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Abstract: Mapping irrigated plots is essential for better water resource management. Today, the free
and open access Sentinel-1 (S1) and Sentinel-2 (S2) data with high revisit time offers a powerful tool for
irrigation mapping at plot scale. Up to date, few studies have used S1 and S2 data to provide approaches
for mapping irrigated plots. This study proposes a method to map irrigated plots using S1 SAR
(synthetic aperture radar) time series. First, a dense temporal series of S1 backscattering coefficients
were obtained at plot scale in VV (Vertical-Vertical) and VH (Vertical-Horizontal) polarizations over
a study site located in Catalonia, Spain. In order to remove the ambiguity between rainfall and
irrigation events, the S1 signal obtained at plot scale was used conjointly to S1 signal obtained at a grid
scale (10 km × 10 km). Later, two mathematical transformations, including the principal component
analysis (PCA) and the wavelet transformation (WT), were applied to the several SAR temporal series
obtained in both VV and VH polarization. Irrigated areas were then classified using the principal
component (PC) dimensions and the WT coefficients in two different random forest (RF) classifiers.
Another classification approach using one dimensional convolutional neural network (CNN) was
also performed on the obtained S1 temporal series. The results derived from the RF classifiers with
S1 data show high overall accuracy using the PC values (90.7%) and the WT coefficients (89.1%).
By applying the CNN approach on SAR data, a significant overall accuracy of 94.1% was obtained.
The potential of optical images to map irrigated areas by the mean of a normalized differential
vegetation index (NDVI) temporal series was also tested in this study in both the RF and the CNN
approaches. The overall accuracy obtained using the NDVI in RF classifier reached 89.5% while
that in the CNN reached 91.6%. The combined use of optical and radar data slightly enhanced the
classification in the RF classifier but did not significantly change the accuracy obtained in the CNN
approach using S1 data.

Keywords: irrigation; Sentinel-1; principal components; wavelet transformation; random forest; deep
learning; convolutional neural network; Spain

1. Introduction

Under changing climatic conditions, irrigation plays a significant role in agricultural production in
order to meet the global food requirement. In fact, better planning of irrigation is required to fulfil the
high demand of food with the increase in the global population [1,2]. Moreover, irrigated agriculture
accounts now for more than 80% of water withdrawn from rivers, lakes, and groundwater aquifers
being the principal consumer of fresh water resources [3–5]. Therefore, more focus is being set on the
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assessment of irrigation performance for improving water management in order to achieve higher
water productivity and increase the agricultural water sustainability.

Accurate information on the irrigated area extent helps in managing water resources that affect
global food security and in analyzing the impact of climate change on the irrigation water requirement.
However, the extent and distribution of irrigated areas remain indefinite in spite of the significant
impact of irrigation on food security and water resources. At a global scale, several irrigation products
are available at different spatial resolutions. Existing irrigation extent maps such as the FAO (Food
and Agriculture Organization of the United Nations) database [6], the Global Map of Irrigated Areas
version 5 (GMIA 5.0) [7,8] and the MIRCA2000 product [9] have been primary derived from national
statistical data. The Global Rain-Fed Irrigated and Paddy Croplands (GRIPC) with spatial resolution of
500 m was produced using MODIS (Moderate resolution imaging spectroradiometer) satellite data [10].
The low spatial resolution of these products is an obstacle for using them in irrigation management
especially in regards to small to medium agricultural areas.

At a regional scale, several efforts have been made to map irrigated areas using remote sensing
data including both optical and radar data [11–16]. Most studies that use optical data demonstrate that
irrigated/non-irrigated areas can be classified based on the difference in temporal signals of vegetation
indices such as NDVI (Normalized Differential Vegetation Index), NDWI (Normalized Differential
Water Index) and GI (Greenness index) between irrigated and non-irrigated areas. Among optical
sensors, MODIS and Landsat have been extensively used to map irrigated areas [12–15]. For example,
Pervez et al. [17] merged the NDVI derived from MODIS at 250 m spatial resolution and used statistical
data to map irrigated areas of United States of America in 2002. In their study, they assumed that
irrigated crops have a higher annual NDVI peak than non-irrigated crops especially under non-optimal
precipitation conditions such as drought. Chen et al. [18] proposed a new approach to map irrigation
extent, time and frequency in an arid region located in Hexi Corridor of northwest China by merging
the 30 m spatial resolution Landsat images with 250 m MODIS data and ancillary data. In their study,
they used the GI to detect irrigation events during the first half of the growing season. The overall
accuracy for detecting irrigation water supplements reached 87%. Recently, Xiang et al. [19] mapped
irrigated areas of northeast China by comparing the MODIS derived LSWI (Land Surface Water Index)
of the agricultural areas to the surrounding natural vegetation such as forests. They assumed that the
canopy moisture indicated by the LSWI is higher for irrigated crops than the adjacent forest. Thus,
they mapped irrigated areas by fixing a threshold for the difference between LSWI of agricultural plots
and that of the forest. However, the overall accuracy of the produced map did not exceed 77.2% with a
0.49 kappa coefficient.

Apart from optical data, recent studies have started exploiting the potential of SAR (synthetic
aperture radar) data to map different agricultural irrigated areas [20–24]. The assumption established
for using SAR data relies on the fact that radar remote sensing is sensitive to the water content of
soil due to the increase in the dielectric constant with the increase of the soil water content. In fact,
several studies have reported that the SAR signal is highly affected by soil moisture content [25–30].
For example, El-hajj et al. [30] analyzed the sensitivity of radar signals in the X-band over irrigated
grassland conditions using time series of TerraSAR-X and Cosmo-SkyMed X-band SAR data. Their
results showed that the radar signal in X-band increased by approximately 1.4 dB due to irrigation
events occurring one day before the radar acquisition. They concluded that the radar signal could be
used to identify three-day-old irrigated plots.

The recently launched Sentinel-1 (S1) SAR satellite offers a powerful tool for agricultural area
classification and monitoring under various weather conditions. The S1 satellites (S1A and S1B)
provide an exceptional combination of high spatial and high temporal resolutions for dual polarization
SAR data (six days of temporal resolution and a 10 m × 10 m pixel spacing) available in free open access
mode. S1 time series has been newly exploited by several studies for land cover classification [20,31–33].
High quality classification mapping has been produced by applying either classical machine learning,
such as random forest and the support vector machine, or complex deep learning methods on S1



Remote Sens. 2019, 11, 1836 3 of 25

time series. Recently, deep learning (DP) techniques [32,34,35] have shown that neural network
models are well adapted tools to automatically produce land cover mapping from information
coming from both optical [36] and radar [37] sensors. The main characteristic of these models is
the ability to simultaneously extract features optimized for image classification. However, only few
studies have started exploiting the potential of S1 time series for land cover classification using
the DP method. In Interdonato et al. [37] the authors proposed to leverage DP to perform winter
quality mapping over a zone in West France. In Ndikumana et al. [31] another DP approach was
proposed to perform land cover mapping considering several agricultural classes. Concerning the
joint exploitation of radar/optical satellite images based on deep learning techniques, some approaches
were recently proposed considering really precise tasks such as image simulation [38] or change
detection [39]. Unfortunately, the same opportunity has not been yet fully exploited in the context of
land cover mapping.

This study proposes an innovative approach to map irrigated areas at plot scale using the Sentinel-1
and Sentinel-2 (S2) time series. The potential of S1 and S2 acquired at high spatial resolution and high
revisit time for irrigation mapping did not yet receive enough attention by the scientific committee.
The approach is based on the use of S1 and/or S2 time series combined with statistical and mathematical
functions such as the principal component analysis (PCA) and the wavelet transformation (WT) to
map irrigated areas. The novelty of this study resides in eliminating the ambiguity between irrigation
and rainfall through the comparison between the SAR backscattering signal of each plot and that of the
grid (10 km × 10 km) including this plot. To map irrigated areas, the PCA and WT transformation were
applied to the S1 time series prepared over a study site located in west of Catalonia, Spain. The PCA
was also applied to the NDVI time series derived from the S2 images. Then, random forest (RF) and the
convolutional neural network (CNN) approaches were used to build up classification models in three
different scenarios: The first using only S1 data, the second using only S2 data, and the third using
both S1 and S2 data. Finally, the two classification approaches (RF and CNN) were inter-compared.

2. Materials

2.1. Study Site

The study site examined is the western part of Catalonia region of north east Spain (Figure 1a).
Figure 1b shows the location of the S1 footprints used in this study. The area covered by the used
footprints corresponds to 55% of the total area of Catalonia and compromises 64% of the total
agricultural areas in the region. Figure 1c is a digital elevation model (DEM) derived from the shuttle
radar topography mission (SRTM) data and Figure 1d shows the agricultural areas derived from the
SIGPAC (geographical information system for agricultural parcels) data of Catalonia. The hatched
zone in Figure 1d represents the area finally used in the classification.

Catalonia is a region of 32,000 km2 located in the north east corner of the Iberian Peninsula along
the northeastern Spanish Mediterranean coast. The agricultural areas of Catalonia are concentrated
in the northeastern part and the interior plane in the western part as shown in the agricultural map
of Figure 1d. The climate in the region is typically Mediterranean; mild in winter and warm in
summer with very dry season. Figure 2 presents the precipitation and temperature data recorded
at a local meteorological station located in Tornabous village of the interior plane (Figure 1b) (https:
//ruralcat.gencat.cat/web/guest/agrometeo.estacions). The average annual precipitation in this station
is around 400 mm.

https://ruralcat.gencat.cat/web/guest/agrometeo.estacions
https://ruralcat.gencat.cat/web/guest/agrometeo.estacions
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Figure 1. (a) Location of the study site (in black), Catalonia Spain, (b) Sentinel-1 footprints over 
Catalonia used in the study, (c) digital elevation model (DEM) from shuttle radar topography 
mission (SRTM) data, (d) agricultural areas of Catalonia derived from geographical information 
system for agricultural parcels (SIGPAC) data. The hatched area represents the zone finally used for 
classification. 

 
Figure 2. Precipitation and temperature records for a local meteorological station in Tornabous of the 
interior plain of Catalonia, Spain. 

During the dry summer season between May and September, irrigation mainly occurs in the 
study site. Different irrigation techniques exist. In the old irrigation systems, water is distributed 
using open channels and irrigation is performed by inundation every two weeks. In the new 
irrigation systems, water is distributed by pressure where sprinklers or drip irrigation are used 
depending on the culture type. Irrigation here can be applied daily. 

2.2. SIGPAC Data 

Figure 1. (a) Location of the study site (in black), Catalonia Spain, (b) Sentinel-1 footprints over
Catalonia used in the study, (c) digital elevation model (DEM) from shuttle radar topography mission
(SRTM) data, (d) agricultural areas of Catalonia derived from geographical information system for
agricultural parcels (SIGPAC) data. The hatched area represents the zone finally used for classification.
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Figure 2. Precipitation and temperature records for a local meteorological station in Tornabous of the
interior plain of Catalonia, Spain.

During the dry summer season between May and September, irrigation mainly occurs in the study
site. Different irrigation techniques exist. In the old irrigation systems, water is distributed using open
channels and irrigation is performed by inundation every two weeks. In the new irrigation systems,
water is distributed by pressure where sprinklers or drip irrigation are used depending on the culture
type. Irrigation here can be applied daily.
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2.2. SIGPAC Data

SIGPAC data provides referenced geographic boundaries of plot land in Catalonia attributed with
alphanumeric information. The data are produced and maintained by the General Direction of Rural
Development of the Department of Agriculture, Livestock, Fishing and Food of the Generalitat of
Catalunya. The plots are digitized using orthophoto images of 25-cm spatial resolution at scale 1:2000.
Group of fields are associated in the database of the provided geographical data describing each plot
by a unique identification code, surface area, land use, irrigation coefficient (0 for non-irrigated and
100 for irrigated), average slope and others. The SIGPAC data can be freely downloaded for the whole
region in vector format [40]. For each plot, the crop type could be obtained from the agricultural crop
map of Catalonia (DUN). This map is produced based on the SIGPAC geographic boundaries and the
annual declaration of the agricultural exploitation. The agricultural map of Catalonia is also available
in free and open access mode [40].

In this study, SIGPAC data was used as a reference and validation of our proposed classification
approaches. In our study, only agricultural crops (summer and winter crops) were considered for the
irrigation classification. Forests, urban and orchards plots were removed from the SIGPAC database
using the DUN crop map. Finally, a total of 193,327 plots of different crop types were used in the study
forming a total area of 3795 km2. The pie chart of Figure 3 summarizes the distribution of dominant
crop types present in the studied zone. It shows the number of plots per crop type present in the study
area. In general, winter cereals such as wheat, oat and barley are rarely irrigated. However, it may
happen that these crops are exceptionally irrigated very few times. On the other hand, irrigated plots
mainly include alfalfa, maize, grassland, beans, rapeseed and rice.
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2.3. Remote Sensing Data

In this study, a database of radar (SAR) and optical data was prepared over the study site described
in Section 2.1. While the S1 satellite constellation provides SAR images, the S2 satellite provides optical
images. Table 1 summarizes the characteristics of remote sensing data used in the study. More details
on each data type are further provided in the following subsection.
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Table 1. Summary of the used remote sensing data.

Data Type Satellite Spatial
Resolution

Images
Number

Frequency
Used

Calibration
Performed

Bands
Polarization

Satellite
Images

(Synthetic aperture
radar) SAR Sentinel-1 10 m 82 6 days Geometric/Radiometric VV, VH

Optical Sentinel-2 10 m 17 One
month

Ortho-rectified
Reflectance

Near Infrared,
Red

2.3.1. Sentinel-1 SAR Data

A time series of S1 images collected over our study site was used to generate SAR temporal profiles
at both VV and VH polarizations. Eighty-two S1 images obtained from the S1A and S1B satellite
constellation operating at the C-band (frequency = 5.406 GHz, wavelength ~6 cm) were collected for
the period between 28 August 2017 and 27 December 2018. Four S1 (two S1A and two S1B) footprints
cover the western part of Catalonia with a six days temporal resolution as shown in Figure 1b. The 82 S1
images were generated from the high-resolution Level-1 ground range detected (GRD) product with
10 m × 10 m pixel spacing and acquired in the interferometric wide swath (IW) imaging mode with the
VV (Vertical-Vertical) and VH (Vertical-Horizontal) polarizations. These S1 images are available via the
Copernicus website (https://scihub.copernicus.eu/dhus/#/home). The 82 S1 images were calibrated
(radiometric and geometric correction) using the Sentinel-1 Toolbox (S1TBX) developed by the ESA
(European Spatial Agency). The radiometric calibration aims to convert the digital number values
of the S1 images into backscattering coefficients (σ◦) in a linear unit while the geometric correction
ortho-rectifies the SAR image using the DEM of the SRTM at 30 m spatial resolution. The radiometric
accuracy of the S1 SAR backscattering coefficient is approximately 0.70 dB (3σ) for the VV polarization
and 1.0 dB (3σ) for the VH polarization [41,42]. Since the terrain in the study site is very complex,
the radar backscattering coefficients corresponding to areas with high slope values (slope > 20%)
were masked out. The slope mask was generated from the SRTM DEM (Figure 1c) at 30 m spatial
resolution available via the earth explorer website (https://earthexplorer.usgs.gov/) and applied to the
82 radar image.

2.3.2. Sentinel-2 Optical Data

Currently, S2 offers fine spectral and spatial resolution optical images with 13 bands ranging from
10 m to 60 m spatial resolution with 5 days revisit time. Seventeen free optical images were obtained
over our study site during the period between August 2017 and December 2018 at a frequency of
one image per month. The S2 images were downloaded from the Theia (French land data center)
website (https://www.theia-land.fr/). The Theia website provides ortho-rectified S2 images at level-2A
corrected for atmospheric effect. However, starting from April 2018, Theia website started providing a
monthly synthesis of cloud free images (level-3A). These images were used for the period between
April 2018 and December 2018.

3. Methodology

3.1. Overview

An overview of the methodology is presented in Figure 4. First, the average S1 SAR backscattering
coefficients (σ◦) were calculated at both plot scale (SIGPAC plots) and grid scale (10 km × 10 km).
The mean signal at grid scale will be used to discriminate between rainfall and irrigation events.
In general, we suppose that if the mean signal increases at the base of 10 km × 10 km then a rainfall
event had occurred. Next, the PCA and the WT were performed on the obtained S1 time series.
Moreover, the PCA was applied on the temporal series of the NDVI established at plot scale using the
S2 optical data. Finally, two classification approaches including the RF classifier and the CNN were
investigated. In each approach, three scenarios have been tested. The first scenario is based on the use
of SAR data only, the second scenario considers the use of optical data only, and the third scenario

https://scihub.copernicus.eu/dhus/#/home
https://earthexplorer.usgs.gov/
https://www.theia-land.fr/
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includes the combined use of both optical and SAR data. A detailed description of the methodology is
further elaborated in the following sub-sections.Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 25 
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3.2. σ◦ SAR Backscattering at Plot and Grid Scale

The detection of irrigation activities using SAR data at plot scale requires a good separation of
irrigation events from rainfall events. In fact, both events are considered as water supplements and
may have the same effect on the radar backscattering signal. In this case, additional information about
the rainfall, such as the daily precipitation records, is required to remove the ambiguity between
rainfall events and irrigation events. However, rainfall data is normally hard to be obtained freely and
accurately. Thus, another indicator is required to separate irrigation events from rainfall events.

Following a rainfall event, the soil becomes wet thus causing an increase of the SAR backscattering
signal due to the change in the dielectric constant of the soil [25,26,30,43]. If all the plots within a
limited spatial extent (5 km, 10 km, 20 km, etc.) show an increase in the SAR backscattering signal
between two consecutive radar acquisitions, then a rainfall event could have probably occurred. Thus,
an indicator of an existing rainfall event could be the increase of the SAR backscattering signal, between
two consecutive SAR dates, obtained within a grid scale (5 km, 10 km, 20 km, etc.). This increase of
the SAR backscattering signal at a grid cell is mainly due to increase of soil moisture due to a rainfall
event. In fact, the relation between rainfall events and soil moisture has been investigated in several
studies [44,45]. Most recently, Bazzi et al. [46] compared the soil moisture values estimated at plot
scale with six days revisit time from S1 data [28] with GPM (global precipitation mission) rainfall data
at 0.1◦ × 0.1◦ grid scale (~10 km × 10 km) [47]. The study site examined was the Occitanie region of
France (~72,000 km2). They showed that following a rainfall event occurring couple of days before the
radar acquisition, the average soil moisture of plots with low vegetation cover (NDVI < 0.4) in a grid
of ~10 km × 10 km increases. This increase in soil moisture estimation is directly related to the increase
of the radar backscattering signal at grid scale.

The increase of the SAR backscattering signal at plot scale accompanied with the stability or
decrease of the radar signal at grid scale could be attributed to an irrigation event that took place on the
plot. On the other hand, the increase of the SAR backscattering signal at the grid scale could be linked
to a rainfall event. Therefore, to remove the ambiguity between rainfall and possible irrigation events
a comparison is considered between the SAR backscattering coefficient at each plot and the SAR signal
obtained from bare soil plots with low vegetation cover at 10 km × 10 km grid cell containing this
plot. However, this comparison may not be useful for detecting irrigated plots if the irrigation occur
simultaneously for almost all plots existing within the same 10 km grid cell. In this case, an increase of
the SAR backscattering signal at grid scale would be due to irrigation that took place on all the plots
within the 10 km cell and not rainfall. It is also good to mention that cropland plots could encounter a
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change in the radar backscattering coefficient due to change in the surface roughness mainly at sowing
stage (smooth) or after harvesting (moderate to rough) [48]. Nevertheless, very rough conditions in an
agricultural plot are not permanent over the year and may exist only for couple of days.

The temporal series of the S1 SAR backscattering coefficients over each agricultural plot was
obtained by averaging the σ◦ values of all pixels within the plot at each available date and at both
VV and VH polarizations. The average of σ◦ pixels’ values reduces the speckle noise. For grid scale,
a 10 km × 10 km grid was first generated to cover the whole region. Then, the SAR backscattering
coefficients were averaged at each date for each grid cell (10 km × 10 km) using pixels within all the
agricultural plots having NDVI values less than 0.5 (NDVI values calculated using S2 images explained
later in Section 3.3). The threshold value of the NDVI was selected in order to consider σ◦ values for
bare soil plots and plots with a low vegetation cover. For each plot, the SAR σ◦ temporal series in both
VV and VH polarizations and σ◦ temporal series for its corresponding 10 km × 10 km grid cell in both
VV and VH polarizations were obtained.

In order to adjust σ◦ values at a common scale (between 0 and 1), the σ◦ time series at plot and
grid scale were normalized using the minimum-maximum normalization:

Y′ =
Y −Ymin

Ymax −Ymin
(1)

where Y′ is the normalized value, Y is the initial value of the time series (σ◦ at plot scale “σ0
plot” and at

grid scale “σ0
10km” at VV and VH polarizations), Ymin is the minimum value of the time series, and Ymax

is the maximum value of the time series.
The difference between the normalized σ◦ at plot scale and the normalized σ◦ at grid scale was

then computed for each plot at each date in both VV and VH polarizations:

∆σ0
PG = σ0

plot − σ
0
10km (2)

Finally, for each plot we obtain four temporal series including:

– Normalized σ◦ time series at plot scale in VV polarization (σ0
P,VV);

– Normalized σ◦ time series at plot scale in VH polarization (σ0
P,VH);

– Difference between the normalized σ◦ at plot and grid scales in VV polarization (∆σ0
PG,VV);

– Difference between the normalized σ◦ at plot and grid scales in VH polarization (∆σ0
PG,VH).

3.3. NDVI Temporal Series at Plot Scale

Using the S2 images, 17 NDVI maps were derived from the red and infrared bands at each month
between September 2017 and December 2018:

NDVI =
ρNIR− ρRED
ρNIR + ρRED

(3)

To obtain an NDVI value for each plot at each month, the NDVI pixels within each plot were
averaged. Finally, a temporal series of 17 NDVI values were obtained at plot scale.

3.4. Principal Component Analysis (PCA)

To reduce the volume of the data prior to the application of any classification method, a data
compression is necessary to be applied especially when a huge amount of data is involved in the
study. This data compression reduces the dimensionality of the classifier workspace and eliminates
redundancies and nonessential information in raw data that may lead to inaccurate classification.
Among data compression techniques, the principal component analysis is a statistical compression
technique which converts high dimensional data to low dimensional data by selecting the most
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important features capturing maximum information about the dataset [49,50]. Data compression by
means of PCA is accomplished by projecting each sample block of data along the directions of the
individual orthonormal eigenvectors of the covariance matrix of the data. The conventional approach for
the PC extraction involves the computation of the input data covariance matrix and then the application
of a diagonalization procedure to extract the eigenvalues and the corresponding eigenvectors.

For each plot, the PCA was applied on each one of the four SAR temporal series presented in
Section 3.2 (σ0

P,VV,σ0
P,VH, ∆σ0

PG,VV, ∆σ0
PG,VH). Since each temporal series consists of 82 different values,

we obtain 82 different PC values for each time series. Finally, each plot is defined by 328 different PC
values (82 × 4).

For optical images, the PCA was also applied to the NDVI temporal series of each plot. Since the
temporal series consists of 17 NDVI values, the PCA produces 17 different PC values for each plot.
The obtained 17 PC values are later used in a random forest classifier in order to classify irrigated plots.

3.5. Haar Wavelet Transformation

Wavelet transformation (WT) is used to decode a real periodic or non-periodic signal into a linear
combination of elementary functions. The principal of the wavelet transformation is based on the
decay of the signal on a set of sinusoidal functions. Several wavelet transformation functions exist
from which the ‘Haar’ wavelet transformation was chosen. The idea behind this wavelet analysis is to
decompose the signal of N = 2k points on a basis of discontinuous and orthogonal functions resulting
from the translation and dilations of functions called the father scaling function ϕ(t) and the mother
wavelet function ψ(t).

The real SAR time series obtained from the available S1 images consists of 82 values corresponding
to 82 different dates. Since 82 is not a perfect square of 2 (N = 2k), the number of values to be considered
in the wavelet decomposition should be limited to the 1st perfect square less than 82. Thus only 64
values were considered out of the 82 values in the time series. For 64 σ◦ values, the temporal series
could be decomposed on six levels where 26 = 64. However, the 64 values of the time series were able
to cover a period of one year (from 15 September 2017 until 28 September 2018) which is considered
sufficient to detect irrigation activities since most of the irrigation in the region mainly exist between
May and September of each year.

The ‘Haar’ wavelet transformation was computed at each plot for σ0
P,VV,σ0

P,VH, ∆σ0
PG,VV, ∆σ0

PG,VH.
Thus, each SAR temporal series of 64 values is transformed into 64 independent wavelet coefficients
corresponding to six levels of decomposition. Each plot attains finally 256 different wavelet coefficients
(64 coefficients × four time series).

3.6. Random Forest Classifier

Random forest (RF) is an ensemble of machine learning algorithms consisting of large number of
decision tree classifiers where each tree is constructed using a different subset of the training set. In its
architecture, the RF classifier fits a number of decision tree classifiers on various subsamples of the
dataset and uses averaging to improve the predictive accuracy and control over-fitting [51]. When
compared to other classical machine learning algorithms, the random forest classifier has demonstrated
its ability to yield high quality classification mapping with fast computation time [52,53]. The tree
depth and minimum sample size are the two most important parameters in the RF classifier.

Three different scenarios were tested using the RF classifier. First, the RF classifier was modeled
using SAR data only (one for PC values and another for the WT coefficients). Second, NDVI optical data
was tested in another RF classifier. Finally, we combined SAR and optical data in a third RF classifier.

Using SAR data only, the RF classifier was applied for the PC variables and the WT coefficients
separately in two different classifiers denoted later by PC-RF and WT-RF respectively. First, each RF
classifier (PC-RF and WT-RF) was trained using all variables of each method (328 values for the PC-RF
and 256 coefficients for the WT-RF). This step gives the importance of each variable which is a number
between 0 and 1 evaluating the contribution of the variable in the classification. The importance of the
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variables was then analyzed and a threshold value of the importance was determined to select the
significant variables only. This step allows reducing the number of variables for each classifier while
retaining good accuracy. Then, both RF classifiers were regenerated using only important variables for
each method. In all tested RF classifiers, the number of trees was set to 500. This number is fixed by
increasing the number of trees until the accuracy of the classification converges. The tree depth was
kept at its default value which is the square root of the number of variables available. In order to train
and validate the model on two independent datasets, we randomly split the database into 50% for
training and 50% for validation [23,54].

Using optical data only, the 17 PC values obtained from the NDVI data are implemented in
a random forest classifier later denoted by NDVI-RF. As done for SAR data, important variables
were then retained based on a threshold value of a variable’s importance, and the RF classifier was
reestablished using these variables only.

Finally, a RF classifier was modeled using both SAR and optical data. From the two SAR classifiers
(PC-RF and WT-RF) the PC-RF was chosen since its results show slightly better performance. Therefore,
the important variables obtained in the PC-RF classifier were combined with the important variables
obtained in the NDVI-RF in a new RF classifier.

3.7. Convolutional Neural Network

Convolutional Neural Networks are deep learning models that achieve state-of-the-art performance
on image related classification tasks [55] and, nowadays, they are getting increasing attention in the field
of remote sensing [35]. Here, one dimensional (1D) CNN model (CNN1D) was proposed to leverage
the convolutional characteristics of such networks to manage the time dimension of Sentinel-1 time
series data. In this scenario, a simple and effective CNN architecture that involves standard operation
was conceived: Convolution, nonlinear activation function, batch normalization and dropout. Each
convolutional layer is applied on the valid portion of the time series (without any kind of padding) and
it is associated with a convolution combined with a rectifier linear unit (ReLU) activation function [56]
to induce non-linearity. Successively, a batch normalization step [57] is employed to accelerate the
network convergence and reduce the internal covariate shift. Finally, Dropout [58] was adopted with a
drop rate equal to 0.4, i.e., 40% of the neurons are randomly deactivated at each propagation step.

Due to the fact that S1 time series and NDVI time series have different lengths, a two branch
architecture (one CNN1D for the S1 time series and one CNN1D for the NDVI time series) that performs
late fusion [59] of the input sources was proposed. The fusion is achieved with a simple concatenation
of the features extracted from each branch. The concatenated features are successively used by two
fully connected layers to produce the final classification. The fully connected layers are still associated
with a nonlinear activation function (ReLU) and both of them contain 512 neurons. The two-branch
network architecture is trained end-to-end. Figure 5 represents the architecture of the developed CNN.
Each layer of the network involves the following operations: Convolution with ReLU function (Conv),
batch normalization (BN), and dropout (DropOut): DropOut(BN(Conv(.))). For each convolution,
the number of filters used are 64, 128, or 256, the Kernel size is 7 × 1, 5 × 1, 3 × 1 or 1 × 1 and the stride
value is 1or 2. Once the features are combined (concatenation), two free fully connected layers are
employed to provide the final decision. The output layer (the last layer of the network) has as many
neurons as the number of classes to predict (2).

For all deep learning approaches, the Adam method [60] to learn the model parameters with a
learning rate equals to 1 × 10−4 was used. The training process is conducted over 1000 epochs with a
batch size of 256. Considering the train/test splits (50%, 50%) for the neural network strategies, the data
was split as 50%, 40% and 10% for training, validation and test set respectively [36]. The model that
achieves the best performances on the validation set will be successively blindly evaluated on the
test set.

Similar to what was proposed for the RF classifiers, two scenarios were first considered for the
deep learning approach one using only the S1 time series data and the other using only the NDVI
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time series. To do this, one of the two branches of the model is completely dropped and the one
corresponding to the specific data source is kept. Then, for the third scenario using SAR and optical
data, the full model with both branches was used.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 25 
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3.8. Accuracy Assesment

For each tested method, the assessment of the classifier results was expressed as a function
of the overall accuracy (OA), Kappa and the F-score by applying the generated model on the
validation dataset (50%). The precision, recall, and F-score were also calculated for each class
(irrigated/non-irrigated). In fact, several studies report the use of these indices to assess the accuracy
of the classification [20,31,37,61]. While OA can be easily interpreted as the percentage of correctly
classified plots to the total number of plots, Kappa and F-score can be used to assess the statistical
differences between classifications. The obtained accuracy indices were calculated for the obtained
results of each method as proposed by [62–64]. Table 2 summarizes the equations used to calculate
these accuracy indices.

Table 2. Accuracy indices calculated for each classifier. TP is the number of the irrigated plots truly
classified as irrigated, TN is the number non-irrigated plots truly classified as non-irrigated plots, FP is
the number of non-irrigated plots falsely classified as irrigated, FN is the number of irrigated plots
falsely classified as non-irrigated plots, N is the total number of plots, and EA is the expected accuracy.

Index Equation

OA TP+TN
TP+TN+FN+FP

EA
(TP+FP)×(TP+FN)+(FN+TN)×(FP+TN)

(TP+TN+FN+FP)2

Kappa OA−EA
1−EA

F1 score 2TP
2TP+FP+FN

Precision TP
TP+FP

Recall TP
TP+FN

4. Results

4.1. Comparison of σ◦ SAR Backscattering at Plot and Grid Scale

To remove the ambiguity between rainfall and irrigation events, this study proposes to compare
between the SAR signal obtained at plot scale and the SAR signal obtained at 10 km grid scale. Figure 6
represents an example of the temporal behavior of σ◦ values in VV polarization obtained at plot
and grid scale for a non-irrigated plot (Figure 6a) and an irrigated plot (Figure 6b). In both figures,
the green curve represents the σ◦ temporal evolution at the plot scale and the red curve represents
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the σ◦ temporal evolution calculated at the 10 km grid cell. Precipitation data obtained from a local
meteorological station is added to the figures to better understand the relation between grid scale σ◦

variations and the existence or absence of rainfall events. For the non-irrigated plot in Figure 6a, the σ◦

SAR values at plot scale and grid scale attain the same behavior for almost all the dates. Following
a rainfall event, both curves increase and then decrease following a dry period. The consistency
between both curves at both scales for the non-irrigated plot during the whole period indicates that
the plot did not receive any water supplement other than rainfall events. For the irrigated crop in
Figure 6b, the temporal behavior of the σ◦ SAR temporal series at plot and grid scales are coherent
between September 2017 and April 2018. Both σ◦ values for both scales increase following rainfall
event, and decrease with the absence of rainfall. However, between May 2018 and September 2018
(black dashed circle in Figure 6b) the irrigated plot shows a frequent change in σ◦ values accompanied
with the absence of rainfall events due to possible irrigation events occurring. On the other hand,
the 10 km grid cell shows low and constant values of σ◦ during the same period indicating very dry
soil conditions.
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Figure 6. Temporal evolution of SAR backscattering coefficient σ◦ in VV polarization at plot scale
(green curve) and 10 km grid scale (red curve) with precipitation data recorded at a local meteorological
station for (a) the non-irrigated plot, (b) the irrigated plot.

4.2. Classification Using Random Forest Classifier

4.2.1. PC-RF

As discussed in Section 3.6, the RF classification was first performed using the total number of PC
values obtained from the application of the PCA on the four different temporal series (328 variables).
Then, the significant PC variables that most contributed in the classification of the irrigated/non-irrigated
plots were determined using the increase in the mean square error of the predictions (%IncMSE > 1%).
The use of this threshold value allows reducing the number of predictive variables from 328 to 15
while keeping accurate classification. These variables contain the first, second, fourth and sixteenth PC
dimension of σ0

P,VV, the first third and sixteenth PC dimension of σ0
P,VH, the second and the fifth PC

dimension of ∆σ0
PG,VV, and the first and second dimension of ∆σ0

PG,VH. Figure 7 shows the scatter plot
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of 2000 irrigated and 2000 non-irrigated plots (randomly selected) with different combinations of the
obtained important PC values. It clearly shows that irrigated and non-irrigated plots can be separated
using several PC combinations as they distinctly appear in two different point clouds. The RF classifier
is thus capable of obtaining good results when introducing these variables for classifying irrigated and
non-irrigated plots.
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Figure 7. Scatter plot of a random sample of 2000 irrigated and 2000 non-irrigated plots using different
combinations of important principal component (PC) variables. Irrigated plots are presented in blue
and non-irrigated plots represented in red. (a) PC1 of σ0

P,VV with PC1 of σ0
P,VH, (b) PC16 of σ0

P,VV with

PC1 of σ0
P,VH, (c) PC1 of σ0

P,VH with PC16 of σ0
P,VH, (d) PC1 of σ0

P,VH with PC2 of ∆σ0
PG,VV, (e) PC16

of σ0
P,VH with PC2 of ∆σ0

PG,VH and (f) PC5 of ∆σ0
PG,VV with PC2 of ∆σ0

PG,VV. σ0
PG,VV = σ0

P,VV − σ0
G,VV

and σ0
PG,VH = σ0

P,VH − σ0
P,VH. “P” means plot scale and “G” means grid scale.

Table 3 summarizes the accuracy obtained when applying the trained RF classifier on the 50%
validation data using all the variables and the selected important variables. The validation of the RF
classifier using the 328 PC values generally shows very high accuracy. In fact, the overall accuracy
reaches 91.2% while the kappa coefficient reaches 0.79 and the F-score reaches 0.91. The F-score of the
irrigated class is 0.86 while that of the non-irrigated class is 0.94. The reestablishment of the RF classifier
using the 15 important PC variables produced similar accuracy compared to the RF classifier using
the total number of variables. In general, both classifiers present nearly the same results. However,
the overall accuracy slightly decreased from 91.2% to 90.7% but yet keeping an accurate classification.
The Kappa coefficient and F-score remained unchanged for both approaches.
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Table 3. The values of the overall accuracy, Kappa, F-score, precision, and recall obtained from the RF
classifier using the 328 SAR PC variables and 15 important SAR PC variables.

Method Class Precision Recall F-Score

PC-RF 328 Variables

Irrigated 0.95 0.79 0.86
Non-Irrigated 0.90 0.98 0.94

OA 91.2%
Kappa 0.79
F-score 0.91

PC-RF 15 Important Variables

Irrigated 0.92 0.81 0.86
Non-Irrigated 0.90 0.96 0.93

OA 90.7%
Kappa 0.79
F-score 0.91

4.2.2. WT-RF

The linear combination of all the levels of the WT allows the reconstruction of the real SAR signal
using the obtained 64 wavelet coefficients. Figure 8 presents an example of the reconstruction of
the σ◦ SAR temporal series of an alfalfa irrigated plot using the linear combination of consecutive
decomposing levels (functions) of the wavelet transformation. The first father scale function consists
of two coefficients (level 1). The mother scale functions of levels two, three, four, five and six consist
of two, four, eight, 16, and 32 coefficients respectively. The linear combination of the father level
with additive mother levels allows the reconstruction of the real SAR signal (Figure 8). The obtained
64 wavelet coefficients are used in a random forest classifier in order to classify irrigated plots.
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(d) 16 coefficients, (e) 32 coefficients, and (f) 64 coefficients.



Remote Sens. 2019, 11, 1836 15 of 25

The same process applied for the RF classification using the PC values is also performed using
the Haar wavelet coefficients. The RF classifier was first trained using the 256 values (discussed in
Section 3.5) of the wavelet coefficients. When validating the obtained classifier, the overall accuracy of
the classification reached 91.4% with a 0.81 kappa coefficient and a 0.91 F-score. The F-score of the
irrigated class (0.87) is slightly lower than that of the non-irrigated class (0.94) (Table 4). The significant
wavelet coefficients that most contributed in the classification were also determined using the threshold
value on the increase in the mean square error of the predictions (%IncRMSE >1%). This also reduced
the number of variables from 256 coefficients to 18. Figure 9 similarly shows the scatter plot of 2000
irrigated and 2000 non-irrigated plots (randomly selected) with different combinations of the obtained
important WT coefficients. As shown with the PC values, Figure 9 also clearly shows that irrigated
and non-irrigated plots can be separated using the WT coefficients as they distinctly appear in two
different point clouds.

Table 4. The values of the overall accuracy, Kappa, F-score, precision, and recall obtained from the RF
classifier using the 256 wavelet coefficients and the 16 important wavelet coefficients.

Method Class Precision Recall F-Score

WT-RF 256 Variables

Irrigated 0.94 0.81 0.87
Non-Irrigated 0.90 0.97 0.94

OA 91.4%
Kappa 0.81
F-score 0.91

WT-RF 18 Important Variables

Irrigated 0.89 0.78 0.83
Non-Irrigated 0.89 0.95 0.92

OA 89.1%
Kappa 0.75
F-score 0.89

Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 25 

 

the scatter plot of 2000 irrigated and 2000 non-irrigated plots (randomly selected) with different 
combinations of the obtained important WT coefficients. As shown with the PC values, Figure 9 also 
clearly shows that irrigated and non-irrigated plots can be separated using the WT coefficients as 
they distinctly appear in two different point clouds.  

 
Figure 9. Scatter plot of a random sample of 2000 irrigated and 2000 non-irrigated plots using 
different combinations of important wavelet transformation (WT) coefficients. Irrigated plots are 
presented in blue and non-irrigated plots represented in red (a) WC61 of σ,ୌ  with WC62 of σ,ୌ , 
(b) WC62 of σ,ୌ  with WC53 of ∆σୋ,ୌ , (c) WC62 of σ,ୌ  with WC53 of ∆σୋ,ୌ . σୋ,  = σ,  
− σୋ,  and σୋ,ୌ  = σ,ୌ  − σ,ୌ . “P” means plot scale and “G” means grid scale and WC means 
wavelet coefficient. 

The validation of the RF classifier trained using important data only (18 variables) produces 
slightly lower accuracy than that using the full dataset (Table 4). The overall accuracy decreased by 
1.3% only. The F-score of the irrigated class decreased from 0.87 to 0.83 while that of the 
non-irrigated class decreased from 0.94 to 0.92. The kappa value also decreased from 0.81 to 0.75. 
Although the accuracies reported using the 18 important WT coefficients show lower values 
compared to those obtained using the whole dataset, the proposed RF classifier keeps a very good 
performance. 

Table 4. The values of the overall accuracy, Kappa, F-score, precision, and recall obtained from the 
RF classifier using the 256 wavelet coefficients and the 16 important wavelet coefficients. 

Method Class Precision Recall F-Score 

WT-RF 256 Variables 

Irrigated 0.94 0.81 0.87 
Non-Irrigated 0.90 0.97 0.94 

OA 91.4% 
Kappa 0.81 
F-score 0.91 

WT-RF 18 Important Variables 

Irrigated 0.89 0.78 0.83 
Non-Irrigated 0.89 0.95 0.92 

OA 89.1% 
Kappa 0.75 
F-score 0.89 

4.2.3. NDVI-RF 

The RF using NDVI data was first developed with the 17 PC values obtained from the 
application of the PCA on the NDVI temporal series. The accuracy obtained when validating the 
model is reported in Table 5. Then, the analysis of the variables’ importance allows us to fix a 
threshold value of 4% for the increase in mean square error. This threshold reduced the number of 
variables from 17 PC values to seven. The important PC variables obtained includes the first five, the 

Figure 9. Scatter plot of a random sample of 2000 irrigated and 2000 non-irrigated plots using
different combinations of important wavelet transformation (WT) coefficients. Irrigated plots are
presented in blue and non-irrigated plots represented in red (a) WC61 of σ0

P,VH with WC62 of σ0
P,VH,

(b) WC62 of σ0
P,VH with WC53 of ∆σ0

PG,VH, (c) WC62 of σ0
P,VH with WC53 of ∆σ0

PG,VH. σ0
PG,VV = σ0

P,VV
− σ0

G,VV and σ0
PG,VH = σ0

P,VH − σ0
P,VH. “P” means plot scale and “G” means grid scale and WC means

wavelet coefficient.

The validation of the RF classifier trained using important data only (18 variables) produces
slightly lower accuracy than that using the full dataset (Table 4). The overall accuracy decreased by
1.3% only. The F-score of the irrigated class decreased from 0.87 to 0.83 while that of the non-irrigated
class decreased from 0.94 to 0.92. The kappa value also decreased from 0.81 to 0.75. Although the
accuracies reported using the 18 important WT coefficients show lower values compared to those
obtained using the whole dataset, the proposed RF classifier keeps a very good performance.
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4.2.3. NDVI-RF

The RF using NDVI data was first developed with the 17 PC values obtained from the application
of the PCA on the NDVI temporal series. The accuracy obtained when validating the model is reported
in Table 5. Then, the analysis of the variables’ importance allows us to fix a threshold value of 4% for
the increase in mean square error. This threshold reduced the number of variables from 17 PC values to
seven. The important PC variables obtained includes the first five, the eighth and 11th PC dimensions.
The regeneration of the RF classifier using the seven important PC dimensions of NDVI produced
approximately similar accuracy to that using all the PC variables. The overall accuracy decreased by
only 1% while the kappa and F-score decreased by 2% and 3% respectively.

Table 5. The values of the overall accuracy, Kappa, F-score, precision, and recall obtained from the RF
classifier using the 17 normalized differential vegetation index (NDVI)-PC and the seven important
NDVI PC values.

Method Class Precision Recall F-Score

NDVI-RF 17 Variables

Irrigated 0.94 0.78 0.85
Non-Irrigated 0.89 0.97 0.93

OA 90.5%
Kappa 0.78
F-score 0.91

NDVI-RF 7 Important Variables

Irrigated 0.92 0.76 0.84
Non-Irrigated 0.88 0.96 0.92

OA 89.5%
Kappa 0.76
F-score 0.88

4.2.4. RF Using Combined Optical and SAR Data

The RF classifier using the 15 important PC variables shows slightly higher accuracy than that
using the WT coefficients. For this reason, the important variables of the PC-RF were combined with
the important variables of the NDVI-RF in a new RF classifier. The accuracies obtained are presented
in Table 6. In general, a slight increase in the overall accuracy is obtained when adding the NDVI data
to the SAR data using the PC values. The overall accuracy increased by 1.6% while kappa increases by
3%. The F-score of the classification remains unchanged.

Table 6. The values of the overall accuracy, Kappa, F-score, precision, and recall obtained from the RF
classifier using 15 important SAR PC variables and the seven important NDVI PC variables.

Method Class Precision Recall F-Score

15 variable SAR PC-RF + 7 variable
NDVI-RF

Irrigated 0.95 0.82 0.88
Non-Irrigated 0.91 0.98 0.94

OA 92.3%
Kappa 0.82
F-score 0.91

4.3. Classification Using Convolutional Neural Network

4.3.1. CNN on SAR Temporal Series

As discussed in Section 3.7, the CNN was applied on the SAR temporal series of
σ0

P,VV,σ0
P,VH, ∆σ0

PG,VV, ∆σ0
PG,VH using the SAR branch of the developed CNN1D model. The data was

divided into 50% for training, 40% for validation and 10% for testing. Table 7 summarizes the accuracy
obtained when applying the CNN method on the SAR temporal series with the corresponding standard
deviation of 10 different iterations. The CNN approach reports very high accuracy where the overall
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accuracy reaches 94.1%. The kappa value of the classification reaches 0.87 and the F-score of is 0.94.
The F-score of the irrigated class reaches 0.91 which is less than that of the non-irrigated class (0.96).

Table 7. The values of the overall accuracy, Kappa, F-score, precision, and recall obtained from the
CNN method on SAR data.

Method Class Precision Recall F-Score

CNN on SAR Data

Irrigated 0.93 0.89 0.91
Non-Irrigated 0.95 0.96 0.96

OA 94.1% ± 0.06
Kappa 0.87 ± 0.0014
F-score 0.94 ± 0.0006

4.3.2. CNN Using NDVI Temporal Series

Using the optical branch of the developed CNN, the approach was also applied on the NDVI
temporal series composed of 17 different NDVI values. The data was also divided into 50% for training,
40% for validation and 10% for testing. The accuracy obtained from the 10 iterations is reported
in Table 8. The overall accuracy reaches 91.6% while the kappa and F-score values reach 0.81 and
0.91 respectively. The irrigated class also shows a lower F-score value (0.87) than the non-irrigated
class (0.94).

Table 8. The values of the overall accuracy, Kappa, F-score, precision, and recall obtained from the
CNN method on NDVI data.

Method Class Precision Recall F-Score

CNN on Optical Data

Irrigated 0.93 0.81 0.87
Non-Irrigated 0.91 0.97 0.94

OA 91.6% ± 0.06
Kappa 0.81 ± 0.0016
F-score 0.91 ± 0.0006

4.3.3. CNN Using Combined SAR and Optical Data

The application of the two branches of the CNN model (SAR and optical branches) discussed
in Section 3.7 shows that the classification model using both datasets did not considerably increase
the accuracy of the classification. The overall accuracy of the combined model reaches 94.5% ± 0.05.
The kappa coefficient and the F-score increased by 1% only. The accuracy of the irrigated class has
increased with 1% while that of the non-irrigated class remained stable (Table 9).

Table 9. The values of the overall accuracy, Kappa, F-score, precision, and recall obtained from the
CNN method on combined SAR and optical data.

Method Class Precision Recall F-Score

CNN on Combined SAR and
Optical Data

Irrigated 0.94 0.90 0.92
Non-Irrigated 0.95 0.97 0.96

OA 94.5% ± 0.05
Kappa 0.88 ± 0.0016
F-score 0.95 ± 0.0005

4.4. Irrigation Mapping

Using the SAR based classification, three different maps were produced which are the WT-RF
based map (Figure 10a), the PC-RF based map (Figure 10b) and the CNN based map (Figure 10c). In the
three maps, the blue and the red colors represent the irrigated and non-irrigated plots, respectively.



Remote Sens. 2019, 11, 1836 18 of 25

The irrigated areas in the classified maps are centered mainly in the western part of the study site.
The irrigated part present in the south is the Ebro Delta typically used for rice cultivation which is
inundated from April to November.Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 25 
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5. Discussion

In this study, irrigated areas were mapped over a study site in Catalonia, Spain using Sentinel-1
(S1) SAR time series and optical NDVI time series by applying two classification approaches: Random
forest (RF) and a convolutional neural network (CNN). The potential of each data type was investigated,
and the combined use of both data types was also presented for both classification approaches.

5.1. Comparison of σ◦ SAR Backscattering at Plot and Grid Scale

Using S1 data only, the analysis of the σ◦ SAR temporal series showed that an irrigated plot
encounters a frequent change of the σ◦ SAR backscattering coefficient due to the artificial application
of water. This change in the σ◦ should be differentiated from the change in σ◦ due to the rainfall events.
Thus, the ambiguity between rainfall events and irrigation event was the most challenging point using
S1 data. To overcome this uncertainty, the σ◦ SAR backscattering coefficient at plot scale was compared
to that obtained at grid scale (10 km × 10 km). The assumption says that if the mean S1 signal within
10 km × 10 km grid cell, obtained from the bare soil plots with low vegetation cover, increases between
two consecutive dates then a rainfall event took place. On the other hand, if σ◦ value increases at
plot scale with stability or decrease of σ◦ SAR backscattering coefficient obtained at grid scale then an
irrigation event most probably took place. This dependency was clearly shown in Figure 6 for the
irrigated and non-irrigated plots. Therefore, the difference between σ◦ SAR at plot and grid scales
helps remove the ambiguity between rainfall and irrigation events.

5.2. Random Forest with PC and WT Transformation

A transformation of the S1 data by the means of principal component analysis and wavelet
transformation was applied to the four temporal series of each plot (σ0

P,VV,σ0
P,VH, ∆σ0

PG,VV, ∆σ0
PG,VH).

This data transformation of the S1 data showed that using either the PC dimensions or the WT
coefficients, the irrigated/non-irrigated plots were classified with high accuracy using a classical
random forest classifier. As a classical machine learning method, the RF classifier remains a powerful
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tool. It is good to mention that adding ∆σ0
PG,VV and ∆σ0

PG,VH remarkably improved our classification
accuracy where the overall accuracy increased by more than 15%. This enhancement confirms the
relevance of our assumption of using conjointly σ0

P to σ0
PG to remove the rainfall-irrigation ambiguity

for better detection of irrigation. However, in the performed RF classification, the majority of the
irrigated plots misclassified as non-irrigated plots belong to winter cereals agricultural including wheat,
barley and oat. To fully understand whether those plots were actually irrigated or not, the NDVI
temporal behavior of these plots was analyzed and compared to similar non-irrigated agricultures.
The cycle and maximum values of NDVI did not significantly differ from similar non-irrigated
agricultures. Thus, some plots being in an irrigated district could be registered as irrigated but actually
the irrigation did not take place. Moreover, if some winter cereal plots (which are usually not irrigated)
were exceptionally irrigated and thus misclassified, then this may be due to the fact that these plots
are irrigated only very few times during the growing cycle, and these few irrigation activities have
occurred at a date far from the date of S1 acquisition. In this case, the soil moisture of a given plot
irrigated five or six days before the S1 acquisition date will certainly decrease to reach a level equivalent
to that attained before the irrigation. This was showed by El Hajj et al. [30] who have demonstrated
that the radar signal could be used to identify three-day-old irrigated plots, but it could be difficult
to detect irrigation event if the irrigation occurs far away from the SAR acquisition time (more than
four days).

Moreover, the assessment of the variable importance of the PC dimensions and the WT coefficients
allowed us to significantly reduce the number of variables in the RF approach. From the results
obtained, only 15 out of 328 variables were conserved in the PC-RF and 18 out of 256 variables were
kept in the WT-RF. Using the conserved important variables in both methods, the accuracy slightly
decreased compared to that obtained using all variables (in PC-RF the OA decreased by 0.5% while in
WT the OA decreased by 2.3%). This reduction of variables’ numbers allows reducing considerably the
training time of the model.

5.3. CNN Approach

Another approach tested was the convolutional neural network (CNN). The CNN applied directly
to the four S1 derived temporal series showed a remarkable capability to classify irrigated/non-irrigated
areas. It is clearly observed that the CNN-based classification approach has a better performance
than the classical RF machine learning using either the PC dimensions or WT coefficients. The CNN
approach shows higher overall accuracy (94.1%) than the PC-RF (90.7%) and the WT-RF (89.1%).
In terms of the F-score and the Kappa coefficient, the CNN is also superior to the RF classifier. The gain
in the performance offered by the CNN is clearly visible on the irrigated class where the precision, recall
and F-score are higher for CNN than that for the RF classifier. For the non-irrigated class, the obtained
accuracies by the two approaches are quite similar. Thus, the increase of the overall accuracy when
using the CNN approach is mainly caused by better detection of irrigated plots.

5.4. Inter-Comparison and Quality Assessment

An inter-comparison was performed between the maps obtained from the PC and that from
the CNN in the three different scenarios: SAR only, optical only and combined SAR and optical.
Figure 11 summarizes the accuracy indices (OA, Kappa, and F-score) obtained for the RF and CNN
classifiers in the three different scenarios. The comparison between different classifications was first
evaluated through the obtained accuracy indices. Moreover, to properly assess the performance
of the tested machine learning algorithms (CNN and RF), the significance of the overall accuracy
between classifications was calculated using the McNemar statistical test [65,66]. Several studies have
reported the use of the McNemar test to compare between two classification approaches [54,67,68].
In this test, a null hypothesis that there is no significant difference between OA values of the two
compared classifications is proposed. The McNemar test will reject this null hypothesis if the calculated
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probability (p-value) is less than 0.05 (i.e., considering 95% confidence level). In this case, the two
classification schemes show a statistically significant difference.Remote Sens. 2019, 11, x FOR PEER REVIEW 20 of 25 

 

 

Figure 11. Comparison of accuracy indices between RF and CNN classifications in three different 
scenarios: (a) Using the S1 SAR data, (b) using S2 optical data and (c) using S1 SAR and S2 optical 
data. 

Using SAR data only, the cross-comparison showed a 92% of agreement between both maps. 
This means that 92.2% of the plots were commonly correctly classified using both models. Among 
this percentage, 95.5% of the plots being non-irrigated were classified as non-irrigated plots while 
88.0% of the plots registered as irrigated are correctly classified as irrigated in both models. The 
CNN model was able to correctly classify 4317 plots (forming 6.4% of the total number of irrigated 
plots) as irrigated which were not classified using the RF approach. Among these plots, 43% are 
irrigated cereals plots including wheat, barley and oat. The CNN thus was able to improve the 
accuracy for irrigated cereals compared to the RF classifier. This improvement was clearly visible in 
terms of the precision, recall and F-score of the irrigated class in the CNN compared to that in the 
RF-classifier. Moreover, the McNemar test reveals that the two classification approaches using SAR 
data have a significant statistical difference with p-value less than 0.05. 

The use of the NDVI temporal series only shows approximately similar performance between 
the RF classifier and the CNN in terms of overall accuracy (89.5% and 91.6% for RF and CNN 
respectively). However, the inter-comparison between the classifications’ results using NDVI time 
series shows that 90.2% of the plots were commonly correctly classified using both models. Among 
this percentage, 96.0% of the non-irrigated plots were correctly classified in both maps while 80.0% 
of the irrigated plots were commonly classified as irrigated plots. In terms of p-value obtained from 
the McNemar test, the results also show that the two approaches have significant statistical 
difference with a p-value < 0.05. Finally, it is good to mention that, compared to the use of S1 data, 
the use of the NDVI data performed well in classifying irrigated areas in both approaches. As 
irrigation in the region usually takes place between May and September, the probability of a plot 
being irrigated increases when a growing cycle exists in summer season. 

The combined use of optical and radar data in the RF classifier has slightly increased the 
classification results compared to that obtained using SAR data only while the results did not 
significantly change in the CNN approach. The inter-comparison between the results here shows 
that 94.0% of the plots were commonly correctly classified including 97.1% of the non-irrigated plots 
and 87.8% of the irrigated plots. The p-value obtained from the McNemar test also indicates that the 
classification approaches have significant statistical difference. 

Moreover, to properly assess the quality of the obtained results, the proposed method was 
compared with the method recently adopted by Gao et al. [22]. In their study, they mapped irrigated 
areas in a region (20 km × 20 km) located in Urgell Catalonia, Spain (contained within our study site) 
using the SIGPAC data and the S1 multi-temporal SAR data. To map irrigated/non-irrigated plots, 
Gao et al. [22] used the statistical metrics including the mean, variance and correlation length of S1 
SAR time series obtained at each plot in VV and VH polarization. They obtained an overall accuracy 
of 81.1 % using the SVM (support vector machine) and similar accuracy using the RF classifier. For 
the study site examined in this study, the approach proposed by Gao et al. [22] was tested using the 
RF classifier. For each plot, the same metrics were calculated: The mean of the SAR time series, the 
variance and the correlation length of the SAR signal in both VV and VH polarizations. Results 

Figure 11. Comparison of accuracy indices between RF and CNN classifications in three different
scenarios: (a) Using the S1 SAR data, (b) using S2 optical data and (c) using S1 SAR and S2 optical data.

Using SAR data only, the cross-comparison showed a 92% of agreement between both maps.
This means that 92.2% of the plots were commonly correctly classified using both models. Among
this percentage, 95.5% of the plots being non-irrigated were classified as non-irrigated plots while
88.0% of the plots registered as irrigated are correctly classified as irrigated in both models. The CNN
model was able to correctly classify 4317 plots (forming 6.4% of the total number of irrigated plots)
as irrigated which were not classified using the RF approach. Among these plots, 43% are irrigated
cereals plots including wheat, barley and oat. The CNN thus was able to improve the accuracy for
irrigated cereals compared to the RF classifier. This improvement was clearly visible in terms of the
precision, recall and F-score of the irrigated class in the CNN compared to that in the RF-classifier.
Moreover, the McNemar test reveals that the two classification approaches using SAR data have a
significant statistical difference with p-value less than 0.05.

The use of the NDVI temporal series only shows approximately similar performance between the
RF classifier and the CNN in terms of overall accuracy (89.5% and 91.6% for RF and CNN respectively).
However, the inter-comparison between the classifications’ results using NDVI time series shows that
90.2% of the plots were commonly correctly classified using both models. Among this percentage,
96.0% of the non-irrigated plots were correctly classified in both maps while 80.0% of the irrigated
plots were commonly classified as irrigated plots. In terms of p-value obtained from the McNemar
test, the results also show that the two approaches have significant statistical difference with a p-value
< 0.05. Finally, it is good to mention that, compared to the use of S1 data, the use of the NDVI data
performed well in classifying irrigated areas in both approaches. As irrigation in the region usually
takes place between May and September, the probability of a plot being irrigated increases when a
growing cycle exists in summer season.

The combined use of optical and radar data in the RF classifier has slightly increased the
classification results compared to that obtained using SAR data only while the results did not
significantly change in the CNN approach. The inter-comparison between the results here shows
that 94.0% of the plots were commonly correctly classified including 97.1% of the non-irrigated plots
and 87.8% of the irrigated plots. The p-value obtained from the McNemar test also indicates that the
classification approaches have significant statistical difference.

Moreover, to properly assess the quality of the obtained results, the proposed method was
compared with the method recently adopted by Gao et al. [22]. In their study, they mapped irrigated
areas in a region (20 km × 20 km) located in Urgell Catalonia, Spain (contained within our study site)
using the SIGPAC data and the S1 multi-temporal SAR data. To map irrigated/non-irrigated plots, Gao
et al. [22] used the statistical metrics including the mean, variance and correlation length of S1 SAR
time series obtained at each plot in VV and VH polarization. They obtained an overall accuracy of 81.1
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% using the SVM (support vector machine) and similar accuracy using the RF classifier. For the study
site examined in this study, the approach proposed by Gao et al. [22] was tested using the RF classifier.
For each plot, the same metrics were calculated: The mean of the SAR time series, the variance and the
correlation length of the SAR signal in both VV and VH polarizations. Results showed low accuracy
compared to our proposed RF classifiers. The overall accuracy obtained was 80.1% with accuracy of
irrigated class reaching 60.8% only while that of the non-irrigated class reaching 90.3%. Moreover,
the addition of these metrics (mean, variance and correlation length) to our RF classifier of PC variables
or WT coefficients did not enhance the accuracy of the classification obtained.

5.5. Strength, Limitations and Future Directions

The S1 satellite with the 6 days revisit time allows more precise temporal follow-up of agricultural
crops. S1 is now the only operational satellite system providing dense time series in free and open
access mode with global coverage. Thus, any method based on the use of S1 time series could interest
a wide range of end users. Moreover, the advantage of using S1 temporal series rather than the optical
time series is that radar sensors are not limited to good weather conditions. The cloud cover, that may
be present in the optical images of certain geographical regions, could be a drawback when working
with optical satellites. Even though the combined use of optical and radar data did not highly enhance
the classification results, the synergic use of microwave and optical data could increase the possibility
of transferring the model across different regions.

The six days temporal resolution of the S1 satellite allows the detection of irrigation events
especially when the irrigation frequency is high. As shown by El Hajj et al. [30], irrigation could be
still detected even if the irrigation took place three days before the radar acquisition. On the other
hand, the detection of irrigation becomes difficult if the irrigation event takes place five or six days
before the SAR acquisition. However, the effect of irrigation on the radar backscattering can change
depending on the irrigation technique used (inundation or sprinkler) and the frequency of irrigation
(weekly or daily).

Although the RF classifier was less accurate than the deep learning model, the RF classifier
remains quite precise and competitive. With the dense time series now available, the comparison
between classical and advanced machine learning techniques allows us to study the importance of
both techniques to intelligently exploit the temporal behavior of SAR signal in the multi-temporal
remote sensing data.

The proposed model was trained on Catalonia region of Spain which is a Mediterranean climatic
region. Other regions may have different climatic and soil conditions which could lead to unsatisfactory
results when applying the trained model. Hence, for future studies, including other climatic regions in
the training process, we would make the proposed model more generic. However, with an accuracy
exceeding 90%, the trained model could be applied across regions with close climatic conditions while
maintaining good classification results. Currently, studies are concentrating on region adaptation and
transfer learning which allow the use of one model on several regions. Therefore, future work should
concentrate on adapting the proposed model to use it over other study sites. Moreover, future work
should also concentrate on building effective unsupervised approaches that do not require any training
procedure. In this case, the transferability of the approach would be easier.

6. Conclusions

In this paper, a new methodology for mapping irrigated areas using Sentinel-1 time series was
introduced. First, a temporal series of SAR backscattering coefficients from the S1 data was obtained
at plot scale in VV and VH polarization. To remove the ambiguity between rainfall and irrigation
events, the S1 signal at plot scale was compared to that obtained at grid scale (10 km × 10 km). Then,
two different transformations including the PCA and the WT were applied to both the S1 temporal
series at plot scale

(
σ0

P

)
and the temporal series of the difference between plot and grid

(
∆σ0

PG

)
. Using

the PC dimensions and the WT coefficients, irrigated areas were classified in two different random
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forest classifiers. The results show a good overall accuracy (OA) for the RF classifier using the PC
values (90.7%) and the WT coefficients (89.1%). Moreover, the PC transformation was applied on the
NDVI time series obtained from Sentinel-2 optical images. Results showed that the RF classifier using
optical data (NDVI) performs well with OA = 89.5%. The combined use of optical and SAR data (in PC
values) slightly improved the classification accuracy (OA = 92.3%).

Another approach tested in this study was the one-dimensional convolutional neural network
(CNN). The convolutional neural network was applied to the S1 time series obtained at plot scale σ0

P and

difference between plot and grid scales
(
∆σ0

PG

)
. The results of the validation of CNN approach showed

very high accuracy (OAm = 94.1%) compared to that obtained using the RF classifiers. The accuracy of
the irrigated class increased when using the CNN approach thus allowing better detection of irrigated
plots. The use of NDVI data only in a CNN classifier produced lower overall accuracy (91.5%) than
that obtained using S1 data only. However, the combined use of both data types in the CNN did not
significantly improve the accuracy.

The proposed approach should be applied to other agricultural areas to better assess its relevance
and possible usage in operational mode. Given the very good accuracy obtained and the fact that
S1 data is free and open access, the use of Sentinel-1 data is relevant. Even though the optical data
presents good results, its use could be problematic in certain geographical areas due to the presence
of cloud cover. However, machine learning algorithms including classical or advanced approaches
still require training data to obtain good classification results. Thus, future work should also focus on
building effective approaches to detect irrigation using less training data.
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