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Abstract: This paper proposes to use a correlator-level global positioning system (GPS)
line-of-sight/multipath/non-line-of-sight (LOS/MP/NLOS) signal reception classifier to improve
positioning performance in an urban environment. Conventional LOS/MP/NLOS classifiers, referred
to as national marine electronics association (NMEA)-level and receiver independent exchange format
(RINEX)-level classifiers, are usually performed using attributes extracted from basic observables
or measurements such as received signal strength, satellite elevation angle, code pseudorange, etc.
The NMEA/RINEX-level classification rate is limited because the complex signal propagation in urban
environment is not fully manifested in these end attributes. In this paper, LOS/MP/NLOS features
were extracted at the baseband signal processing stage. Multicorrelator is implemented in a GPS
software-defined receiver (SDR) and exploited to generate features from the autocorrelation function
(ACF). A robust LOS/MP/NLOS classifier using a supervised machine learning algorithm, support
vector machine (SVM), is then trained. It is also proposed that the Skymask and code pseudorange
double difference observable are used to label the real signal type. Raw GPS intermediate frequency
data were collected in urban areas in Hong Kong and were postprocessed using a self-developed
SDR, which can easily output correlator-level LOS/MP/NLOS features. The SDR measurements
were saved in the file with the format of NMEA and RINEX. A fair comparison among NMEA-,
RINEX-, and correlator-level classifiers was then carried out on a common ground. Results show that
the correlator-level classifier improves the metric of F1 score by about 25% over the conventional
NMEA- and RINEX-level classifiers for testing data collected at different places to that of training data.
In addition to this finding, correlator-level classifier is found to be more feasible in practical applications
due to its less dependency on surrounding scenarios compared with the NMEA/RINEX-level classifiers.

Keywords: global positioning system (GPS); software-defined receiver (SDR); signal classification;
non-line-of-sight (NLOS); multipath; support vector machine (SVM); urban environment

1. Introduction

In recent years, there has been significant research conducted to improve global navigation satellite
system (GNSS) performance in urban environments [1–4]. One of the most noticeable techniques is
three-dimensional mapping-aided (3DMA) GNSS positioning, which uses three-dimensional (3D)
mapping data to improve positioning accuracy in dense urban areas. The 3DMA technique can
be broadly divided into two groups, i.e., ranging-based 3DMA positioning and shadow matching.
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The former, like the conventional GNSS positioning algorithm, still makes use of pseudorange
measurements, meanwhile it is aided with the information of satellite visibility or additional path
delay of reflected signals obtained using 3D city models. For shadow matching, the basic idea is to
compare the measured signal availability and strength with predictions obtained using 3D city models
over a range of candidate positions. For detailed implementation of 3DMA GNSS positioning, readers
are referred to [5–10]. For the 3DMA GNSS positioning, the accuracy of line-of-sight/non-line-of-sight
(LOS/NLOS) signal reception classification directly affects its performance [5]. In addition to the 3DMA
GNSS positioning, conventional ranging-based least-squares GNSS positioning can also benefit from
an accurate signal classification by excluding or down-weighting the identified multipath (MP)/NLOS
measurements [11].

Various approaches to classifying LOS/NLOS signal have been proposed. As mentioned above,
the 3D city model can predict the satellite visibility, but with a prerequisite of accurate user location.
Another straightforward method is the usage of additional hardware sensors, e.g., dual-polarization
antenna [12], array antenna [13], panoramic sky-pointing camera [14,15], 3D light detection and
ranging (LiDAR) [16], inertial navigation system (INS) [17], etc. The effectiveness of these additional
aiding-based techniques has been verified. However, the issue of large physical size and high cost
needs to be addressed before being applied to low-cost receivers, which occupy a large portion of
mass-market GNSS capable devices.

Machine learning algorithms with nonlinear kernel functions can classify nonlinearly separable
data instances by projecting the data features into a higher-dimensional space and maximizing the
geometric distance between the decision boundary and the nearest data on each side of the decision
boundary [18]. It has been used extensively in classification applications, e.g., the GNSS receiver
context and channel classification [18,19] and GNSS signal type classification [20]. This method requires
no additional aiding, making it more feasible in practice. The key element of the machine learning
technique is the selection of features for recognition. Conventional machine learning-based GNSS signal
classifier usually uses features extracted from the basic observables and measurements, like signal
strength or carrier-to-noise-ratio (C/N0), satellite elevation angle, code pseudorange measurement,
etc. In this paper, these kinds of features were referred to as national marine electronics association
(NMEA)-level or receiver independent exchange format (RINEX)-level features as they can be obtained
from the commonly used NMEA/RINEX files. Our previous study achieved a 75% of LOS/MP/NLOS
classification rate using a support vector machine (SVM) classifier based on signal strength and the
difference between delta pseudorange and pseudorange rate [21]. Note that, in [21], data collected at
the same location were used as both training and testing data, and a ten-fold classification was carried
out. The trained SVM model was not applied to test data collected at different places. An accuracy of
91.8% was reported in [20] for both training data and testing data collected at the same place. However,
the accuracy was degraded to less than 75.0% for testing data collected at a different location, indicating
the sensitivity issue of NMEA/RINEX-level classifiers, which will limit its application in practice.
Other than the classification rate, as introduced in [22], a confidence value of the classification is also
provided using the robust decision tree-based LOS/NLOS classifier. This method, however, should
make a trade-off between high accuracy and low computational load. Besides, this method only deals
with the LOS/NLOS classification. In fact, the identification of MP will be helpful for improving GNSS
positioning in urban canyons.

NMEA/RINEX-level classification rate is limited because the complex signal propagation in
urban environment is not fully manifested in these end attributes. With the availability of GNSS
raw measurements in mass-market devices, e.g., tablets and smartphones with Android 7 operating
system [23], deeper-level GNSS measurements are accessible, such as carrier phase, code pseudorange,
navigation message bits, correlation result of each channel [24]. This opens the door to develop a
more advanced GNSS positioning algorithm, including signal type classification at a deeper level.
In fact, correlator-level parameters have drawn much attention for better GNSS performance. In [25],
the carrier phase delay between the LOS and reflected signals is considered to develop a new variable
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referred to as early late phase (ELP) for MP detection. In [26], the author proposed to identify the
NLOS reception by constructing a classifier using features extracted from multiple autocorrelation
functions (MACF) in a software-defined receiver (SDR) [27]. The basic principle behind this is that
the NLOS reception distorts the autocorrelation function (ACF) of the direct LOS signal. Features for
multipath classification were also extracted from the correlation sequences in [18]. Authors in [28]
used the code discriminator output and the mean and variance of the slope of the correlation curve
to monitor the signal quality. In a more recent paper [29], the authors reported the indoor LOS/MP
signal classification performance using a deep leaning approach based on the tracking outputs of a
pseudolite signal. In this paper, the signal type classifier using tracking loop parameters is referred to as
correlator-level classifier for simplicity. Despite these efforts, there is a lack of performance assessment
of correlator-level classifier in urban areas for LOS/MP/NLOS classification and its comparison with
the commonly used NMEA- and RINEX-level classifiers, which is the main objective of this paper.
To accomplish this objective, LOS/MP/NLOS effects on code autocorrelation function will be analyzed,
based on which correlator-level features will be extracted, and a fair comparison of the performance of
NMEA-, RINEX-, and correlator-level classifiers will be carried out. Correlator-level measurements
like multicorrelator outputs, and NMEA/RINEX-level observables such as signal strength, satellite
elevation angle, code pseudorange, etc., will be outputted from the same receiver. In this way, a fair
comparison based on a common ground is guaranteed, which is one of the contributions of this paper.

Performance of supervised classifiers is related to the labelling accuracy of training data.
Conventional methods of signal type labelling can be divided into two groups. The first group
is the usage of sky-pointing camera or the 3D building model. This method is straightforward.
For example, based on the satellite ephemeris, the sky-pointing camera method projects the satellites
onto the captured image directly, with the satellite in the building area labelled as NLOS, and the
one in the open area labelled as LOS [26]. Similarly, the 3D building model method compares the
elevation angle of the satellite and the building boundary at the same azimuth angle. If the satellite
elevation angle is lower than the building elevation angle, the satellite is labelled as NLOS, otherwise
it is labelled as LOS. In [30], the authors also defined a three-degree diffraction zone taking into
account the diffraction effect. Both methods can only determine the visibility of satellites, i.e., LOS or
NLOS, whereas the MP signal cannot be identified. In addition, the 3D building model method is also
dependent on the user ground truth. Based on the 3D building model, the ray-tracing technique can
also be used to find all possible propagation paths [31], thereby determining the signal type, including
the MP. However, the ray-tracing technique has a high computational load and relies on the building
model accuracy and the material of building surface. The second group is to control the type of the
received signal. For example, by using a GNSS simulator such as the Spirent SimGEN + SE-NAV
product [32], one can control the signal type. In [29], multipath and NLOS signals were generated by
controlling the experimental setup, e.g., the movement of obstructer and reflector. However, these
methods are not feasible to real GNSS signals labelling. This paper will solve the signal type labelling
issue using the Skymask and the code pseudorange double difference observable, which represents the
second contribution of this paper.

The following section describes the methods used in this paper, including modelling of GPS L1
LOS/MP/NLOS signal and their effects on code autocorrelation function, feature extraction, and the
proposed signal type labelling method using the combination of Skymask and code pseudorange
double difference observable. This is followed by the experimental results for GPS L1 C/A signal,
where detailed experimental setup, data collection, and classification results are presented and analyzed.
In the next section, a discussion of the findings in this paper and their relationship with previous works
will be given, as well as potential extensions of this work. Finally, conclusions are drawn.
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2. Methods

2.1. Signal Model

2.1.1. LOS/MP/NLOS Signal Model

Two assumptions are made in terms of the GPS L1 C/A signal in this paper: (1) there is no
navigation data bit transition during one coherent integration time interval; (2) there is only one MP
signal or one NLOS signal. The intermediate frequency (IF) signal for LOS, MP, NLOS reception,
denoted as y0(nTs), yMP(nTs), and yNLOS(nTs), respectively, at the output of the radio frequency (RF)
front-end for one satellite can be written as [33]:

y0(nTs) = A ·C(nTs − τ0) cos((ωIF +ωD)nTs + ϕ0) + η(nTs) (1)

yMP(nTs) = A ·C(nTs − τ0) cos((ωIF +ωD)nTs + ϕ0)

+αMP
·A ·C

(
nTs − τ0 − τMP

)
cos

(
(ωIF +ωD)nTs + ϕ0 + ∆ϕMP + ∆ωMPnTs

)
+η(nTs)

(2)

yNLOS(nTs) = αNLOS
·A ·C

(
nTs − τ0 − τNLOS

)
cos

(
(ωIF +ωD)nTs + ϕ0 + ∆ϕNLOS + ∆ωNLOSnTs

)
+η(nTs)

(3)

where n is the index of a discrete-time sequence obtained by sampling a continuous-time signal at
a sampling rate fs = 1/Ts, Ts is the sampling interval; A is the amplitude of the direct LOS signal;
C(·) is the pseudo-random noise (PRN) code; ωIF and ωD are the angular nominal IF frequency and
Doppler shift, respectively; αMP and αNLOS are coefficients of reflection of the MP and NLOS signal,
respectively; τ0 is the code delay of the LOS signal, τMP and τNLOS the additional code delay of the
reflected signal; ϕ0 denotes the initial carrier phase of the direct signal, ∆ϕMP and ∆ϕNLOS the relative
phase of MP and NLOS, respectively; ∆ω denotes the Doppler difference between the direct and the
reflected signal; η(nTs) is assumed to be a band-limited additive white gaussian noise.

2.1.2. MP/NLOS Effects on Code Autocorrelation Function

In this paper, the MP/NLOS effect on GPS performance is analyzed at the baseband signal
processing level, i.e., specifically, the code autocorrelation function. The local carrier replica is assumed
to be perfectly aligned with that of the incoming signal. The reason for this assumption is that the
MP/NLOS effect on the code is much severer than that on the carrier, especially for low-dynamic
receivers. The code ACF, Rτ(δτ), for binary phase shift keying (BPSK) modulation with Tc as the chip
duration is defined as

Rτ(δτ) =
 1− |δτ|Tc

, for |δτ| ≤ Tc

0, for |δτ| > Tc
(4)

where δτ is the code offset between the locally generated and the incoming code.
In a typical GPS receiver, three code replicas, referred to as the early (E), prompt (P), and late

(L) codes, with a spacing of 0.5 chip are created to correlate with the incoming code. The correlator
outputs are integrated and dumped over one coherent integration time interval. The final correlator
outputs will be generated as 

E = A ·R(δτ+ d/2)
P = A ·R(δτ)
L = A ·R(δτ− d/2)

(5)

The delay lock loop (DLL) always tries to keep equivalent outputs of the E and L correlators, as
illustrated in Figure 1. For the LOS signal, the ACF is ideally a symmetric triangle, with the prompt
correlator output located at the correlation peak. For the NLOS signal, although the ACF shape is
similar to that of LOS signal, two differences should be noted. One is the lower magnitude of NLOS
signal due to the attenuation of reflection; the other is that there is a time offset of the whole ACF,
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as the dashed line denotes. This time offset is exactly the additional code delay of the NLOS signal,
τNLOS [34]. As a result, the estimated propagation time delay of the LOS and NLOS signal is

τ̂ =

{
τ0 for LOS
τ0 + τNLOS for NLOS

(6)
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Figure 1. Autocorrelation function (ACF) for different types of signal, including LOS, NLOS, constructive
MP and destructive MP. LOS: line-of-sight, NLOS: non-line-of-sight, MP: multipath.

For the MP, however, the estimated propagation time delay is dependent on multiple parameters
such as the relative phase, ∆Φ = ∆ϕMP + ∆ωMPnTs, between the direct and the reflected signal,
the coefficient of reflection, αMP, and the additional code delay of the reflected signal, τMP.
The mathematical expression can be found in [35] for both coherent and noncoherent code discriminators.
Figure 1 also shows cases of constructive (∆Φ = 0 rad) MP and destructive (∆Φ = π rad) MP. Compared
with the LOS/NLOS signal, the ACF shape of the MP signal is distorted due to the superposition of the
direct and reflected signal. The prompt correlator output is no longer at the correlation peak, which
provides an opportunity for detecting MP. Two conclusions can be drawn based on the above analysis:
(1) The ACF shape of MP is asymmetric, with the correlation peak on either left or right side of the
prompt correlator. For the NLOS, however, the ACF is still symmetric, with the correlation peak exactly
in the prompt correlator. The only difference between the LOS and NLOS ACFs is the magnitude of
correlation peak, considering the reflection attenuation. (2) The estimated propagation time delay of
NLOS is always bigger than that of the direct LOS signal, whereas it can be either greater or smaller for
the MP signal depending on the relative phase between the direct and the reflected signal. As a result,
the pseudorange measurement error for the NLOS signal is always positive, but it can be negative for
the MP signal.
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2.2. Feature Extraction

2.2.1. Correlator-Level Features

Based on the analysis in Section 2.1, from the MACF [36], four correlator-level features are extracted:
ratio between the measured maximum correlation value and the standard value, the mean and variance
of the correlation peak delay, and the early late phase (ELP), which are described as follows:

• Feature 1: Ratio between the measured maximum correlation value and the standard value

In general, the strength of reflected or diffracted signal is weaker than that of the direct signal.
However, the compound signal of multiple paths is not necessarily weaker than the direct signal,
depending on the phase difference between multiple reflections and the direct signal. For example,
in Figure 1, the compound signal has a higher correlation peak than the direct signal. Feature 1 is
calculated as the ratio between the measured maximum correlation value and the standard value.
The standard value is the maximum correlation value measured in open-sky areas at various satellite
elevation angles, as shown in Figure 2.
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Figure 2. Maximum correlation values with regards to satellite elevation angle for data collected in
open-sky areas.

A third-order polynomial is used to fit the measurements with the expression as

Corr(θele) =
3∑

i=0

ciθ
i
ele (7)

where θele is the satellite elevation; the coefficients ci are estimated using the least-squares method,
with the result shown in Table 1. Feature 1 is then calculated using [26]

F1 = Corrmeasured/Corr(θele) (8)

where Corrmeasured is the measured maximum correlation value at satellite elevation θele.

Table 1. Coefficients in Equation (7), estimated using least-squares method.

Coefficients c0 c1 c2 c3

Values 4092.97 340.42 −2.99 0.03

• Features 2 and 3: Mean and variance of the correlation peak delay
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Figure 3 presents real-world ACFs overlapped for 20 ms for constructive and destructive MP and
NLOS signals. It can be seen that for both constructive and destructive MP, a non-zero time delay of
correlation peak exists, whereas for NLOS, the correlation peaks are distributed around zero time delay.
Due to the reflection attenuation, NLOS signal usually has a lower signal strength. The introduced
noise will decrease the tracking performance. As a result, the variance of delay of NLOS correlation
peaks is bigger than that of the direct LOS signal [26]. In this paper, the statistics of mean and variance
of the correlation peak delay for N ACFs are calculated as features 2 and 3

F2 = tdelay =
1
N

N∑
i=1

tdelay,i (9)

F3 =
1
N

N∑
i=1

(
tdelay,i − tdelay

)2
(10)

where tdelay,i is the correlation peak delay of the i-th ACF.
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Figure 3. Real-world MP/NLOS autocorrelation functions overlapped for 20 ms: (a) Constructive MP
(Elevation angle: 33.8◦); (b) Destructive MP (Elevation angle: 33.8◦); (c) NLOS (Elevation angle: 24.8◦).

• Feature 4: Early late phase

The carrier phase difference between the direct and reflected signals has not been fully explored
to detect MP signal. In [25], the phase difference between the E and L correlator outputs, called the
ELP, was proposed to detect MP. ELP is used as the fourth correlator-level feature, which is calculated
using [25]

F4 = tan−1(QL/IL −QE/IE) (11)

where the subscripts E and L denote the early and late correlators, respectively; Q and I refer to the
quadrature and in-phase channels, respectively. Figure 4 illustrates this feature using the simulated
MP signal with a fixed phase difference of π/2 rad to the direct signal. When the simulated MP occurs,
there is a fixed carrier phase error in the early and late correlator channels, respectively. The ELP then
shows a non-zero offset during the MP reception.
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2.2.2. RINEX/NMEA-Level Features

The RINEX- and NMEA-level features are listed in Table 2, where the feature pseudorange rate
consistency is the difference between delta pseudorange and pseudorange rate, derived using Doppler
frequency, as [20]

ζ =
∣∣∣∣∆ρ( j)

−
.
ρ
( j)∆t

∣∣∣∣ (12)

where ∆ρ( j) and ∆t are the delta pseudorange and the time interval between two consecutive epochs;
.
ρ
( j)

= −
(
c · f ( j)

Doppler

)
/ fL1 is the Doppler-derived pseudorange rate with c the speed of light, f ( j)

Doppler the

Doppler measurement, and fL1 the carrier nominal frequency.

Table 2. RINEX- and NMEA-level features.

Features C/N0 Satellite Elevation Pseudorange Rate Consistency

NMEA-level
√ √ √

RINEX-level
√ √

2.3. Signal Type Labelling

The performance of supervised classifiers is related to the labelling accuracy of training data.
This section deals with the signal type labelling issue by using the Skymask and the code pseudorange
double difference observable.

2.3.1. Skymask and Its Limitation

Skymask is defined as the Skyplot with building boundary information, as shown in Figure 5.
The gray area denotes the building blockage. If the elevation angle of satellite is lower than that of the
building boundary at the same azimuth angle, it is labelled as NLOS, e.g., PRN 29 in red. Otherwise,
it is labelled as LOS in green, e.g., PRN 13 in green.

This Skymask method is easy and straightforward, but it has two drawbacks. On the one hand,
it can only determine the satellite visibility, namely LOS or NLOS, thereby MP cannot be identified;
On the other hand, it is not accurate for satellites near the building edges, such as PRN 5 in Figure 5,
due to the inaccuracy of receiver location and 3D building model [22]. To solve this problem, the code
pseudorange double difference observable is used to help determine the signal type, which cannot be
done by the sole Skymask method.
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Figure 5. Signal type labelling using Skymask. The green denotes the LOS satellite, and the red
represents the NLOS satellite.

2.3.2. Code Pseudorange Double Difference

In GPS field, double difference (DD) of carrier phase measurements is one of the standard methods
to determine the relative position between two receivers. In this paper, the DD observable of code
pseudorange measurements is used to find the MP- or NLOS-induced pseudorange measurement
error, thereby labelling the signal type. The code pseudorange between receiver k and satellite j can be
modeled as [37]

ρ
j
k = r j

k + c
(
δtk − δt j

)
+ γiono + γtrop + γ

j
k,MP + γ

j
k,NLOS + e j

k (13)

with r j
k the geometric range, δtk and δt j the clock bias of receiver k and satellite j, γiono and γtrop the

ionospheric and tropospheric errors, γ j
k,MP and γ j

k,NLOS the error induced by MP and NLOS, respectively,

and e j
k the other unmodelled errors.
As shown in Figure 6, Receiver A is the reference station in the open-sky area, e.g., the HKSC

reference station, used in this paper. Receiver B is the rover station in the urban area. For the reference
station, it is assumed to be free of multipath and NLOS effects, i.e., γ1

A,MP = γ1
A,NLOS = γ2

A,MP =

γ2
A,NLOS = 0. To form the DD observable, the single difference (SD) is first created by differencing ρ1

A
and ρ1

B
SD1

AB = ∆r1
AB + c(δtA − δtB) − γ

1
B,MP − γ

1
B,NLOS + ∆e1

AB (14)

SD2
AB = ∆r2

AB + c(δtA − δtB) − γ
2
B,MP − γ

2
B,NLOS + ∆e2

AB (15)

where ∆r j
AB = r j

A − r j
B, ∆e j

AB = e j
A − e j

B. The DD is then obtained by differencing SD1
AB and SD2

AB

DD12
AB = ∇∆r12

AB + γ2
B,MP − γ

1
B,MP + γ2

B,NLOS − γ
1
B,NLOS +∇∆e12

AB (16)

where ∇∆r12
AB = ∆r1

AB − ∆r2
AB, ∇∆e12

AB = ∆e1
AB − ∆e2

AB.
After the DD computation, clock biases of both the receiver and satellite are eliminated, as well

as the correlated errors such as ionospheric and tropospheric errors. According to Equation (16),
to label the signal, one of the satellites is assumed to be free of the MP and NLOS effect, called master
satellite, which is in general selected to be the satellite with the highest elevation angle, e.g., Satellite 2
in Figure 6. With this assumption, Equation (16) is simplified to

DD12
AB = ∇∆r12

AB − γ
1
B,MP − γ

1
B,NLOS +∇∆e12

AB (17)

where ∇∆r12
AB is a known parameter.



Remote Sens. 2019, 11, 1851 10 of 21

Remote Sens. 2019, 11, 1851 10 of 23 

 

 

Figure 6. Illustration of code pseudorange double difference. 

After the DD computation, clock biases of both the receiver and satellite are eliminated, as well 

as the correlated errors such as ionospheric and tropospheric errors. According to Equation (16), to 

label the signal, one of the satellites is assumed to be free of the MP and NLOS effect, called master 

satellite, which is in general selected to be the satellite with the highest elevation angle, e.g., Satellite 

2 in Figure 6. With this assumption, Equation (16) is simplified to 

12 12 1 1 12

, , ΔAB AB B MP B NLOS ABDD r γ γ e= − − +  (17) 

where 12

ABr  is a known parameter. 

2.3.3. Proposed Signal Type Labelling Method 

To address the issue with Skymask for labelling signal type, this paper proposes to integrate the 

Skymask method and the code pseudorange DD observable to help determine the MP signal and the 

satellites near the building edges, with the flowchart shown in Figure 7. This method consists of two 

major parts; one is using Skymask to determine NLOS satellites that are at least 5 degrees lower than 

the building boundary at the same azimuth, the other using code pseudorange double difference 

observable to distinguish among the three signal types for other satellites. 

The steps of the proposed method are described as follows: 

Step 1: Generate Skymask using ephemeris, receiver ground truth, and 3D building model. In 

this paper, the receiver ground truth is obtained from the Google Earth. 

Step 2: Calculate the elevation difference between the satellite and the building boundary at the 

same azimuth. 

Step 3: If the satellite elevation angle is at least 5 degrees lower than the building boundary 

elevation at the same azimuth, satellite j is claimed to be NLOS. Otherwise, go to Step 4. 

Step 4: Process GPS IF data using the SDR, which outputs the time-tagged code pseudorange 

measurements. 

Step 5: On the basis of the ephemeris and reference station measurements, calculate the code 

pseudorange double difference observable, ( )
, 1,2, ,

j

iDD i N=  where N is the amount of epochs 

tested, using Equation (17). 

Step 6: Find the amount of DD observables, M , that exceed zero, and the root mean square 

(RMS) value of the DD observables, 
( )( )j

iRMS DD , with the true value of zero. 

Step 7: If the DD observable exceeds zero for more than 90% of the epochs test, i.e., 0.9M N   

and the RMS value exceeds a preset threshold, satellite j is claimed to be NLOS. The first condition is 

due to the fact that the NLOS-induced pseudorange error is always positive. The threshold of M N

is set as 0.9, considering the measurement outliers. The RMS threshold 10.50ε = meters is set as the 

RMS value of DD observables for LOS satellites. Otherwise, go to next step. 

Figure 6. Illustration of code pseudorange double difference.

2.3.3. Proposed Signal Type Labelling Method

To address the issue with Skymask for labelling signal type, this paper proposes to integrate the
Skymask method and the code pseudorange DD observable to help determine the MP signal and
the satellites near the building edges, with the flowchart shown in Figure 7. This method consists of
two major parts; one is using Skymask to determine NLOS satellites that are at least 5 degrees lower
than the building boundary at the same azimuth, the other using code pseudorange double difference
observable to distinguish among the three signal types for other satellites.

The steps of the proposed method are described as follows:
Step 1: Generate Skymask using ephemeris, receiver ground truth, and 3D building model. In this

paper, the receiver ground truth is obtained from the Google Earth.
Step 2: Calculate the elevation difference between the satellite and the building boundary at the

same azimuth.
Step 3: If the satellite elevation angle is at least 5 degrees lower than the building boundary

elevation at the same azimuth, satellite j is claimed to be NLOS. Otherwise, go to Step 4.
Step 4: Process GPS IF data using the SDR, which outputs the time-tagged code

pseudorange measurements.
Step 5: On the basis of the ephemeris and reference station measurements, calculate the code

pseudorange double difference observable, DD( j)
i , i = 1, 2, · · · , N where N is the amount of epochs

tested, using Equation (17).
Step 6: Find the amount of DD observables,M, that exceed zero, and the root mean square (RMS)

value of the DD observables, RMS
(
DD( j)

i

)
, with the true value of zero.

Step 7: If the DD observable exceeds zero for more than 90% of the epochs test, i.e., M/N > 0.9
and the RMS value exceeds a preset threshold, satellite j is claimed to be NLOS. The first condition is
due to the fact that the NLOS-induced pseudorange error is always positive. The threshold of M/N is
set as 0.9, considering the measurement outliers. The RMS threshold ε = 10.50 meters is set as the
RMS value of DD observables for LOS satellites. Otherwise, go to next step.

Step 8: If the RMS value is lower than ε, satellite j is claimed to be LOS; otherwise it is claimed to
be MP.
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Figure 7. Flowchart of the proposed Skymask plus code pseudorange double difference observable for
labelling signal type. 3D: 3 dimensional, GPS: global positioning system, IF: intermediate frequency,
SDR: software defined receiver, DD: double difference, RMS: root mean square

2.3.4. Case Study

As shown in Figure 5, PRN 13 was selected as the master satellite. The reference station was
the HKSC station of SatRef, which is established by the Hong Kong land department for providing
differential corrections. The distance between the HKSC station and the receiver location in Figure 5
is less than 5 km, which ensures that the atmospheric errors are eliminated. Figure 8 shows the DD
observables in 1 min for each satellite in Figure 5. The statistics are listed in Table 3. As concluded in
Section 2, the NLOS-induced pseudorange is always positive. This conclusion is consistent between
the DD observable and the Skymask for PRNs 12, 29, and 30. For PRN 5, it is labelled as LOS by
Skymask, whereas it should be NLOS according to the DD observable.
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Table 3. Statistics of code pseudorange double difference observables.

PRN Number 5 12 29 30

Mean (m) 17.29 48.80 87.61 111.34
RMS (m) 18.85 55.81 92.02 112.16

3. Results

This section presents experimental results, including the experimental setup, GPS L1 raw data
collection and signal type labelling, metrics for evaluation, and the signal type classification results
using correlator-, RINEX- and NMEA-level classifiers. A comparison of these three kinds of classifiers
is also provided.

3.1. Experimental Setup

Figure 9 shows the experimental setup. The NSL Stereo front-end with an active antenna,
Allystar AGR6303, was used to collect the raw GPS IF data for postprocessing. An open-sourced GPS
L1 SDR that is able to output pseudorange measurements was used in this paper [38], which was
modified with the implementation of multiple correlators. The multicorrelator outputs were used for
correlator-level LOS/MP/NLOS classification. The SDR outputs such as pseudorange, Doppler, C/N0,
etc., were converted to generate the SDR RINEX and NMEA files, which were then used in the RINEX-
and NMEA-level classifiers. Details of the configuration of the experimental setup are listed in Table 4.
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Table 4. Parameter settings. E and L are the early and late correlator outputs defined in Equation
(5). QP and IP are prompt correlation values of quadrature and in-phase channels, respectively.
RHCP: right-handed circular polarization, GNSS: global navigation satellite system, SVM: support
vector machine.

Item Parameter Value Unit

Antenna
Polarization RHCP -

Low noise amplifier gain 27 dB
Noise figure ≤2 dB

Front-end

GNSS signal GPS L1 C/A -
Sampling rate 26 MHz

Intermediate frequency 0 MHz
Double sided bandwidth 8 MHz

Noise figure 8 dB
RF gain 10 dB

SDR [38]

Correlator numbers 25 -
Correlator spacing 0.05 chip

Coherent integration time 1 ms
Code phase discriminator 1

2
E−L
E+L -

Delay lock loop bandwidth 2 Hz
Carrier phase discriminator tan−1(QP/IP) -
Phase lock loop bandwidth 20 Hz

SVM
Software LIBSVM [39] -

Kernel function Radial basis function (RBF) -

3.2. Data Collection and Signal Type Labelling Results

GPS L1 raw IF data were collected at three different locations in Hong Kong, as shown in Figure 10.
It can be seen that the locations selected show very low sky visibility. All datasets were collected in
static environment. Each dataset was composed of several sub-datasets, collected at different times on
different days, due to the large size of raw IF data file. The length of the experimental data is listed in
Table 5. The Skymask and code pseudorange DD observables method proposed in Section 2 was used
for labelling the signal type. Table 5 summarizes the labelling results.
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Figure 10. Data collection locations: (a) Dataset A; (b) Dataset B; (c) Dataset C. Skymask in the red frame
indicates the sky visibility, where the gray area represents the sky blocked by surrounding buildings.

Table 5. Labelling results in terms of numbers of different signal types.

Dataset A B C

IF data length (min) 13.3 7.2 9.9
LOS 419 (418) 1 504 (480) 1083 (1079)
MP 1139 (1131) 692 (679) 213 (213)

NLOS 1402 (1367) 695 (686) 753 (749)
Total 2960 (2916) 1891 (1845) 2049 (2041)

1 Values outside the bracket denote numbers of different signal types used for correlator-level classifiers; Values in
the bracket denote numbers of different signal types used for RINEX- and NMEA-level classifiers.
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Figure 11 shows the point cloud of labelled data, from which several conclusions can be drawn for
the experimental data. Firstly, in general, signal with low C/N0 is likely to be NLOS, while high- C/N0

signal can be either LOS or MP. MP can also have low C/N0 depending on both the satellite elevation
and phase difference between the direct and reflected paths. This also poses a challenge to the MP
identification. Secondly, satellites with very high elevation can be NLOS in deep urban areas. Thirdly,
MP and NLOS signals produce larger pseudorange rate consistency, due to the Doppler frequency
difference between the direct and reflected signal.
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3.3. Metrics for Evaluation

To assess the performance of the three different level classifiers, a multiclass confusion matrix was
formed, as shown in Table 6. Based on the multiclass confusion matrix, metrics of precision, recall,
overall accuracy, and F1 score are defined as follows [40,41]:

Precision =

l∑
i=1

TPi
TPi+FPi

l
(18)

Recall =

l∑
i=1

TPi
TPi+FNi

l
(19)
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Overall accuracy =

l∑
i=1

TPi+TNi
TPi+FNi+FPi+TNi

l
(20)

F1 score= 2×
Precision×Recall
Precision + Recall

(21)

where TPi = cii denotes the number of correctly recognized samples as class ci, FPi =
l∑

j=1
c ji − TPi the

number of incorrectly recognized samples as class ci, FNi =
l∑

j=1
ci j − TPi the number of samples that

were not classified as class ci, TNi =
l∑

j=1

l∑
k=1

c jk − TPi − FPi − FNi the number of correctly recognized

samples that does not belong to class ci.

Table 6. Multiclass confusion matrix. l denotes the number of classes. nkj, 1 ≤ k, j ≤ l represents the
number of examples classified as c j, while its actual class is ck.

Classified Class c1 · · · Classified Class ci · · · Classified Class cl

Labelled Class c1 n11 · · · n1i · · · n1l
· · · · · · · · · · · · · · · · · ·

Labelled Class ci ni1 · · · nii · · · nil
· · · · · · · · · · · · · · · · · ·

Labelled Class cl nl1 · · · nli · · · nll

3.4. Classification Results

3.4.1. Test I

In this test, Datasets A and B were combined as the training data, while Dataset C was used as the
testing data. The multiclass confusion matrix of different level classifiers is listed in Table 7, which also
lists the F1 score and overall accuracy. According to the results, the following remarks can be drawn.

Table 7. LOS/MP/NLOS classification results using different-level classifiers.

NMEA-Level
Classification Results

RINEX-Level
Classification Results

Correlator-Level
Classification Results

LOS MP NLOS LOS MP NLOS LOS MP NLOS

Labelled
Results

LOS 154 575 350 148 564 367 722 347 14
MP 21 184 8 21 187 5 47 151 15

NLOS 0 166 583 2 179 568 5 101 647

F1 Score 58.02 57.35 72.91

Overall
Accuracy (%) 45.12 44.24 74.18

On the one hand, in this case where testing data was collected at different places to that of training
data, correlator-level classifier is the best among the three levels of classifiers in terms of F1 score and
overall accuracy. Specifically, the correlator-level classifier achieved an F1 score of 72.91%, while the F1
scores of the NMEA- and RINEX-level classifiers were only 58.02% and 57.35%, respectively.

On the other hand, in this experiment, the SVM training accuracies for NMEA- and RINEX-level
classifiers were 91.89% and 92.35%, respectively. The high inconsistency between the SVM training
accuracy and the testing accuracy for NMEA- and RINEX-level classifiers indicated that the performance
of these two kinds of classifiers is sensitive to scenarios. Both NMEA- and RINEX-level features were
not robust enough to classify the LOS and MP. Specifically, the training model with high accuracy may
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not be suitable for testing data collected at different places. For the correlator-level classifier, however,
the testing accuracy was consistent with training accuracy, which makes it more feasible in practice.

The recall value for each signal type is shown in Figure 12. It is observed that the MP recall value
of NMEA- and RINEX -level classifiers was much higher than the LOS recall. As a result, the values of
F1 score were only 58.02% and 57.35% for NMEA- and RINEX-level classifiers, respectively. This also
indicates that MP and LOS signal are difficult to distinguish between each other using NMEA- and
RINEX-level classifiers. For the correlator-level classifier, recall values for the three types of signal were
comparative to each other. In other words, correlator-level classifier can better distinguish different
types of signal. The explanation to the superiority of correlator-level classifier is that, as analyzed in
Section 2, the LOS/MP/NLOS signal has different effects on the autocorrelation function. Deeper-level
features extracted from the ACF, therefore, can better reflect the characteristic of different types of signal.
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In some applications, such as the standard shadow-matching-based positioning [5], it is enough
to distinguish between LOS and NLOS, i.e., the satellite visibility. As such, a comparison of LOS/NLOS
classification using the three different level classifiers was also conducted. To do this, MP was put into
the LOS group because the MP contains the direct signal. The LOS/NLOS classification results are
shown in Table 8. The recall value for each class is shown in Figure 13. As can be seen, the LOS accuracy
was significantly improved for all three kinds of classifiers. As expected, the correlator-level classifier
still outperformed the other two kinds of classifiers. In specific, the F1 score of correlator-level classifier
was more than 90%, and its LOS and NLOS recall values were up to 98.69% and 77.96%, respectively.

Table 8. LOS/NLOS classification results using different level classifiers.

NMEA-Level
Classification Results

RINEX-Level
Classification Results

Correlator-Level
Classification Results

LOS NLOS LOS NLOS LOS NLOS

Labelled
Results

LOS 1194 98 1153 139 1279 17
NLOS 286 522 288 520 179 633

F1 Score 80.42 78.11 90.39

Overall Accuracy (%) 81.71 79.67 90.70
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3.4.2. Test II

To confirm the scenario sensitivity issue, Test II was conducted, where all datasets were mixed up,
half of which was randomly selected as the training data, while the remaining half was the testing data.
The confusion matrixes for LOS/MP/NLOS and LOS/NLOS classifications are in Appendix A. Figure 14
shows the comparison of training and testing accuracy. In this case, the three kinds of classifiers showed
comparative performances for both the LOS/MP/NLOS and LOS/NLOS classifications. In specific,
the classification accuracy was improved for NMEA- and RINEX-level classifiers, and there was a
high consistency between the SVM training and testing performance. For the correlator-level classifier,
its accuracy consistency was still guaranteed although there was a slight decrease of classification rate
compared with that in Figure 13, which was probably due to the decreased amount of training data.Remote Sens. 2019, 11, 1851 18 of 23 
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4. Discussion

The results in this paper are encouraging, with the opening of deeper-level measurements on
more and more GNSS-capable devices [42]. GNSS performance in urban areas is expected to improve
by using these measurements. Increasing signal type classification rate is useful for both the popular
3DMA positioning and conventional ranging-based least square positioning. Hence, this paper
proposes to improve signal type classification rate by using correlator-level classifier, and compares
it with conventional NMEA/RINEX-level classifiers. To make a fair comparison between different
level classifiers, it is important to make sure that all features come from the same receiver, which has
been rarely explored in existing researches, although some researches have explored the deeper-level
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features in different applications [18,26,29]. The two findings in this paper and the interpretation in
perspective of previous studies are described as follows.

On the one hand, the correlator-level classifier had the best performance among the three different
level classifiers for training data and testing data that were collected in different places, improving
the F1 score by 25.7% and 27.1% compared with NMEA- and RINEX-level classifiers, respectively
(Table 7). In terms of the accuracy of each class, the correlator-level classifier also outperformed the
other two methods, especially for distinguishing between LOS and MP (Figure 12). This finding
shows the effectiveness of signal classification, including MP, at the correlator level, and can been seen
as an extension of the work in [26,43], where correlator-level features were used to do LOS/NLOS
classification. On the other hand, of particular importance is that the correlator-level classifier has been
shown to be more robust to scenarios. In specific, for testing data that was collected at different places
as the training data, the performance of NMEA/RINEX-level classifiers showed significant decrease,
while the correlator-level classifier could retain the high performance. This finding, i.e., sensitivity
issue of NMEA/RINEX-level classifiers, is consistent with that reported in [20], where the accuracy
for testing data collected at different locations as the training data was degraded by more than 20%.
This issue is probably due to that the NMEA/RINEX-level features were highly relied on in the scenario.
For example, the signal strength was directly related to the street width and building height and
materials. The robustness of correlator-level classifier makes it more feasible in practical applications.

Due to the limited size of experimental datasets, this paper does not focus on improving the absolute
signal classification rate, instead it is intended for the illustration of advantages of correlator-level
classifier against the commonly used NMEA- and RINEX-level classifiers. One of the extensions of this
paper is to do a large-scale data test to improve the correlator-level classifier by using more advanced
techniques. For example, the previous work of the authors has proven that vector tracking loop (VTL)
has a different response to the MP/NLOS signal compared with the scalar tracking loop (STL) used in
this paper [36]. This difference provides an opportunity to detect MP/NLOS more efficiently [38,44].
Therefore, correlator-level features extracted from VTL may further improve the signal classification
rate. Other techniques include replacing SVM with other deep learning approaches, e.g., neural
networks as used in [29,43]. In this way, feature extraction can be automatically finished instead of the
manual selection, thereby avoiding the information loss [41]. Another extension of this paper is to
test smartphone data at the correlator-level and evaluate the positioning performance with the proper
exploitation of the identified signal type.

5. Conclusions

In this paper, correlator-level features were extracted to classify GPS L1 signal using a supervised
machine learning algorithm. A fair comparison with respect to the NMEA-, RINEX- and correlator-level
classifiers was carried out on a common ground, by guaranteeing that all measurements come from
the same GPS receiver (the self-developed SDR). To do this, LOS/MP/NLOS effects on autocorrelation
function were analyzed first. Subsequently, four correlator-level features were extracted and illustrated.
The method of combining Skymask and code pseudorange double difference observable was proposed
to do signal type labelling for the supervised machine leaning algorithm. To assess the performance
of these different level classifiers, GPS raw IF data were collected at different places in deep urban
canyons in Hong Kong. The conclusions are twofold according to the experimental results.

On the one hand, correlator-level classifier outperforms the NMEA- and RINEX-level classifiers
in terms of four metrics, i.e., precision, recall, F1 score, and overall accuracy. In specific, for training
data and testing data collected at different places, the correlator-level classifier improved F1 score for
LOS/MP/NLOS classification by about 25% compared with NMEA and RINEX-level classifiers. Besides,
the correlator-level classification rate for each class was higher than that using NMEA/RINEX-level
classifiers, especially for the identification between LOS and MP. For LOS/NLOS classification,
the overall accuracy was greatly improved for all three kinds of classifiers, with the F1 scores of 80.42%,
78.11%, and 90.39% for NMEA-, RINEX-, and correlator-level classifiers, respectively.
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On the other hand, by further checking the SVM training accuracy, NMEA- and RINEX-level
classifiers were found to have the sensitivity issue, i.e., for testing data collected at different locations to
the training data, NMEA/RINEX-level classifiers showed degraded performances. The correlator-level
classifier is more robust against the scenarios due to that deeper-level features can better reflect the
characteristics of different types of signal. This benefit of correlator-level classifier is of particular
importance to practical applications.
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Appendix A Confusion matrix in Test II

Tables A1 and A2 list the confusion matrixes for LOS/MP/NLOS and LOS/NLOS classifications in
Test II where all datasets are mixed up to form a whole dataset. Then, half of the whole dataset was
randomly selected as the training data, while the remaining half was used as the testing data.

Table A1. LOS/MP/NLOS classification results using different-level classifiers in Test II.

NMEA-Level
Classification Results

RINEX-Level
Classification Results

Correlator-Level
Classification Results

LOS MP NLOS LOS MP NLOS LOS MP NLOS

Labelled
Results

LOS 804 105 57 832 112 68 941 43 16
MP 338 442 257 302 457 241 472 336 218

NLOS 207 80 1111 184 85 1120 163 130 1131

F1 Score 68.90 70.00 69.14

Overall
Accuracy (%) 69.30 70.83 69.80

Table A2. LOS/NLOS classification results using different-level classifiers in Test II.

NMEA-Level
Classification Results

RINEX-Level
Classification Results

Correlator-Level
Classification Results

LOS NLOS LOS NLOS LOS NLOS

Labelled
Results

LOS 1755 218 1784 214 1891 131
NLOS 320 1108 352 1051 460 968

F1 Score 83.67 82.70 82.42

Overall Accuracy (%) 84.18 83.36 82.87
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