Chlorophyll Concentration Response to the Typhoon Wind-Pump Induced Upper Ocean Processes Considering Air–Sea Heat Exchange
Abstract
:1. Introduction
2. Materials and Methods
2.1. Typhoon Data
2.2. Remote Sensing Data and Model Data
2.3. In Situ Data
2.4. Methods
3. Results
3.1. Distribution of the Surface Chl-a
3.2. Remote Sensing Data of Rainfall, SST, and geo-SSCs
3.3. Distribution of the Wind and Wind Stress
3.4. Daily Distribution of the Chl-a, EPV, and SLA
3.5. Distribution of the In Situ Temperature and Salinity Profiles
4. Discussion
4.1. The Increase of the Surface and Euphotic Layer-Integrated Chl-a
4.2. Effect of the Typhoon Intensity and Translation Speed on the Chl-a
4.3. Effect of the Typhoon Wind Pump Induced Upper Ocean Physical Processes on the Surface Chl-a
4.3.1. Effect of the Typhoon-Induced Cyclonic Eddy on the Surface Chl-a
4.3.2. Effect of the Ekman Transport on the Surface Chl-a after the Typhoon
4.3.3. Effect of the SST on the Surface Chl-a after the Typhoon
4.4. Influence of Biochemical Processes on the Chl-a Variability
5. Conclusions
- (1)
- The growth of the surface and euphotic layer-integrated phytoplankton (Chl-a) were affected by the Chl-a entrainment in the MLD through typhoon-induced vertical mixing and entrainment, while the eddy-pumping play a much important role in the Chl-a entrainment after the typhoon;
- (2)
- The eddy-pumping caused by the typhoon-induced cyclonic eddy played the major role in the surface Chl-a increasing rather than other upper ocean physical processes (such as the EPV, the wind-stirring mixing, and the Rossby wave) after typhoon;
- (3)
- The spatial shift between the surface Chl-a and the typhoon-induced cyclonic eddy should be due to the Ekman transport, and the movement of the cyclonic eddy was mainly due to the typhoon wind stress rather than the Rossby wave;
- (4)
- The Net Heat Flux (air–sea exchange) played a key role in indirectly increasing the surface Chl-a rather than the marine physical processes through cooling the SST until two weeks after the typhoon;
- (5)
- Nutrient (nitrate) uplifting, rather than light, was the main biochemical factor restricting the growth of surface and euphotic-integrated phytoplankton over the study area in the NSCS after the typhoon Linfa.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Falkowski, P.G. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth. Res. 1994, 39, 235–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Wang, Y.Q. Phytoplankton increases induced by tropical cyclones in the South China Sea during 1998–2015. J. Geophys. Res. 2018, 123. [Google Scholar] [CrossRef]
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef] [Green Version]
- Pan, G.; Chai, F.; Tang, D.L.; Wang, D.X. Marine phytoplankton biomass responses to typhoon events in the South China Sea based on physical-biogeochemical model. Ecol. Model. 2017, 356, 38–47. [Google Scholar] [CrossRef]
- Lin, I.; Liu, W.T.; Wu, C.C.; Wong, G.T.F.; Hu, C.M.; Chen, Z.Q.; Liang, W.D.; Yang, Y.; Liu, K.K. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Babin, S.M.; Carton, J.A.; Dickey, T.D.; Wiggert, J.D. Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Ye, H.J.; Sui, Y.; Tang, D.L.; Afanasyev, Y.D. A subsurface chlorophyll a bloom induced by typhoon in the South China Sea. J. Mar. Syst. 2013, 128, 138–145. [Google Scholar] [CrossRef]
- Lin, J.R.; Tang, D.L.; Alpers, W.; Wang, S.F. Response of dissolved oxygen and related marine ecological parameters to a tropical cyclone in the South China Sea. Adv. Space Res. 2014, 53, 1081–1091. [Google Scholar] [CrossRef]
- Price, J.F. Upper ocean response to a hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef]
- Sun, Q.Y.; Tang, D.L.; Legendre, L.; Shi, P. Enhanced sea-air CO2 exchange influenced by a tropical depression in the South China Sea. J. Geophys. Res. 2015, 119, 6792–6804. [Google Scholar] [CrossRef]
- Zhao, H.; Han, G.Q.; Zhang, S.W.; Wang, D.X. Two phytoplankton blooms near Luzon Strait generated by lingering Typhoon Parma. J. Geophys. Res. 2013, 118, 412–421. [Google Scholar] [CrossRef]
- He, Q.Y.; Zhan, H.G.; Cai, S.Q.; Li, Z.M. Eddy effects on surface chlorophyll in the northern South China Sea: Mechanism investigation and temporal variability analysis. Deep-Sea Res. Part I 2016, 112, 25–36. [Google Scholar] [CrossRef]
- Liang, W.Z.; Tang, D.L.; Luo, X. Phytoplankton size structure in the western South China Sea under the influence of a ‘jet-eddy system’. J. Mar. Syst. 2018, 187, 82–95. [Google Scholar] [CrossRef]
- Dugdale, R.C. Nutrient limitation in sea - dynamics identification and significance. Limnol. Oceanogr. 1967, 12, 685–695. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Tang, D.L. Eddy-feature phytoplankton bloom induced by a tropical cyclone in the South China Sea. Int. J. Remote Sens. 2012, 33, 7444–7457. [Google Scholar] [CrossRef]
- Wu, L.G.; Wang, B.; Braun, S.A. Impacts of Air-Sea Interaction on Tropical Cyclone Track and Intensity. Mon. Weather Rev. 2004, 133, 3299–3314. [Google Scholar] [CrossRef]
- Liu, S.S.; Zhang, L.F.; Zhang, X.H. Characteristics analysis on rapid intensification of typhoon Mujigae (1522) over the offshore area of China. J. Meteor. Sci. 2017. [Google Scholar] [CrossRef]
- Shay, L.K.; Elsberry, R.L.; Black, P.G. Vertical structure of the ocean current response to a hurricane. J. Phys. Oceanogr. 1989, 19, 649–669. [Google Scholar] [CrossRef]
- Pan, J.Y.; Huang, L.; Devlin, A.T.; Lin, H. Quantification of typhoon-induced phytoplankton blooms using satellite multi-sensor data. Remote Sens. 2018, 10, 318. [Google Scholar] [CrossRef]
- Ye, H.J.; Sheng, J.Y.; Tang, D.L.; Siswanto, E.; Kalhoro, M.A.; Sui, Y. Storm-induced changes in pCO2 at the sea surface over the northern South China Sea during Typhoon Wutip. J. Geophys. Res. 2017, 122, 4761–4778. [Google Scholar] [CrossRef]
- Wijesekera, H.W.; Gregg, M.C. Surface layer response to weak winds, westerly bursts, and rain squalls in the western Pacific Warm Pool. J. Geophys. Res. 1996, 101, 977–997. [Google Scholar] [CrossRef]
- Cao, W.X.; Yang, Y.Z. A bio-optical model for ocean photosynthetic available radiation. J. Trop. Oceanogr. 2002, 21, 47–54. [Google Scholar]
- Uitz, J.; Claustre, H.; Morel, A.; Hooker, S.B. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Lin, I.I. Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Liu, Z.L.; Chen, Z.Y.; Zhou, B.F.; Zhang, T.; Ding, T. The seasonal distribution of the standing stock of phytoplankton in the source area of the kuroshio and adjacent areas. Tran. Oceanol. Limnol. 2006, 58–63. [Google Scholar] [CrossRef]
- Shay, L.K.; Goni, G.J.; Black, P.G. Effects of a warm oceanic feature on hurricane Opal. Mon. Weather Rev. 2000, 128, 1366–1383. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, D.K.; Zhou, L.; Liu, X.H.; Ding, T.; Zhou, B.F. Upper ocean response to typhoon Kalmaegi (2014). J. Geophys. Res. 2016, 121, 6520–6535. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, H.; Pan, J.Y.; Devlin, A. Remote sensing observations of phytoplankton increases triggered by successive typhoons. Front. Earth Sci. 2017, 11, 601–608. [Google Scholar] [CrossRef]
- Talley, L.D.; Pickard, G.L.; Emery, W.J.; Swift, J.H. Chapter 5–Mass, Salt, and Heat Budgets and Wind Forcing. In Descriptive Physical Oceanography: An Introduction; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Liu, F.F.; Tang, S.L. Influence of the interaction between typhoons and oceanic mesoscale eddies on phytoplankton blooms. J. Geophys. Res. 2018, 123, 2785–2794. [Google Scholar] [CrossRef]
- Gaube, P.; Chelton, D.B.; Strutton, P.G.; Behrenfeld, M.J. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. 2013, 118, 6349–6370. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Kwon, Y.-O.; Ummenhofer, C.C.; Seo, H.; Schwarzkopf, F.U.; Biastoch, A.; Boening, C.W.; Wright, J.S. Influences of Pacific Climate Variability on Decadal Subsurface Ocean Heat Content Variations in the Indian Ocean. J. Clim. 2018, 31, 4157–4174. [Google Scholar] [CrossRef]
- Wang, J.J.; Tang, D.L.; Sui, Y. Winter phytoplankton bloom induced by subsurface upwelling and mixed layer entrainment southwest of Luzon Strait. J. Mar. Syst. 2010, 83, 141–149. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Tang, D.L. Remote sensing analysis of impact of typhoon on environment in the sea area south of Hainan Island. Procedia Environ. Sci. 2011, 10, 1621–1629. [Google Scholar] [CrossRef]
- Fu, D.Y.; Pan, D.L.; Mao, Z.H.; Ding, Y.Z.; Chen, J.Y. The effects of chlorophyll-a and SST in the South China Sea area by typhoon near last decade. SPIE Remote Sens. 2009. [Google Scholar] [CrossRef]
- Chin, T.G.; Chen, C.F.; Liu, C.S.; Wu, S.S. Influence of temperature and salinity on the growth of three species of planktonic diatoms. Oceanol. Limnol. Sin. 1965, 7, 373. [Google Scholar]
- Veeranjaneyulu, C.; Deo, A.A. Study of upper ocean parameters during passage of tropical cyclones over Indian seas. Int. J. Remote Sens. 2019, 40, 4683–4723. [Google Scholar] [CrossRef]
- Son, S.; Platt, T.; Fuentes-Yaco, C.; Bouman, H.; Devred, E.; Wu, Y.; Sathyendranath, S. Possible biogeochemical response to the passage of Hurricane Fabian observed by satellites. J. Plankton Res. 2007, 29, 687–697. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Kang, J.C.; Wang, G.D.; Zhu, W.W.; Sun, W.Z.; Li, Y. Monthly spatial variation of nutrients and nutrient limitation in kuroshio of East China Sea. Resour. Sci. 2012, 34, 1375–1381. [Google Scholar]
- Xu, H.B.; Tang, D.L.; Liu, Y.P.; Li, Y. Dissolved oxygen responses to tropical cyclones" Wind Pump" on pre-existing cyclonic and anticyclonic eddies in the Bay of Bengal. Mar. Pollut. Bull. 2019, 146, 838–847. [Google Scholar] [CrossRef]
Areas | Recording Periods of the Typhoon | Surface Chl-a (mg/m3) | Euphotic Layer-Integrated Chl-a (mg/m2) | MLD(m) | Euphotic Layer depth (m) | Chl-a Entrainment (mg/m3) |
---|---|---|---|---|---|---|
Study area average | −1 week | 0.08 | 10.90 | 8.0 | 84.7 | 0.13 |
1 week | 0.21 | 18.33 | 9.3 | 60.4 | 0.30 | |
2 weeks | 0.14 | 14.86 | 5.0 | 69.7 | 0.21 | |
Eddy center (Station 7) | −1 week | 0.08 | 10.64 | 7.3 | 84.7 | 0.13 |
1 week | 0.46 | 27.79 | 8.7 | 45.9 | 0.61 | |
2 weeks | 0.12 | 13.57 | 5.0 | 60.4 | 0.22 |
Period | Factors | Chl-a | SLA | EPV | Pw | SST | rain | EMT_dir |
---|---|---|---|---|---|---|---|---|
Partial correlation (R) before typhoon (2–15 June) | Chl-a | 1.00 | −0.16 | 0.23 | 0.57 | 0.08 | 0.23 | −0.07 |
SLA | - | 1.00 | 0.04 | −0.02 | −0.72 | 0.13 | 0.07 | |
EPV | - | - | 1.00 | 0.35 | −0.34 | 0.16 | −0.04 | |
Pw | - | - | - | 1.00 | −0.37 | 0.03 | −0.05 | |
SST | - | - | - | - | 1.00 | −0.41 | −0.02 | |
rain | - | - | - | - | - | 1.00 | −0.48 | |
EMT_dir | - | - | - | - | - | - | 1.00 | |
Partial correlation (R) after typhoon (16 June–19 July) | Chl-a | 1.00 | −0.62 | 0.09 | 0.09 | −0.73 | −0.01 | −0.39 |
SLA | - | 1.00 | −0.12 | −0.18 | 0.65 | −0.06 | 0.40 | |
EPV | - | - | 1.00 | −0.41 | 0.14 | −0.48 | 0.30 | |
Pw | - | - | - | 1.00 | −0.60 | 0.96 | −0.31 | |
SST | - | - | - | - | 1.00 | −0.48 | 0.55 | |
rain | - | - | - | - | - | 1.00 | −0.27 | |
EMT_dir | - | - | - | - | - | - | 1.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Tang, D.; Evgeny, M. Chlorophyll Concentration Response to the Typhoon Wind-Pump Induced Upper Ocean Processes Considering Air–Sea Heat Exchange. Remote Sens. 2019, 11, 1825. https://doi.org/10.3390/rs11151825
Liu Y, Tang D, Evgeny M. Chlorophyll Concentration Response to the Typhoon Wind-Pump Induced Upper Ocean Processes Considering Air–Sea Heat Exchange. Remote Sensing. 2019; 11(15):1825. https://doi.org/10.3390/rs11151825
Chicago/Turabian StyleLiu, Yupeng, Danling Tang, and Morozov Evgeny. 2019. "Chlorophyll Concentration Response to the Typhoon Wind-Pump Induced Upper Ocean Processes Considering Air–Sea Heat Exchange" Remote Sensing 11, no. 15: 1825. https://doi.org/10.3390/rs11151825
APA StyleLiu, Y., Tang, D., & Evgeny, M. (2019). Chlorophyll Concentration Response to the Typhoon Wind-Pump Induced Upper Ocean Processes Considering Air–Sea Heat Exchange. Remote Sensing, 11(15), 1825. https://doi.org/10.3390/rs11151825