Bültmann, H.; Druckenmiller, L.A.;
Edwards, M.E.; Ehrich, D.; et al. Circumpolar Arctic vegetation: A hierarchic review and roadmap toward an
internationally consistent approach to survey, archive and classify tundra plot data. Environ. Res. Lett. 2016,
11, 055005. [CrossRef]

42. Borel, C.C.; Gerstl, S.A.W. Nonlinear spectral mixing models for vegetative and soil surfaces. Remote Sens.
Environ. 1994, 47, 403–416. [CrossRef]

43. Xiao, J.; Moody, A. A comparison of methods for estimating fractional green vegetation cover within a
desert-to-upland transition zone in central New Mexico, USA. Remote Sens. Environ. 2005, 98, 237–250.
[CrossRef]

44. Zhang, X.; Liao, C.; Li, J.; Sun, Q. Fractional vegetation cover estimation in arid and semi-arid environments
using HJ-1 satellite hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 506–512. [CrossRef]

45. Jia, K.; Liang, S.; Gu, X.; Baret, F.; Wei, X.; Wang, X.; Yao, Y.; Yang, L.; Li, Y. Fractional vegetation cover
estimation algorithm for Chinese GF-1 wide field view data. Remote Sens. Environ. 2016, 177, 184–191.
[CrossRef]

http://dx.doi.org/10.3390/rs10010013
http://dx.doi.org/10.3390/drones2040039
http://dx.doi.org/10.3390/rs8050416
http://dx.doi.org/10.1080/01431161.2016.1165884
http://dx.doi.org/10.1016/j.rse.2019.01.030
http://dx.doi.org/10.1080/01431160802356781
http://dx.doi.org/10.3390/rs10091345
http://dx.doi.org/10.1007/s10310-002-0020-0
http://dx.doi.org/10.3389/ffgc.2019.00012
http://dx.doi.org/10.1016/0034-4257(79)90013-0
http://dx.doi.org/10.1016/S0034-4257(96)00072-7
http://dx.doi.org/10.1016/j.rse.2011.09.002
http://dx.doi.org/10.3390/rs11070800
https://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf
https://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf
http://dx.doi.org/10.1177/0309133307083294
http://dx.doi.org/10.1088/1748-9326/11/5/055005
http://dx.doi.org/10.1016/0034-4257(94)90107-4
http://dx.doi.org/10.1016/j.rse.2005.07.011
http://dx.doi.org/10.1016/j.jag.2012.07.003
http://dx.doi.org/10.1016/j.rse.2016.02.019


Remote Sens. 2019, 11, 1816 18 of 18

46. Verrelst, J.; Muñoz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, J. Machine learning
regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and-3. Remote Sens.
Environ. 2012, 118, 127–139. [CrossRef]

47. Hogan, S.D.; Kelly, M.; Stark, B.; Chen, Y. Unmanned aerial systems for agriculture and natural resources.
Calif. Agric. 2017, 71, 5–14. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rse.2011.11.002
http://dx.doi.org/10.3733/ca.2017a0002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area 
	Materials and Methods 
	Coordinate Observation for Ground Control Points 
	GCP Collection Using Low Cost GNSS 
	PPK Processing for Precise GCP Coordinates 

	UAS Flights Data Collection 
	Fixed-Wing RGB Acquisition and Processing 
	Multispectral Data Collection and Processing 

	Image Classification 
	Relationship Analysis of VIs and Fraction of LULC 
	Various Vegetation Indices 
	Various Grid Scaling for Relationship Analysis 
	Estimating FVC Using UAS Data and Comparison with Satellite-Based FVC 


	Results 
	UAS Photogrammetry and GCP 
	PPK Processing for Coordinate Precision 
	Orthoimagery from UAS Flights for RGB and Multispectral Data 

	LULC Map of the Study Area and Its Errors 
	Sensitivity of VI to the Fraction of Vegetation Cover (FVC) 
	FVC Estimation and Satellite-Derived FVC vs. UAS-Derived FVC 

	Discussion 
	Conclusions 
	References

