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Abstract: A hydrometeor classification algorithm is developed by applying Bayes’ theorem to C-band
polarimetric weather radar measurements. The Bayesian hydrometeor classification algorithm (BHCA)
includes eight hydrometeor types: hail, rain, graupel, dry snow, wet snow, crystal, biological scatterers
(BS) and ground clutter (GC). The conditional likelihood probability distribution functions (PDFs)
for each hydrometeor type are constructed with training data from radar observations. The prior
PDFs include not only temperature information but also background information about occurrence
frequency of hydrometeor types at each altitude, which is incorporated by a hydrometeor classification
algorithm for the first time. The BHCA is evaluated by comparing with the Marzano-Bayesian
hydrometeor classification algorithm (MBHC) and NCAR fuzzy logic classifier (NFLC). Results
show that wet snow is largely missed in MBHC, while crystals are not adequately identified by
NFLC. This may be due to the inappropriate conditional likelihood PDFs or membership functions.
The prior PDFs in the MBHC may cause unexpected hail due to unreasonable variation above 0 ◦C.
In addition, the prior PDFs of graupel and dry snow in the MBHC appear below −52 ◦C, which is not
realistic. The BHCA proposed in this study overcomes these shortcomings in the prior PDFs and
produces an overall reasonable classification product over the Yangtze-Huaihe River Basin (YHRB),
Eastern China.

Keywords: hydrometeor classification; polarimetric radar; Bayes’ theorem; prior PDFs; conditional
likelihood

1. Introduction

Dual-polarization weather radar can offer various variables including horizontal reflectivity (ZH),
differential reflectivity (ZDR), the cross-correlation coefficient (ρhv), and specific differential phase
(KDP), providing indicative information about hydrometeor size, shape, orientation, concentration and
phase [1]. Based on this information, hydrometeor classification (HC) can be achieved [2,3], which
leads to various important applications. For example, it can be used to resolve cloud microphysical
processes [4,5], perform severe weather surveillance and nowcast involving different precipitation
phases [6,7], and remove nonweather echoes (e.g., biological scatterers and ground clutter) for data
quality control [8]. Furthermore, according to the identified hydrometeor types, appropriate rain rate
relations can be derived to improve quantitative precipitation estimation [9].
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For S-, C- and X-band polarimetric radars, the most popular HC algorithms are based on the fuzzy
logic method [3,10–17], which used the temperature information and polarimetric radar variables as
input. The most important component in the fuzzy logic method is the membership functions which
show high overlap between several particle types [10–12,18,19]. The membership functions employed
alternative functions including trapezoidal [11], beta [12], Gaussian [20], and half-Gaussian [21]
functions, which may introduce errors since the shapes of functions are pre-assumed. In addition,
radar measurement errors and random fluctuations are unavoidable and should not be ignored [22].
These issues may result in a noisy output classification, leading to severe weather warning false alarm
(e.g., hail) for forecaster, and/or misleading information in the microphysical processes for research
and other applications with HC products. Improvement and optimization in the classification scheme
is very important for such applications, especially for timely decision-making during rapid evolution
convective events.

In addition to the characteristics of hydrometeors observed by radar and associated temperature
information, occurrence frequencies of different hydrometeor types can be used as background
information that can be incorporated in the HC algorithms. A Bayesian approach [23,24] is an
appropriate choice for HC since it can naturally take into account the information mentioned previously.
As such, this study aims to develop a robust HC algorithm based on Bayes’ theorem.

Marzano et al. [24] developed a Bayesian HC algorithm (MBHC), where the conditional likelihood
probability distribution function (CLPDF) is constructed with joint probability distribution functions
(PDF) of ZH–ZDR–KDP or ZH–ZDR derived from T-Matrix scattering simulations. Although their work
proves that the Bayesian approach is a practical method for HC, there are still several limitations in
their Bayesian HC framework: (1) useful information indicated by ρhv, the standard deviations of
horizontal reflectivity (SD(ZH)) and differential propagation phase shift (SD(ΦDP)) were not taken
into account in [24]. These three variables show substantial capability in identifying ground clutter
and biological scatterers [11,25]. (2) Inevitable radar measurement biases and random errors, which
may introduce misclassification, are not included in the T-Matrix simulation. In addition, the T-Matrix
simulations depend on observed particle size distributions from disdrometers, which may introduce
errors because of different spatial representativeness between the radar and disdrometer. (3) The prior
PDF in [24] may not be sufficient. In their method, if several hydrometeor types are allowed to appear
in a given temperature range, the occurrence frequencies were set equal to each other. That is, the prior
PDF in [24] is not a continuous function along with temperature or in the vertical dimension, which
may result in unrealistic classification. The Bayesian hydrometeor classification algorithm (BHCA)
developed in this paper is expected to improve these issues to produce a robust HCA product for
practical applications [23,24,26].

This paper is organized as follows: instruments and data processing are introduced in Section 2.
The theoretical background of Bayesian approach and the construction of conditional PDFs and
prior PDFs are described in Section 3. The classification results and cross-comparison with previous
algorithms are presented in Section 4, and the conclusions are given in Section 5.

2. Instruments and Data

Radar data collected by Nanjing University C-band polarimetric radar (NJU C-POL) during the
Observation, Prediction and Analysis of Severe Convection of China (OPACC) field campaign from
1 June to 31 July in 2014 are employed in this study [27,28]. The OPACC was conducted over the
Yangtze-Huaihe River Basin (YHRB) in East China. Closely related to the Asian summer monsoon,
major rainfall over YHRB occurs from mid-June to mid-July [29]. The datasets include a squall line
with trailing stratiform precipitation, mesoscale convective systems, isolated convective cells, and
typhoon rainbands, which encompass the eight hydrometeor types considered in this study and
main rainfall types over the YHRB. NJU C-POL is a research mobile radar. The scanning strategy is
configured with a volume coverage pattern (VCP) mode including plan position indicator (PPI) scans
at 14 elevation angles (0.5◦, 1.5◦, 2.4◦, 3.4◦, 4.3◦, 5.3◦, 6.2◦, 7.5◦, 8.7◦, 10.0◦, 12.0◦, 14.0◦, 16.7◦ and 19.5◦)
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completed within seven minutes followed by a vertically-pointing ZDR calibration scan. Range-height
indicator (RHI) scans are performed manually if there is intense convection. The azimuthal and
radial resolutions are 1.2◦ and 75 m, respectively. The maximum range is 144 km. For RHI scans, the
maximum elevation is 30◦. More details about the system characteristics of NJU C-POL are listed
in [28]. A sphere calibration experiment was conducted to ensure low system biases of ZH and ZDR.
The dataset for validation is processed by the MBHC and NCAR fuzzy logic classifier (NFLC) which
use KDP as input. The KDP is estimated from differential propagation phase shift by piecewise linear
regression using a least square fit following Wang and Chandrasekar [30]. Attenuation is corrected
with the linear relation with KDP [31].

3. The Bayesian Hydrometeor Classification Method

In the BHCA, five radar variables—ZH, ZH–ZDR, ρhv, SD(ZH), and SD(ΦDP)—are chosen as inputs.
ZH and ZDR are used as joint probability since they are not independent in rain. SD(ZH) and SD(ΦDP)
are calculated along the radial direction over five gates centered on the current gate. Eight hydrometeor
classes are defined in the BHCA, namely, hail (HA), rain (RN), graupel (GR), dry snow (DS), wet snow
(WS), crystals (CR), biological scatterers (BS) and ground clutter (GC). The training dataset for the
CLPDFs and prior PDFs are based on the data collected during 13:04–15:06 LST (LST = UTC + 8) on
June 1, 09:05–11:08 LST on July 15, 06:05–06:59 and 15:24–16:27 LST on 24 July, 2014, including both
RHI and PPI data.

3.1. Bayesian Classification Concept

Bayes’ theorem was applied in the Bayesian classifier, with the assumption that five variables
were mutually independent for eight classes. The formula was given as follows:

P(Ci|V1, . . . , V5) =
P(Ci)P(V1, . . . , V5

∣∣∣Ci)

P(V1, . . . , V5)
, (1)

where Ci represents a hydrometeor class; V1, . . . , V5 denote variables ZH, ZH–ZDR, ρhv, SD(ZH) and
SD(ΦDP), respectively; P(Ci) is the prior PDF; and P(Vm|Ci) is the CLPDF. Each Vm is assumed to be
conditionally independent on any other Vn (n ,m). P(V1, V2, V3, V4, V5) is assumed to be a constant.
Thus, Equation (1) is transformed into

P(Ci|V1, . . . , V5) ∝ P(Ci)
5∏

i=1

SFi

5∏
i=1

P(Vm|Ci), (2)

where SF represents scaling factor for normalizing the CLPDFs. According to the above equation,
the conditional probability P(Ci|V1, . . . , V5) of each hydrometeor class at each range volume can be
calculated. Essentially, the class with the largest conditional posterior probability P(Ci|V1, . . . , V5) will
be assigned to the range volume by the classifier.

3.2. The Conditional Likelihood PDFs of Radar Variables

The conditional PDFs and the prior PDFs are crucial components in the Bayesian classifier. One of
the advantages of the simple Bayesian classifier is that a relatively small amount of training data is
required for the construction of the PDFs. The training and evaluation datasets are strictly separated
from each other. Homogeneous areas and “true” hydrometeor types are chosen to construct PDFs by
human experts through subjectively checking every polarimetric radar variables. Then, all the PDFs
for each variable need to be modeled before applying them to the BHCA. The PDFs show different
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shapes, and the best fitting function is chosen for negative skewness (Equation (3)), positive skewness
(Equation (4)), and Gaussian shape (Equation (5)):

P(V) = aVb exp

−c
(
V2
− 〈V〉

)d

2σ2

, (3)

P(V) = aVb exp

−c(ln V − 〈V〉)d

2σ2

, (4)

P(V) = a exp
(
−b(V − c)2

)
, (5)

where V stands for input variables; a, b, c and d are the fitting parameters of PDFs given in Table 1,
and the modeling functions are showed in Figure 1; and 〈V〉 and σ2 denote the mean and variance
listed in Table 2. A nonlinear least squares curve fitting method is used to derive these parameters.

Table 1. Fitted function parameters of the likelihood conditional probability for four variables horizontal
reflectivity (ZH), the cross-correlation coefficient (ρhv), standard deviations of horizontal reflectivity
(SD(ZH)) and differential propagation phase shift (SD(ΦDP)), and eight hydrometeor classes: hail (HA),
rain (RN), graupel (GR), dry snow (DS), wet snow (WS), crystals (CR), biological scatterers (BS) and
ground clutter (GC). a, b, c and d stand for parameters in Equations (3)–(5).

Variables Classes a b c d Equation Type

ZH

HA 2.82 × 10−13 7.9284 17.327 5.1301 4
RN 0.0221 1.1047 127.29 1.2649 3
GR 2578.2 −0.303 17.135 3.9478 4
CR 0.1546 0.6202 2.9539 1.8152 3
WS 0.2814 0.3391 10.649 1.6386 3
DS 0.0660 0.8216 2.51 × 10−6 4.0119 3
BS 4427.0 −0.780 0.9446 1.3140 4
GC 0.6599 0.0033 2.4841 3.6438 4

ρhv

HA 22.925 1.5322 146.26 4.1906 4
RN 1 1666.7 1 - 5
GR 1997.4 24.519 63.508 345.21 4
CR 1 2272.7 1 - 5
WS 2.57 × 10−5 3.5618 0.0009 2.9922 3
DS 1.3832 −55.32 0.5360 - 5
BS 150.40 0.4279 0.7031 1.9887 3
GC 3.5356 0.3638 1.1735 2.3235 3

SD(ZH)

HA 20.909 1.5322 146.26 4.1906 4
RN 8.9198 −0.8192 0.9361 1.8218 4
GR 0.8711 −0.6537 1.0669 2.0824 4
CR 7.4321 −0.7811 0.9452 1.9085 4
WS 7.4063 −0.7553 0.9222 1.8085 4
DS 7.4273 −0.7605 0.9196 1.8863 4
BS 4373.0 −0.0008 0.0014 0.0026 3
GC 24.942 0.0790 7.6961 - 5

SD(ΦDP)

HA 21.816 −0.6041 0.9501 1.5407 4
RN 3.7498 −1.0723 1.1236 1.8026 4
GR 75.554 −0.7516 1.0656 1.8232 4
CR 2.3996 −0.6038 1.2830 1.5799 4
WS 2.8006 −0.7799 0.8447 1.8268 4
DS 3.5388 −0.9901 1.1997 1.7305 4
BS 17587 −1.4781 1.5339 1.9489 4
GC 3.3987 0.0014 65.92 - 5
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Finally, the bivariate Gaussian function is used to fit joint PDFs of ZH–ZDR:

P(x, y) = a× exp

( −1
2× (1− ρ2)

) (V1 − 〈V1〉)
2

σ1
2 −

2ρ(V1 − 〈V1〉)(V2 − 〈V2〉)

σ1σ2
+

(V2 − 〈V2〉)
2

σ22

, (6)

where V1 and V2 represent ZH and ZDR, respectively; 〈Vi〉 and σi stand for the mean and variance
presented in Table 3. The PDF fitting parameter ρ is the correlation coefficient between ZH and
ZDR. Note that ZDR has large fluctuations for GC. Therefore, this study uses the PDF of ZH instead
of the joint probability of ZH–ZDR for GC. The identification for GC is not affected by this change
because it mainly depends on SD(ZH) (Figure 1g) and SD(ΦDP) (Figure 1i). Figure 1g and j show the
big difference between GC and the other types. These two variables were also used by fuzzy logic
methods for identification of GC [8,11,32–34]. The y-scale (ZDR) in Figure 1d has a break and repeats to
prevent overlap.
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Figure 1. Conditional probability distribution functions (PDFs) fitted with Equations (3)–(6) for
polarimetric radar variables: (a,b) ZH; (c,d) ZH–ZDR; (e,f) ρhv; (g,h) SD(ZH); and (i,j) SD(ΦDP).
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Table 2. Mean 〈V〉, and variance σ2 of four variables ZH, ρhv, SD(ZH) and SD(ΦDP) and eight classes in
Equations (3) and (4). The en-dash indicates that the fitting function is Equation (5) without mean and
variance. Values given are the square (for Equation (3)) and the natural logarithm (for Equation (4)) of
ZH [dBZ], ΦDP [degrees], and ρhv.

Mean and Variance Classes ZH ρhv SD(ZH) SD(ΦDP)

〈V〉

HA 3.9700 −0.1118 −0.1665 0.5488
RN 927.90 - 2.7593 1.2869
GR 3.7197 −0.0472 −0.1257 0.2706
CR 421.24 - 0.1993 0.2646
WS 2079.1 8432.63 2.7739 1.6845
DS 514.10 - 2.7037 1.3181
BS 2.6037 0.2571 0.6383 3.5420
GC 0.1808 0.4905 - -

σ2

HA 0.0010 0.0033 0.3662 0.2446
RN 594.02 - 0.2058 0.1649
GR 0.0141 0.0026 0.4443 0.2860
CR 174.94 - 1.0108 1.0273
WS 648.07 640.08 0.1857 0.1868
DS 274.76 - 0.2023 0.1980
BS 0.1285 0.1692 0.1900 0.4959
GC 0.6668 0.1805 - -

Table 3. Mean value 〈V1〉 (〈V2〉) and standard deviation σ1 (σ2) for variable ZH (ZDR) and correlation
coefficient ρ in Equation (6).

Classes 〈V1〉 (dBZ) σ1 〈V2〉 (dB) σ2 ρ

HA 55.3953 5.2010 −0.6632 0.6894 0
RN 32.3002 10.0542 2.0739 0.8770 0.1443
GR 41.6840 3.9131 0.2397 0.2555 0
CR 19.0370 3.4456 0.5944 0.3610 0.0303
WS 32.7988 4.5676 1.2486 0.4495 0.0308
DS 21.5010 3.1002 0.2014 0.3119 0.0751
BS 19.3775 4.0815 6.9877 1.8733 0.0847

3.3. The Prior PDFs of Hydrometeor Types

The prior PDFs are usually constructed as a function of temperature [24] because the hydrometeors
only exist within certain temperature ranges. In addition to the temperature, occurrence frequency of
hydrometeor types at each altitude is also included in the prior PDFs. Considering the weather and
non-weather echoes, the prior PDFs of hydrometeor types are designed to be functions of altitude as a
compromise for simplification, where the altitude is computed based on the elevation and range gate
detected by radar. The prior PDFs of GC and BS are functions of altitude relative to mean sea level,
while the others are relative to freezing level.

In this study, for the independence between the training and testing datasets, the C-band
hydrometeor identification algorithm (RCHIA) developed by [12] is used to determine the training
data along with the subjective selection in order to confirm the HC’s reliability. The RCHIA is well
tuned and shows a reasonable classification in Eastern China [5]. The fitted PDFs are presented in
Table 4 and Figure 2, with the fitting functions based on Equations (3)–(5), and a combination of them
for bimodal PDFs.

The BS, GC, WS and DS (Table 4a) show a single peak. CR (RN) almost monotonically increases
(decreases) with altitude (Table 4b). The prior PDFs of GR and HA are bimodal (Table 4b). The primary
peaks are due to the high altitude, where the stratiform precipitation cannot reach. Therefore, only
strong convection could be detected with fewer total points at the high levels than at the low levels.
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The secondary peak is due to the most suitable region where GR (HA) develops, causing the largest
absolute quantity in the vertical dimension.

Table 4. (a) Fitted function of the prior PDFs for hydrometeor types GC, BS, WS and DS. Altitude for
GC and BS is relative to the mean sea level, altitude for WS and DS is relative to the freezing level.
(b) Fitted function of the prior PDFs for hydrometeor types: HA, RN, GR and CR. “Altitude” indicates
altitude above mean sea level of freezing level.

a

Altitude
(km) GC BS Altitude

(km) WS Altitude
(km) DS

0.5 7.63 × 10−2 1.02 × 10−4 −3 1.43 × 10−6 −2 0.0
1 0.140 0.003 −2.5 1.11 × 10−4 −1 0.010

1.5 0.196 0.026 −2 0.003 0 0.353
2 0.210 0.106 −1.5 0.042 1 0.451

2.5 0.172 1.68 × 10−1 −1 0.201 2 0.452
3 0.108 1.06 × 10−1 −0.5 0.385 3 0.450

3.5 0.052 2.63 × 10−2 0 0.293 4 0.448
4 0.019 2.60 × 10−3 0.5 8.75 × 10−2 5 0.445

4.5 0.005 1.02 × 10−4 1 1.04 × 10−2 6 0.432
5 1.18 × 10−3 1.58 × 10−6 1.5 4.90 × 10−4 7 0.368

5.5 1.95 × 10−4 9.69 × 10−9 2 9.14 × 10−6 8 0.212
6 2.47 × 10−5 2.36 × 10−11 2.5 6.75 × 10−8 9 4.87 × 10−2

6.5 0 0 3 0 10 1.95 × 10−3

7 0 0 3.5 0 11 4.11 × 10−6

b

Altitude
(km) HA Altitude

(km) RN Altitude
(km) GR Altitude

(km) CR

−5 0.006 −4.5 0.465 −3 0.002 0 0
−4 0.011 −4 0.467 −2 0.011 1 6.91 × 10−5

−3 0.018 −3.5 0.467 −1 0.045 2 0.002
−2 0.026 −3 0.462 0 0.139 3 0.010
−1 0.036 −2.5 0.448 1 0.144 4 0.025
0 0.047 −2 0.420 2 0.091 5 0.047
1 0.060 −1.5 0.375 3 0.058 6 0.075
2 0.077 −1 0.312 4 0.038 7 0.107
3 0.090 −0.5 0.235 5 0.027 8 0.141
4 0.062 0 0.156 6 0.058 9 0.175
5 0.085 0.5 0.089 7 0.169 10 0.208
6 0.118 1 0.041 8 0.294 11 0.238
7 0.154 1.5 0.015 9 0.125 12 0.265
8 0.036 2 0.004 10 0.052 13 0.289
9 0.023 2.5 0.001 11 0.022 14 0.309

10 0.006 3 1.12 × 10−4 12 0.009 15 0.326Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 18 
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to the freezing level.
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4. Analyses and Results

4.1. Validation Concept

Validation is difficult for all HC methods because in-situ measurements of hydrometeors are
difficult to obtain. Therefore, alternative approaches are typically adopted for validation [12,15,21,24,
35–38]. For example, observations on the ground were used to verify HCs in winter [35–37]. Automated
Surface Observation System and voluntary observations of precipitation types provided by the public
can be used as “truth”. If HA falls on the ground in summer, results of HC at low levels can be
verified as well. However, for most cases in the YHRB, there is only RN on the ground, with other
solid hydrometeor types at higher altitudes. Liu and Chandrasekar [13] and [17] compared results
of a HC against in-situ observations collected by High-Volume Particle Spectrometer image probe
installed under a T-28 aircraft. This approach is very expensive, and only data on the aircraft trajectory
can be verified, but it is the most objective way for validation. A testing dataset was constructed
based on simulation [24] or subjective identification [21] for quantitative evaluation of a HC method.
According to the uniqueness of certain HC types, other methods can be developed for validation
as well. One example was from Snyder and Ryzhkov [15], who developed a fuzzy logic method
for detecting tornadic debris signature (TDS) and compared it with tornado tracks for qualitative
validation. Comparisons between different HC methods [20] were also performed to evaluate a new
HC approach. It is probably not a real evaluation, because HC products from other HC method are not
the “truth”, but this is an effective way to see how well the new HC method performs compared to other
well-established approaches. Subjective validation was conducted as well, where the microphysics
derived from a HC algorithm were compared with human knowledge or conceptual models [3,8,11,12].

Due to the lack of in-situ microphysical measurements in this study, comparisons between the
BHCA and MBHC [24] as well as conceptual models seem to be a realistic way for evaluation. There are
10 hydrometeor types in the MBHC but only eight types in the BHCA. It is necessary to combine several
hydrometeor types in the MBHC for comparison. In particular, large drops, light rain, medium rain
and heavy rain are combined to RN; hail and rain/hail mixture are merged to HA. The other types in
MBHC are the same with those in the BHCA. However, it should be noted that the combined types are
not exactly the same as the types in the BHCA. In addition, the NFLC is a well-established fuzzy logic
method which has been widely used. Comparison with the NFLC [16] (C-band version available at
https://ral.ucar.edu/projects/titan/docs/radial_formats/pid_thresholds.cband.shv.txt) is also conducted
to evaluate the performance of BHCA. Note that the NFLC is developed with the dataset under a
North American climate; it may not perform well over YHRB. In addition, it should be mentioned
that any method in this study is not considered as the reference or benchmark. The results from HC
methods are mainly discussed with relevant polarimetric radar signatures and microphysical processes.
Otherwise, comparison with the NFLC could evaluate the identification of GC and BS which are not
included in MBHC. Similarly, drizzle, light rain, moderate rain and heavy rain are combined into RN;
hail and rain hail mixture are merged into HA; GR/small HA and GR/RN are combined into GR; ice
crystals and irregular ice crystals are combined into CR; supercooled liquid droplets and second trip
are combined into other types which are not included in the BHCA.

4.2. Squall Line

On 30 July, 2014, a few isolated thunderstorms initiated north of Hefei, Anhui Province in the
afternoon. A few hours later, these isolated cells merged, and more convection occurred, eventually
became a squall line with trailing stratiform region in the evening. Figure 3a–d shows the NJU C-POL
observations at 4.3◦ elevation angle during this squall line. The squall line is characterized by the trailing
stratiform region with an obvious embedded bright band (BB). Figure 3e–g shows the classification
results of the BHCA, MBHC and NFLC, respectively. Generally, they show good agreement.

Below the freezing level (blue circle in Figure 3), BB can be obviously seen from Figure 3a–d as
indicated by increased ZH and ZDR and decreased ρhv in the stratiform precipitation near the freezing

https://ral.ucar.edu/projects/titan/docs/radial_formats/pid_thresholds.cband.shv.txt
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level. Most of these signatures are identified by the BHCA and the NFLC, while the MBHC only
detects several pixels of WS and much GR and RN in the BB. The evaluation of [24] showed that
the classification accuracy (hits) of WS is also low (55%), indicating the CLPDF of WS in the MBHC
may not be robust. The pool performance of WS identification may be related to large uncertainty
in modelling the melting hydrometeor [39]. The NFLC also identifies several areas of GR (black
rectangles in Figure 3g), which seem not realistic. Above the freezing level, the BHCA, MBHC and
NFLC identify similar areas of DS, which agrees well with the polarimetric radar signatures with
moderate ZH (20–30 dBZ), small ZDR (< 1 dB), and high ρhv (> 0.97). The DS and RN identified by the
MBHC (Figure 3f) are strictly separated by the freezing level, indicating that these two hydrometeor
types strongly depend on temperature. The DS and RN identified by the BHCA (Figure 3e) seem more
realistic near the freezing level than those identified by the MBHC (Figure 3f).

The polarimetric radar signatures within convection show high ZH (40–50 dBZ), low ZDR (< 1 dB),
and high ρhv (> 0.94), indicating GR or small HA. These signatures are reasonably identified as GR
by the BHCA, MBHC and NFLC. In the convection core, there are some pixels that show higher ZH

(~55 dBZ), low ZDR (< 1dB), high KDP (> 4◦) (not shown) and low ρhv (< 0.9), which are all indicators of
HA. The classification results from the three methods are roughly consistent (Figure 3e–g) in this area.

Figure 4 shows the RHI scan for the squall line along the black dash line in Figure 3. The output
classifications identified by the three methods show some differences. Within the strong convection at
range ~90 km, polarimetric radar variables show increased ZDR (> 0.75 dB) and large ZH (> 45 dBZ)
extended above 6 km, indicating supercooled liquid water is lifted by strong updrafts [40], resulting in
riming of GR and the growth of small HA. Therefore, a large area of GR is expected, but discontinuous
GR, and HA mixed with DS in the area are identified by the MBHC. The DS type in the MBHC is only
related to the ZH and temperature. Furthermore, the CLPDF may not include appropriate measurement
biases and random fluctuations, which may introduce a noisy output. On the contrary, the BHCA and
NFLC provide much more reasonable output classifications of GR in this area. In addition, a small area
of WS is identified by the NFLC within the weak convection. The microphysical process of the weak
convection by polarimetric radar signature is riming rather than melting, and similar to the strong one
at ~90 km range, indicating that the WS within the weak convection identified by the NFLC may not
be reasonable.

Below the freezing level, more HA is identified by the MBHC relative to the BHCA. It is hard
to tell which is closer to the truth without in-situ measurements. However, we want to note that
HA is a rare weather phenomenon over the YHRB. As a result, the CLPDF and prior PDF for HA
may not be sufficient. Improvements should be made by incorporating more HA observations in the
future. Another obviously different output classification is the WS. As the DS particles fall below the
melting layer, they begin to melt at different rates, resulting in water coated on their exterior or sucked
inward to the vertices, causing increases in ZH, ZDR and a decrease in ρhv. The polarimetric radar
signatures show a clear BB within the stratiform region, most of which are identified by the BHCA and
NFLC. The MBHC detects much GR and several pixels of WS in this area. Although rimed aggregates
left over from collapsing deep convection or produced by Kelvin-Helmholtz instability, which are
difficult to distinguish using polarimetric radar, could exist within stratiform regions [41], the main
BB signature is missed by the MBHC. Within the BB at range <20 km, the radar signatures present
strong ZH (> 50 dBZ) and low ρhv (< 0.85), which are nearly beyond the membership function in the
fuzzy logic method or CLPDF in the Bayesian approach. This is likely due to snow melting and strong
rimming of aggregates. Both the BHCA and NFLC identify GR in most of this area.
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Figure 3. Plan position indicator (PPI) of (a) ZH, (b) ZDR, (c) ρhv, (d) ΦDP, and corresponding
hydrometeor classification results by (e) the Bayesian hydrometeor classification algorithm (BHCA),
(f) Marzano-Bayesian hydrometeor classification algorithm (MBHC) and (g) NCAR fuzzy logic classifier
(NFLC) at 4.3◦ elevation angle at 23:04 LST on 30 July 2014. The blue dash circle represents freezing
level determined from sounding data, and the black dash line shows the azimuth of range-height
indicator (RHI) scan in Figure 4. The black rectangles highlight the different output classification.
Each range ring represents 30 km distance of interval away from radar site.
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hydrometeor classification results by the (e) Bayesian hydrometeor classification algorithm (BHCA),
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dashed lines represent the temperature level of 0 ◦C, −10 ◦C and −20 ◦C from bottom to top, respectively.
The red rectangle highlights the different classification results.
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Above the freezing level, the dominant polarimetric radar signatures present moderate ZH

(20–30 dBZ), small ZDR (< 1 dB), and high ρhv (> 0.98), which indicate DS. In this area, the BHCA
identifies predominant DS and a small area of CR on the edge of the convection and a few pixels
of CR within the stratiform region. The MBHC detects dominant DS and large area of CR on the
edge of the convective and stratiform region. The NFLC also identifies a large area of CR within
the stratiform region, but nearly no CR identified within the convection. This is because the same
membership function for temperature is used for DS and CR in the NFLC, resulting in some vagueness
in the boundary between them. While the prior PDFs of CR in the BHCA and MBHC show obvious
differences from that of DS, it is difficult to quantify which is closer to the truth without in-situ
measurements. Nevertheless, this difference reflects the different prior PDF and CLPDF or membership
functions used in the three methods.

4.3. Isolated Deep Convection

At 20:19 local solar time on 11 July, 2014, isolated strong convection occurred at 128.6◦ azimuth
angle to the radar site. Available RHI scan (Figure 5) data are used to evaluate the BHCA. Figure 4a–d
show the convection extending above 18 km AGL. A 40 dBZ echo reaches 14 km AGL, indicating large
number of solid hydrometeors lifted by a strong updraft. The BHCA and NFLC identify large areas of
GR (Figure 5e,g) extending above 16 km, which are consistent with the polarimetric signature of GR
with high ZH (40–50 dBZ), low ZDR (< 1 dB), and high ρhv (> 0.94). The GR (Figure 5f) detected by the
MBHC reaches about 13 km AGL (altitude of −52 ◦C in this case) with a short horizontal linear edge.
Because GR is excluded by the prior PDF in the MBHC below −52 ◦C, the prior PDF for GR is not
suitable for this case. In addition, almost no CR is identified by the NFLC in Figure 5 (red rectangle),
which seems unrealistic.

There is a noticeable phenomenon that much more HA is identified by the MBHC (Figure 5f) at
altitude near 3 km than the altitude between 4 and 5 km. The sounding data shows that temperature
near 3 km is higher than 10 ◦C, which is not a suitable environment for riming or deposition for HA
growing, but is in favor of melting for HA. The large area of HA may be contributed by the larger prior
PDF between 3 and 10 ◦C than that between 0 and 3 ◦C. On the edge of the strong convection, there
are echoes with strong ZH (> 50 dBZ), large ZDR (> 3dB), low ρhv (< 0.94). These signatures suggest
HA/RN mixture, most of which are not identified by the BHCA below 2 km AGL. The MBHC and
NFLC identify a small part of the HA/RN mixture. As mentioned previously, the training dataset for
HA may not be sufficient. More HA observations are required for adding HA/RN mixture type in
the BHCA framework. The RN regions identified by the three methods generally agree well with
each other.
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level of 0 ◦C, −10 ◦C and −20 ◦C from bottom to top, respectively. The red rectangle highlights the
differences in the classification results.
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4.4. Biological Scatterers and Ground Clutter on 24 July 2014

At 08:03 (LST) on 24 July, 2014, a large area of BS and some GC were detected by NJU C-POL before
the arrival of a typhoon outer rainband. A large area of high ZDR (>4 dB) can be seen from Figure 6b
with the color bar adjusted for large variation. The corresponding ZH is between 5 and 30 dBZ; ρhv is
less than 0.9 with some pixels even below 0.6; and SD (ΦDP) is very high. These signatures suggest
BS within this area. The BHCA identifies a large area of BS as expected and agrees well with that
identified by the NFLC. There is a thin line extending from northwest to southwest, and further to
south in ZH, ZDR, ρhv and ΦDP (Figure 5a–d). These signatures are found to be caused by iron towers
which are identified by both methods. There are a few pixels with high ZH (Figure 6a), fluctuant ZDR

(Figure 6b), low ρhv (Figure 6c), high SD(ZH) and SD(ΦDP) (Figure 6d) near the radar site, suggesting
these echoes are GC as well. These GC identified by the two methods are consistent with each other.
The NFLC identifies some scattered GC in northwest and southeast of the radar site, which is identified
as BS by the BHCA (red rectangle in Figure 6). These pixels show small SD(ZH), which is more likely
to be weather echoes or BS rather than GC [11], but the SD(ZH) is not used by the NFLC. In addition,
ZDR shows high fluctuation in this area, which may largely contribute to the identification of GC by
the NFLC.
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Figure 6. Plan position indicator (PPI) of (a) ZH, (b) ZDR, (c) ρhv, (d) ΦDP, and corresponding
hydrometeor classification results by (e) the Bayesian hydrometeor classification algorithm (BHCA)
and (f) NCAR fuzzy logic classifier (NFLC) at 0.5◦ elevation angle at 08:03 LST on 24 July 2014 and
hydrometeor classification results. The red rectangle highlights the different output classification.
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4.5. Agreement Analysis

Table 5 shows the quantitative difference of each hydrometeor type identified by the BHCA,
MBHC (Table 5a) and NFLC (Table 5b) during 20:04–22:57 LST on July 30 and 08:03–09:04 LST on
24 July, 2014, including both RHI and PPI data. A very small proportion of undefined type in the BHCA
(P(Ci|V1, . . . , V5) in Equation (2) < 1.0 × 10−30) is identified, which does not affect the comparison
among the three classifiers, and thus not listed in Table 5. The values in Table 5a,b) represent the
points (normalized by the total number of points along each row) classified as the hydrometeor types
in the columns by the MBHC (NFLC) and the rows by the BHCA. Table 5a shows that there is good
agreement between the MBHC and BHCA for RN (92%) and DS (92%). There is a good consistency
(percentage > 60%) between the NFLC and BHCA for RN (96%), GR (73%), WS (69%), DS (94%) and
BS (93%), which is more consistent than that in Table 5a. The largest difference (13%) is found for
the CR type in Table 5a, where 83% CR identified by the MBHC are classified as DS by the BHCA.
This is because DS particles are not allowed to appear below −52 ◦C due to the restriction of the prior
PDF in MBHC, resulting in predominantly CR above that altitude in strong convection, and most of
the CR below −52 ◦C is classified as DS by the BHCA. A similar issue can be seen from Figure 5e–f.
The agreement between the NFLC and BHCA for CR is also low (22%). This is due to the fact that the
same membership function is used for CR and DS, resulting in much fewer CR samples produced by
the NFLC. A large difference (31%) is also found for the HA type in Table 5a, while 33% HA identified
by the MBHC is classified as RN by the BHCA, indicating a large difference in HA classification below
the freezing level. This is partly due to the absence of RN/HA mixture type in the BHCA, while those
echoes are identified as HA by the MBHC and RN by the BHCA. This is also the reason for the large
difference of HA (Table 5b) identified by the BHCA and NFLC. In addition, the large prior PDF at high
temperature also results in more HA identified by the MBHC within 10–20 ◦C than 3–10 ◦C. A similar
issue is found in GR type, which is the main reason why 20% GR (Table 5a) identified by the MBHC is
classified as RN by the BHCA. The agreement in WS type is also low (34% in Table 5a) since most of
BB is missed by the MBHC, resulting in very few WS dataset relative to that identified by the BHCA.
Because the terrain around the radar site is flat, the GC dataset is rare. Most of the dataset of GC
(Table 5b) is similar to Figure 5a–d. Therefore, echoes with low SD(ZH) and fluctuating ZDR are also
classified as GC by the NFLC, and the agreement of GC is moderate (51%) in Table 5b. Other than this,
both the BHCA and NFLC do a reasonable job for GC classification.

Table 5. (a) Agreement of classification between the BHCA and MBHC during 18:04–22:57 LST on
30 July and 08:03–09:04 LST on 24 July, 2014. (The numbers in the table represent the percentages
of the hydrometeor types in the column identified as the ones in the row. Bold font indicates good
consistency); (b) Similar to Table 5a, but for agreement of classification between the BHCA and NFLC.

a

BHCA

Methods Classes HA RN GR CR WS DS BS GC

MBHC

HA 31% 33% 21% 0% 2% 11% - -
RN 0% 92% 0% 0% 3% 3% - -
GR 2% 20% 51% 0% 16% 11% - -
CR 0% 0% 4% 13% 0% 83% - -
WS 2% 2% 14% 0% 34% 48% - -
DS 0% 0% 6% 1% 0% 92% - -

b NFLC

HA 57% 37% 6% 0% 0% 0% 0% 0%
RN 0% 96% 1% 0% 1% 2% 0% 0%
GR 6% 12% 73% 0% 1% 2% 0% 0%
CR 0% 2% 0% 22% 0% 76% 0% 0%
WS 0% 16% 9% 0% 69% 6% 0% 0%
DS 0% 0% 4% 2% 1% 94% 0% 0%
BS 0% 4% 0% 0% 0% 0% 93% 3%
GC 0% 5% 0% 0% 0% 1% 43% 51%
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5. Conclusions

A new hydrometeor classification algorithm is developed based on Bayes’ theorem. The CLPDFs
of radar variables and prior PDFs of each hydrometeor types are constructed with training data, which
are manually selected by experts and the classification results from RCHIA [12]. The prior PDFs in
this method include not only temperature information but also background information about the
occurrence frequency of different hydrometeor types at each altitude.

The performance of this BHCA approach is compared with the MBHC [24] and the widely used
NFLC [16] using NJU C-POL observations from the OPACC field campaign in 2014. The testing data
include a squall line with trailing stratiform precipitation, isolated strong convection, and GC and
BS observations from both PPI and RHI scans. The results show that the BHCA produces a more
reasonable classification output than the MBHC and NFLC over the Yangtze-Huaihe River Basin,
Eastern China. CR within strong isolated convection are largely missed by the NFLC, which may be
related to an inappropriate membership function. WS are almost missed by the MBHC due to large
uncertainty in modelling the melting hydrometeor. The prior PDFs in the MBHC have two limitations
when the algorithm is applied to the strong convection over YHRB, Eastern China. One is that the
prior PDFs for GR and DS below −52 ◦C seem not realistic in this study. The other is that the prior
PDFs for HA and GR are larger within 10–20 ◦C than 3–10 ◦C, which may result in unexpected HA and
GR within area of 10–20 ◦C even though it is a favorable temperature range for melting rather than
riming and deposition. The BHCA overcomes the two shortcomings in the prior PDFs and produces
an overall reasonable classification.

To avoid the circular reasoning in this paper, the radar data used for training and testing are
separated out. The training and testing datasets are also processed by different methods. Nevertheless,
subjective information still exists in the training dataset and validation procedure. We hope to have the
chance to do an objective validation with in-situ observations in the future. In addition, future work
will include more observations to build a robust CLPDF for HA and possibly additional hydrometeor
types in the BHCA.

Author Contributions: Conceptualization, project administration and supervision, K.Z. and G.Z.; methodology
and writing—original draft preparation, J.Y.; data curation, G.C. and H.H.; writing—review and editing, H.C.

Funding: This work was primarily supported by the National Key Research and Development Program of China
(Grant Nos. 2017YFC1501703 and 2018YFC1506404), the National Natural Science Foundation of China (grants
41875053, 41805025, 41475015, 41322032 and 41805015), the Open Research Program of the State Key Laboratory of
Severe Weather, and the Key Research Development Program of Jiangsu Science and Technology Department
(Social Development Program, No. BE2016732), and the National 973 Project (2013CB430101).

Acknowledgments: Observational data used in this study were collected by a National 973 Project (2013CB430101),
and the requests for the data can be made at http://scw973.nju.edu.cn/ or by contacting the project office via
yang.zhengwei@nju.edu.cn.

Conflicts of Interest: The authors declare no conflict of interest.

References
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