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Abstract: Accurately estimating aboveground biomass (AGB) is important in many applications,
including monitoring carbon stocks, investigating deforestation and forest degradation, and designing
sustainable forest management strategies. Although lidar provides critical three-dimensional forest
structure information for estimating AGB, acquiring comprehensive lidar coverage is often cost
prohibitive. This research focused on developing a lidar sampling framework to support AGB
estimation from Landsat images. Two sampling strategies, systematic and classification-based,
were tested and compared. The proposed strategies were implemented over a temperate forest study
site in northern New York State and the processes were then validated at a similar site located in central
New York State. Our results demonstrated that while the inclusion of lidar data using systematic or
classification-based sampling supports AGB estimation, the systematic sampling selection method was
highly dependent on site conditions and had higher accuracy variability. Of the 12 systematic sampling
plans, R2 values ranged from 0.14 to 0.41 and plot root mean square error (RMSE) ranged from 84.2
to 93.9 Mg ha−1. The classification-based sampling outperformed 75% of the systematic sampling
strategies at the primary site with R2 of 0.26 and RMSE of 70.1 Mg ha−1. The classification-based
lidar sampling strategy was relatively easy to apply and was readily transferable to a new study
site. Adopting this method at the validation site, the classification-based sampling also worked
effectively, with an R2 of 0.40 and an RMSE of 108.2 Mg ha−1 compared to the full lidar coverage
model with an R2 of 0.58 and an RMSE of 96.0 Mg ha−1. This study evaluated different lidar sample
selection methods to identify an efficient and effective approach to reduce the volume and cost of
lidar acquisitions. The forest type classification-based sampling method described in this study could
facilitate cost-effective lidar data collection in future studies.

Keywords: systematic sampling; classification-based sampling; forest types; data fusion; regression;
random forest

1. Introduction

Forest ecosystem management requires comprehensive, timely, and accurate monitoring efforts [1].
Above ground biomass (AGB) is an important indicator in monitoring the change of forest carbon
stocks. Airborne lidar has been applied successfully to estimate forest biophysical parameters and
has provided accurate AGB estimation in many studies [2,3], particularly when used in coordination
with data from passive sensors. Commonly used remote sensing data sources, such as Landsat [4],
Moderate Resolution Imaging Spectroradiometer (MODIS) [5], and radar [6], tend to reach a saturation
point that limits their effectiveness in estimating higher AGB levels [7]. The saturation level of radar
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varies with the bands applied. For example, X- and C-band backscatter saturates at low biomass levels
(30–50 Mg ha−1) [5] and L-band saturation ranges from 40–150 Mg ha−1 [8]. Lidar does not suffer
from this saturation problem and thus is able to more accurately estimate AGB [9]. However, lidar
acquisitions are often practically limited by cost or data volume. Although the increasing availability
of unmanned aerial vehicles (UAVs) are providing new avenues for data collection, the cost and
effort to acquire airborne lidar data are still higher than passive satellite sensors like Landsat, MODIS,
or Sentinel. Moreover, acquiring full coverage lidar is often infeasible for large area studies due to the
data volume. Kelly and Di Tommaso [10] provide an example of a 5 hectare forest stand that can be
covered by a 300 byte Landsat Thematic Mapper (TM) image or a 50 Mb 10 pulse/m2 lidar dataset.
These cost and data limitations inhibit the widespread and ready availability of lidar data.

Sensors like those onboard the Landsat satellites can provide extensive forest coverage with low
cost but offer limited capacity for vertical characterization. Conversely, lidar can provide accurate
measurements of forest attributes in the vertical plane; however, as mentioned above, lidar acquisitions
are often limited in horizontal extent due to issues with cost and data volume. Additionally, lidar cannot
capture all necessary forest attributes. For example, Erdody and Moskal [11] discussed the limitation
of lidar data in discerning tree species. To mitigate the weaknesses of each data type, the fusion of lidar
and Landsat has been proposed and explored for AGB estimation [4,12]. The advantages of lidar and
Landsat data fusion are twofold: (1) Synergistic harnessing of advantages from both datasets, and (2)
with appropriate sampling, full lidar coverage is not required.

Researchers have applied lidar sampling to mitigate the limitations associated with managing
cost and data volume. Instead of collecting full-coverage data, lidar sampling can significantly
reduce the time and effort needed for data collection, organization, and processing. Lidar samples
supply detailed information on specific locations that can be used to calibrate models to derive forest
attributes for other regions [13]. Studies have demonstrated that lidar sampling can provide estimates
for biomass [14,15] or forest height [16]. Researchers have used numerous statistical methods to
extrapolate forest biophysical parameters beyond lidar samples to represent a broader area of interest.
For example, Boudreau et al. [17] used intermediate samples of airborne lidar data to extrapolate AGB
estimates from plot-level forest inventory data to a broader spaceborne lidar coverage. In a two-stage
method, they first developed a lidar-based biomass equation to relate plot-level biomass and airborne
lidar derived variables and then applied the equation to estimate biomass throughout the airborne
lidar coverage. The second stage developed a regression equation between the lidar derived biomass
and spaceborne ICESat Geoscience Laser Altimer System (GLAS) metrics in order to extrapolate the
limited lidar biomass estimates to the broader GLAS coverage.

There are two approaches to reduce lidar data volume—thinning lidar density and reducing lidar
extent—that have proved to have minimal impact on accuracy estimation of biophysical parameters
compared with using full lidar data coverage. For example, Holmgren [18] reduced laser density from
4.3 to 0.1 pulses/m2 and observed minimal change in errors for estimation of mean tree height, basal
area, and stem volume. This was also confirmed by Maltamo et al. [3] who reported that simulated
point density reduction had no effect on volume estimation accuracy. Instead of using full lidar data
coverage, Chen and Hay [19] sampled 17.6% of total lidar extent and achieved similar accuracies as the
full lidar data in estimating canopy height.

Decisions regarding lidar sample locations are critical. Countless lidar samples can be generated
with similar data collecting efforts but may generate different analysis outcomes. It is preferable
to use lidar samples that best characterize the study area in order to achieve similar outcomes as
comprehensive lidar coverage. Sampling methods used to reduce lidar coverage generally fall into
two categories: Systematic sampling and classification-based sampling. In systematic lidar sampling,
data are collected based on a designated sampling unit and distance interval. The distribution of
sampling units may be point, strip, or grid based. Tsui et al. [20] sampled lidar data using a grid
pattern in which horizontal and vertical lines had distance intervals of 1000 m. Hudak et al. [16]
sampled lidar data using both strip and point patterns with distance intervals of 250 m, 500 m, 1000 m,
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and 2000 m. Systematic sampling is easy to design and apply but it might fail to represent the full
data range, especially if only a small portion of data are sampled. Classification-based sampling can
help compensate for this situation by better representing all value ranges. In classification-based
sampling, a classification map is created and then applied to assist lidar sample selection. Chen and
Hay [19] aimed to model forest canopy height from lidar samples that were selected by combining
pseudo-height classification from QuickBird imagery with several other inputs in a rule-based model.
The rules included non-overlapping transects, covering all height classes, and selecting pseudo-height
histograms with the highest correlation to the pseudo-height histogram derived from all data. Previous
studies have considered both systematic sampling and classification-based sampling, though there has
not been a comparison of these two strategies.

The overall aim of this study was to deepen our understanding of lidar sampling for AGB
estimation. While the value of lidar sampling has been well documented and various lidar sampling
strategies have been proposed, there are no widely accepted protocols for cost-effective lidar sampling
for AGB estimation. Additionally, while forest type has long been recognized as a factor in AGB
estimation, prior studies have not documented the use of forest type classification for lidar sampling
selection within this field. This paper presents a methodological framework to map AGB in temperate
forests by combining ground-based inventory data, comprehensive Landsat data, and lidar samples
acquired using a variety of methods. We particularly focused on: (1) Assessing whether lidar samples
can substitute for comprehensive lidar data collection, (2) characterizing the differences in AGB
estimation based on systematic and classification-based sampling lidar sampling strategies, and (3)
providing a protocol for lidar sampling acquisition, implementation, and evaluation.

2. Data and Methods

2.1. Study Areas

2.1.1. Main Study Area: Huntington Wildlife Forest

Our main study area was the Huntington Wildlife Forest (Huntington) in the central Adirondack
Park in northern New York State. The Huntington property provided a location for evaluating the
value of different lidar sampling procedures and developing a sampling protocol. Huntington is
managed by the State University of New York College of Environmental Science and Forestry (SUNY
ESF; 43◦58′19”N, 74◦13′18”W; Figure 1). Huntington covers approximately 60 km2 with mountainous
topography ranging in elevation from 466 m to 859 m above mean sea level. Huntington had a
mean annual temperature of 4.4 ◦C and mean annual precipitation of 1010 mm [21]. Huntington
contained both undisturbed natural communities and managed forest stands with major species being
American beech (Fagus grandifolia), yellow birch (Betula alleghaniensis Britt.), sugar maple (Acer saccharum
Marshall.), red spruce (Picea rubens Sarg.), red maple (Acer rubrum L.), and hemlock (Tsuga spp.).

2.1.2. Test Study Area: Heiberg Memorial Forest

Our test study area was the Heiberg Memorial Forest (Heiberg) south of Syracuse in central New
York State. Heiberg is also managed by SUNY ESF (42◦47′12”N, 76◦05′37”W; Figure 2). Heiberg
provided an independent site for testing the lidar sampling protocol developed at Huntington. Heiberg
covers approximately 16 km2 with elevation ranging from 383 m to 625 m above mean sea level.
The majority of Heiberg was conifer plantations (6.64 km2, 42%), Allegheny hardwoods (5.65 km2,
36%), or open areas (2.39 km2, 15%). Predominant conifer species included Norway spruce (Picea abies),
hemlock (Tsuga), white pine (Pinus strobus) and eastern larch (Larix laricina). Deciduous tree species
mainly included maple (Acer), ash (Fraxinus L.), beech (Betula), and basswood (T. americana).
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Figure 2. Location of Heiberg Memorial Forest in New York State. The figure shows the distribution of
43 forest inventory plots overlaid on land cover from the National Land Cover Database 2016 [22].

2.2. Field Inventory Data

SUNY ESF maintained continuous forest inventory (CFI) plots within Huntington and Heiberg
forests, with comprehensive data collected during the summer of 2011 and 2010, respectively. The CFI
plots are approximately 405 m2 circular regions, with the center of each plot located using a global
positioning system receiver. All trees in the plot with a diameter at breast height (DBH) of 11.7 cm or
greater were measured in Huntington and 9.1 cm or greater were measured in Heiberg. The information
recorded for each tree included tree species, DBH, and location relative to the plot center.
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Based on the field observations, tree-level AGB was calculated using species-specific DBH
allometric equations from Jenkins et al. [23]. Plot-level AGB was calculated as the average AGB per
unit area within each plot in megagrams per hectare (Mg ha−1). This was calculated by dividing
the tree-level AGB total by the plot area. The United Nations Economic Commission for Europe
(UNECE) Food and Agriculture Organization (FAO) [24] defined a stand as a mixed forest where
neither broadleaved nor coniferous trees account for more than 75% of the tree crown area. We adapted
the UNECE/FAO approach and defined a plot as hardwood if the hardwood AGB within the plot was
over 75% of the total AGB. Softwood plots were similarly defined when at least 75% of the total AGB
was softwood AGB. Mixed forest plots had neither softwood nor hardwood accounting for more than
75% of the total AGB. Table 1 provides descriptive statistics for plot level AGB in hardwood, softwood,
and mixed plots in Huntington and Heiberg forests.

Table 1. Plot level aboveground biomass (AGB) descriptive statistics for all plots and plots grouped by
forest type (hardwood, softwood, and mixed) in Huntington and Heiberg forests (units: Mg ha−1).

Study Area Forest
Type

Plot
Count

AGB (Mg ha−1)

Mean Median Standard
Deviation Min Max

Huntington Total 270 186.6 186.3 82.5 0.9 440.3
Hardwood 194 182.3 184.5 81.8 0.9 440.3

Mixed 60 211.9 208.7 73.9 68.8 390.7
Softwood 16 144.3 133.9 98.8 9.1 314.7

Heiberg Total 43 212.6 215.9 98.4 2.0 375.8
Hardwood 31 220.8 249.7 98.5 2.0 375.8

Mixed 9 220.3 249.0 88.6 76.4 323.9
Softwood 3 104.9 59.5 86.9 50.1 205.1

2.3. Lidar Data and Processing

Airborne lidar data were acquired for Huntington and Heiberg on 10 September 2011 and 10
August 2010, respectively. ALS60 lidar systems were used to simultaneously collect both discrete return
point clouds and the waveforms of the returned signals. Characteristics of the lidar data collections for
Huntington and Heiberg are summarized in Table 2. Raw laser data was post-processed by Kucera
International using Terrasolid’s TerraScan software [25]. All further point-cloud processing tasks were
performed within FUSION software [26].

Table 2. ALS60 system settings and raw laser statistics of the lidar data collection for Huntington and
Heiberg forests.

Study Site Huntington Heiberg

Scan field of view (FOV) 24◦ 28◦

Outgoing pulse width 4 ns 4 ns
Flying altitude 540 m 487 m
Swath width ~542 m ~554 m

Average point density >10 pts/m2 >7 pts/m2

Laser pulse rate 218.7 kHz 183.8 kHz
Acquisition date 10 September 2011 10 August 2010

Lidar variables were derived from the lidar points within each inventory plot using the
CloudMetrics function in FUSION [27]. Return-based, height-based, and density-based variables were
derived (Table 3).
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Table 3. Description of lidar derived variables calculated. Calculation details are described by
McGaughey (2019).

Variable Name Description Variable Name Description

Pt_total Total number of returns ht_P50 50th percentile of height
Pt_first Count of first returns ht_P60 60th percentile of height

Pt_second Count of second returns ht_P70 70th percentile of height
Pt_third Count of third returns ht_P75 75th percentile of height
ht_min Height minimum ht_P80 80th percentile of height
ht_max Height maximum ht_P90 90th percentile of height

ht_mean Height mean ht_P95 95th percentile of height
ht_mode Height mode ht_P99 99th percentile of height
ht_stddev Height standard deviation Per-first-5 m Percentage of first returns above 5 m

ht-variance Height variance Per-first-mean Percentage of first returns above mean

ht-CV Height coefficient of
variation Per-first-mode Percentage of first returns above mode

ht-skewness Height skewness Per-all-5 m Percentage of all returns above 5 m
ht-hurtosis Height kurtosis Per-all-mean Percentage of all returns above mean

ht-AAD Height absolute deviation
from mean Per-all-mode Percentage of all returns above mode

ht_P01 1st percentile of height First-abv-mean First returns above mean
ht_P05 5th percentile of height First-abv-mode First returns above mode
ht_P10 10th percentile of height All-abv-mean All returns above mean
ht_P20 20th percentile of height All-abv-mode All returns above mode
ht_P25 25th percentile of height First-returns Total first returns
ht_P30 30th percentile of height All-returns Total all returns
ht_P40 40th percentile of height Canopy relief ratio ((mean-min)/(max-min))

2.4. Landsat Data and Processing

We selected orthorectified Landsat TM Level-1 images acquired on 19 August 2011 (path/row:
15/29) and 18 July 2010 (path/row: 15/30) that covered the Huntington and Heiberg forest areas,
respectively. The images were downloaded from the U.S. Geological Survey Earth Explorer [28].
Although the Landsat images were collected earlier in the growing season than the lidar datasets,
they were the cloud-free images that best coincided with the forest inventory data collection.

Using the metadata associated with the downloaded Landsat images, radiometric correction was
applied to convert digital numbers into reflectance aiming to mitigate the impact of scene illumination
and viewing geometry. Dark object subtraction was applied for atmosphere correction, which was
intended to remove the effects of atmosphere scattering and absorption. Radiometric and atmosphere
correction were both performed using ENVI 5.2 [29]. Landsat bands 1–5 and 7 (blue, green, red, near
infrared, and 2 shortwave infrared), reflectance values, and vegetation indices calculated from these
bands were used for model variable selection. Five commonly used vegetation indices were applied in
this study: Differenced Vegetation Index (DVI), Ratio Vegetation Index (RVI), Normalized Vegetation
Difference Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Modified Soil Adjusted Vegetation
Index (MSAVI) (Table 4).

Table 4. Landsat thematic mapper (TM) vegetation indices used in this study: DVI (differenced
vegetation index), RVI (ratio vegetation index), NDVI (normalized vegetation difference index), SAVI
(soil adjusted vegetation index) and MSAVI (modified soil adjusted vegetation index). Landsat 5 red
(B3) and near-infrared (B4) bands were used for index calculation.

Vegetation Index Equation Source

DVI B4 − B3 Bacour et al. [30]
RVI B4/B3 Jordan [31]

NDVI (B4 − B3)/(B4 + B3) Tucker [32]
SAVI 1.5 × (B4 − B3)/(B4 + B3 + 0.5) Huete [33]

MASVI 0.5× (2× B4 + 1−
√
(2× B4 + 1)2

− 8× (B4− B3)) Qi et al. [34]
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2.5. Lidar and Landsat Fusion Procedure

2.5.1. Overview

We used AGB data developed from full lidar coverage as a baseline to see if Landsat-based AGB
models that used lidar samples could achieve accuracies that approached that of models that used the
more expensive full lidar coverage. We also sought to determine how accuracy varied with sampling
strategy and if there was a way to establish a protocol to guide lidar sample collection. The workflow
for this study is shown in Figure 3. The baseline for comparison in our study was an AGB model
developed from the comprehensive lidar data coverage. Forest inventory plot and lidar data were
applied to build a first stage regression model that was then used to estimate AGB for the Huntington
study area. The impact of different lidar sampling strategies was explored using second stage regression
models, which established a relationship between samples of the lidar estimated AGB values and
Landsat derived variables. Two categories of lidar sampling strategies were explored: Systematic
sampling and classification-based sampling. The classification-based sampling approach was based on
a Random Forest (RF) forest type classification. A study previously performed at the same site found
that RF had better performance in forest type classification than support vector machine and decision
tree algorithms [35]. To assess the accuracy of different sampling strategies, Landsat estimated AGB
values generated from second stage regression models were validated using plot and lidar estimated
AGB values using mean absolute error (MAE), root mean square error (RMSE), and relative root mean
square error (RRMSE). Lidar estimated AGB values covering the full study area were estimated using
the first stage regression model and used for testing the Landsat estimated AGB values.
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2.5.2. Regression and Variable Selection

This study explored the relationship between AGB and remote sensing derived variables using
regression models based on the equation below:

AGBi = β0 +

p∑
j=1

β jXi j + εi (i = 1, . . . , n) (1)

where β0 is the intercept, β j are model coefficients, and Xi j represents the remote sensing derived
predictors. As discussed in the prior section, regression models were built in two distinct steps within
the workflow (Figure 3). In the first stage regression model, the dependent variable was AGB for the
270 plots within the Huntington area and the predictors were selected from lidar derived variables
using the forward variable selection method. Like prior studies [36,37], using the natural logarithm of
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both dependent and predictor variables led to better performance for the first stage regression model.
The second component of the analysis applied Equation (1) to develop regression models for a series of
different sampling strategies (described in the next section). Shown as second stage regression models
in Figure 3, these models used a sample of the lidar estimated AGB values as the dependent variable
and Landsat variables as predictors without variable selection. All variables were used to facilitate
comparison by ensuring all second stage regression models had the same predictors.

There are several commonly used variable selection methods when applying multiple linear
regression: Forward, backward, and stepwise selection. Forward selection starts with the most
significant variable in the model and sequentially adds the next most significant variable into the
model until none of the remaining variables are significant. Backward selection starts with all variables
in the model and successively removes the least significant variable until all the variables in the model
are significant at a chosen level. Stepwise selection adds or removes one variable at each step to ensure
all variables in the model are significant, while no variable outside the model is significant enough
to enter the model. Forward selection was applied when building the first stage regression model
because it supported the easy application of subsequent procedures.

2.5.3. Lidar Sampling Strategies

Two sampling strategies were adopted in this study: Systematic and classification-based sampling.
In systematic sampling, combinations of 3 sampling patterns (point, strip, and grid) and 4 sampling
intervals (500 m, 1000 m, 1500 m, and 2000 m) were applied to acquire 12 systematic lidar samples
(Figure 4). A northwest-southeast alignment was applied to be consistent with the airplane flight path
used during the lidar acquisition. The classification-based sampling used the same sampling pattern
and amount of data as the best performing systematic sampling strategy. However, instead of using a
pre-defined distance interval, the classification-based sampling selected data based on the forest type
distribution within the samples.
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Based on the 542 m lidar data acquisition swath width, a 500 × 500 m square area was chosen
as the basic sampling unit at Huntington. However, given the smaller forest extent of our test site,
for the Heiberg area, a 200 × 200 m square area was chosen as the basic sampling unit. By reducing
the basic sampling unit at Heiberg, we kept the overall area percentage sampled consistent with the
Huntington analysis.

2.5.4. RF Classification of Forest Type for Classification-Based Sampling

RF is a non-parametric machine learning algorithm that was implemented in this study using the
“RandomForest” package [38] within the R software environment [39,40]. RF can be used for regression
or classification depending on the type of variable to be estimated [41,42]. Compared with linear
regression techniques, RF has a lower bias and avoids overfitting [43–47]. RF grows many trees to
vote for a result, which makes it insensitive to outliers and noise [44,45]. For each tree, approximately
two-thirds of the original data was randomly chosen to build the tree, and the remaining data were
used for estimating out-of-bag error and calculating variable importance. In this study, RF was applied
to develop a forest type classification map using forest inventory plots as reference data and Landsat
derived variables as predictors. The forest type classification map identified 3 classes: Hardwood,
mixed, and softwood forests. Default RF parameters were applied: 500 for ntree, square foot of the
total predictors for mtry, and 1 for node size.

2.5.5. Chi-Square Test for Selecting Classification-Based Samples

For the classification-based sampling, the sampling pattern and percentage of the sampled
area were chosen according to the performance of different systematic sampling plans. Our testing
demonstrated that there was a need to identify a sample that represented the overall distribution of
forests within the study site. There are multiple approaches that can be used to explore the relationship
between a sample and the population. The chi-square goodness of fit test is used to determine whether
an observed categorical variable frequency distribution differs from an expected distribution.

χ2 =
∑ (Oi − Ei)

2

Ei
, Ei = Npi (2)

where Oi is the observed frequency, Ei is the expected frequency, N is the total number of observations,
and pi is the percentage of type i in the expected distribution. The similarity between observed and
expected distribution can be inferred from the χ2 value. Smaller χ2 values indicate more similar
distributions. In this study, forest type distribution from the sampled area was our observed distribution
and forest type distribution from the whole study area was our expected distribution. We divided the
study site into multiple non-overlapping strips. Using this method, we calculated χ2 values between
the whole study area and each strip based on forest type distribution. Smaller χ2 values correspond to
strips with forest type composition that was closer to the whole study site.

2.5.6. Accuracy Assessment for Second Stage Regression Models

We used 10-fold cross-validation to assess the quality of AGB estimation of the first stage regression
model. The second stage regression models were assessed using model fitting R2. In addition,
the Landsat AGB estimations generated from second stage regression models were compared to plot
and lidar estimated AGB with accuracy reported using MAE, RMSE, and RRMSE. The plot estimated
AGB was calculated from ground inventory plots and the lidar estimated AGB was the estimated
AGB value generated by applying the first stage regression model to the whole area. Plot estimated
AGB was considered the best estimate of actual AGB. Therefore, plot tested RMSE was given more
importance in terms of model comparison.

MAE =
1
m

∣∣∣AGBLandsat,k −AGBre f ,k
∣∣∣ (3)
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RMSE =

√√
1
m

m∑
k=1

(
AGBLandsat,k −AGBre f ,k

)2
(4)

RRMSE =
RMSE

1
m

∑m
k=1

(
AGBre f ,k

) (5)

where AGBLandsat,k is Landsat derived AGB from second stage regression models, AGBre f ,k is plot or
lidar derived AGB, m is the number of validation data points (k = 1, 2, . . . , m).

3. Results

3.1. Full Lidar Coverage AGB Estimation

Huntington forest inventory plots and lidar derived variables were applied to establish the first
stage regression model, which was validated using a 10-fold cross validation. The regression equation
for the final model selected is shown in Equation (6). This equation shows the two variables selected
through the forward variable selection process: ht-P90 (90th percentile of lidar point heights) and
Per-first-mean (percentage of first returns above mean return height within each plot). The model
has an R2 of 0.57, RMSE of 64.8 Mg ha−1, and RRMSE of 34.7% from the 10-fold cross-validation.
Figure 5 shows a scatter plot illustrating the relationship between the field-based plot AGB and the
lidar estimated AGB for the Huntington site.

AGBplot = e−4.41+2.61×ln (ht_P90)+0.39×ln (Per_ f irst_mean) (6)
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Raster layers of ht_P90 and Per_first_mean covering the whole area were created from the
lidar point data. A cell size of 30 m was adopted for both raster layers to be consistent with the
Landsat spatial resolution. The two raster layers were then applied in Equation (6) to generate a lidar
estimated AGB map for Huntington (Figure 6). Lidar estimated AGB values at Huntington ranged
from 0 to 784.89 Mg ha−1 with less than 0.3% of pixel values beyond the plot AGB maximum value of
440.3 Mg ha−1.
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3.2. Systematic Sampling AGB Estimation for the Huntington Area

We used the AGB data developed from the full lidar coverage using Equation (6) as a baseline to
see if the Landsat-based AGB model using lidar samples could achieve accuracies that approached
that of the more expensive full lidar coverage AGB estimation. Several second stage regression models
were built for each sampling strategy. The model for each sampling strategy was evaluated by looking
at the model fitting R2, MAE, RMSE, and RRMSE values calculated using both the field-based plot
AGB and the lidar estimated AGB as references (Table 5). The number of pixels applied for building
the regression models is also summarized in Table 5.

Table 5. Evaluation of the second stage regression models developed for the 12 systematic sampling
strategies developed from combinations of three sampling patterns (grid, point, strip) and four distance
intervals (500 m, 1000 m, 1500 m, 2000 m). Models were evaluated based on model fitting R2, and plot
and lidar AGB based MAE, RMSE, and RRMSE values.

Sampling Strategy Model Fitting Model Testing

Plot Based Reference Lidar Based Reference

Pixel
Count R2 MAE

(Mg Ha−1)
RMSE

(Mg Ha−1)
RRMSE

(%)
MAE

(Mg Ha−1)
RMSE

(Mg Ha−1)
RRMSE

(%)

Point

500 m 14,772 0.20 71.5 89.3 47.8 55.4 71.7 41.6
1000 m 6880 0.30 73.8 92.8 49.7 58.6 76.5 44.4
1500 m 3906 0.41 74.6 93.9 50.3 62.0 81.1 47.0
2000 m 3268 0.31 71.8 90.1 48.3 56.9 74.3 43.1

Strip

500 m 29,743 0.24 72.0 89.7 48.1 55.7 72.2 41.9
1000 m 19,727 0.23 74.2 92.5 49.6 57.5 74.6 43.3
1500 m 15,335 0.19 67.3 84.2 45.1 54.0 70.5 40.9
2000 m 15,193 0.14 69.8 87.3 46.8 55.2 70.8 41.0

Grid

500 m 45,962 0.22 71.6 89.3 47.9 55.4 71.9 41.7
1000 m 34,185 0.24 73.0 91.0 48.8 56.4 73.3 42.5
1500 m 27,316 0.22 70.8 88.7 47.5 55.3 72.1 41.8
2000 m 24,735 0.19 73.4 91.8 49.2 56.8 73.4 42.6
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The first stage regression model is shown in Equation (6) that used the full lidar coverage had
an R2 of 0.57. Of the systematic sampling strategies, point sampling at a sample interval of 1500 m
showed the highest R2 at 0.41. The point pattern generally outperformed the strip and grid patterns
with higher R2 values at sample intervals of 1000 m, 1500 m, and 2000 m. None of the 12 systematic
sampling strategies explored matched the RMSE and RRMSE values for AGB derived from the full lidar
coverage. Using the full lidar coverage, the RMSE was 64.8 Mg ha−1 and RRMSE was 34.7% using the
field-derived plot observations as a reference. Plot-based MAE, RMSE, and RRMSE for the systematic
sampling strategies ranged from 67.3 to 74.6 Mg ha−1, 84.2 to 93.9 Mg ha−1 and 45.1% to 50.3%,
respectively, while the lidar-based MAE, RMSE, and RRMSE ranged from 54.0 to 62.0 Mg ha−1, 70.5 to
81.1 Mg ha−1 and 40.9% to 47.0%, respectively. The strip sampling strategies had the lowest average
MAE, RMSE, and RRMSE values but they also had the highest variation among different distance
intervals. Strip sampling at 1500 m had the lowest plot and lidar-based MAE, RMSE, and RRMSE
values among all systematic sampling strategies.

Overall, although the point sampling generally had higher R2 values, the strip sampling approach
had smaller MAE, RMSE, and RRMSE values when assessed using the field-based AGB values. Strip
sampling also matched the nature of airplane flight paths, which rendered it easy to adopt from a
practical viewpoint. Therefore, the strip pattern was applied for further analysis.

The location of the starting point for the systematic sampling determined the location of all
subsequent samples. To evaluate the sensitivity of the AGB estimates to this starting point and examine
the stability of systematic sampling, we tested five different starting points for the strip sampling using
a 1500 m interval. Figure 7 illustrates the arrangement of the five systematic strip sampling layouts
with 500 m swath width and a distance interval of 1500 m.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 21 
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Given the variability shown in these five alternatives, we also explored the variability based on a
random selection of 3 of the 13 non-overlapping strips available for this property. This led to a total of
286 combinations, with plot-based RMSE values summarized in Figure 8. The plot-based RMSE values
that came from randomly selecting three strips ranged from 80.1 to 102.0 Mg ha−1.
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3.3. Classification-Based Sampling AGB Estimation for the Huntington Area

The second sampling approach explored a classification-based framework. We used a strip
sampling structure at 1500 m distance intervals to select three strips from the forest type map.
The forest type map was generated from the Landsat data using an RF classification with an out-of-bag
(OBB) error rate of 18.9%. As with the systematic sampling, the Huntington study site was covered
with 13,500 m wide non-overlapping strips. The distribution of strips and strip IDs are shown in
Figure 9.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 21 
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In order to select strips that best represented the entire study site, the frequency of each forest
type was summarized within each strip and in the full dataset and Chi-square goodness of fit values
were calculated. Strips with smaller chi-square values had a forest class distribution that was closer to
the full data than strips with larger chi-square values. Strips six, seven, and eight had the smallest
chi-square values (Figure 10), thus were selected to provide the classification-based lidar sample.

Lidar estimated AGB within strips six, seven, and eight were used to build a regression model
with Landsat derived variables as predictors. The model results are shown in Table 6. The R2 for the
classification-based sampling was generally higher than any of the 12 systematic sampling strategies
and the plot and lidar tested MAE, RMSE, and RRMSE values were generally smaller. Overall,
the classification-based sampling outperformed 75% of the systematic sampling strategies.

Table 6. Results of the classification-based sampling model at the Huntington site.

Sampling
Strategy

Model Fitting Model Testing

Plot Based Reference Lidar Based Reference

Pixel
Count R2 MAE

(Mg Ha−1)
RMSE

(Mg Ha−1)
RRMSE

(%)
MAE

(Mg Ha−1)
RMSE

(Mg Ha−1)
RRMSE

(%)

Strip 6, 7, 8 16,446 0.26 70.1 87.4 47.0 54.7 70.9 41.0
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3.4. Testing Classification-Based Sampling for the Heiberg Data

A first stage regression model was built between plot AGB for all 43 Heiberg forest inventory plots
and lidar derived variables following the same procedure used for the Huntington site. The regression
model is shown in Equation (6). The two lidar variables identified through the forward selection
process were the 95th percentile of lidar point heights (ht_P95) and the percentage of first returns above
5 m (Per-first-5 m). The model had an R2 of 0.58, RMSE of 96.0 Mg ha−1, and RRMSE of 44.7%. Raster
layers for ht_P95 and Per-first-5 m were created from the Heiberg lidar points with a pixel size of 30 m.
The two raster layers were applied to Equation (6) to acquire lidar estimation of AGB for Heiberg.

AGBplot = e1.05+0.08×ht_P95+0.03×Per_ f irst_5m (7)

To test the transferability of the classification-based sampling method, we applied the procedure
developed at Huntington to the Heiberg study area. The forest type classification map with three forest
classes (hardwood, mixed, and softwood forests) was produced using RF based on forest inventory plot
and Landsat data with an OBB error rate of 23.7%. The Heiberg site was smaller than the Huntington
site, hence was divided into seven, 200 m wide strips along the flight path used to acquire the lidar
data. Chi-square values were calculated between full data and each strip based on the distributions
of forest type classes. As shown in Figure 11, strip two, four, and seven had the smallest chi-square
values hence lidar estimated AGB values in those strips were used as the dependent variable and
Landsat variables were used as predictors in the regression model.

The regression model built using the sample strips was then applied to the Landsat data covering
the Heiberg study area to acquire AGB estimates. Landsat AGB estimates were tested using plot and
lidar estimated AGB values (Table 7). Compared with using full lidar coverage, the classification-based
sampling decreased the R2 value from 0.58 to 0.40. Plot and lidar tested MAE, RMSE, and RRMSE
values also increased.
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Table 7. Results of the classification-based sampling model at the Heiberg site.

Sampling
Strategy

Model Fitting Model Testing

Plot Based Reference Lidar Based Reference

Pixel
Count R2 MAE

(Mg ha−1)
RMSE

(Mg ha−1)
RRMSE

(%)
MAE

(Mg ha−1)
RMSE

(Mg ha−1)
RRMSE

(%)

Strip 2, 4, 7 2097 0.40 91.8 108.2 50.4 121.2 136.0 63.4

4. Discussion

In this study, we aimed to determine if samples of lidar data could be combined with forest
inventory data and Landsat imagery to produce viable wall-to-wall maps of AGB. In particular,
this study aimed to assess the stability of sampling techniques in order to develop a strategy to
identify lidar samples that could be fused with Landsat data to estimate AGB without substantially
compromising accuracy when compared to a full lidar based model. In our study, both systematic
sampling and classification-based sampling were compared to AGB derived from full lidar coverage.
For our main Huntington site, when compared to having full lidar coverage, the RMSE from
systematic strip sampling and classification-based sampling both had a higher RMSE (by 30% or more).
One possible factor to consider in reducing this difference may relate to the proportion of data [48–50].
In both sampling approaches, we limited samples to under 25% of the study area. Chen et al. [51]
compared the fusion of QuickBird imagery and different sized lidar samples and concluded that model
performance for estimating forest canopy heights increased with lidar sampled area.

Another weakness of the sampling-based approach lies in the use of multiple regression
models [52,53]. Most of our plot AGB values were in a similar range but a few had much lower values
that highly influenced the multiple regression model built (Figure 5). Oversampling lower AGB plots
may improve the model performance. In contrast to the AGB estimation based on full lidar coverage
that used one regression model, in the sampling-based fusing approach, we used two regression
models. By adding the second regression model, we introduced additional uncertainties from both
Landsat data and the second statistical model [54]. In addition, the Landsat estimated AGB values
from the second regression model have narrower AGB ranges compared to lidar estimated AGB values
indicating the impacts of saturation. The saturation effect can be caused by the limitations of Landsat
spatial, spectral, and temporal resolutions, impacts of forest type, forest structure, and topographic
features [55]. The saturation effect limits the ability of Landsat to estimate high AGB levels and
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leads to low AGB estimation accuracy, which has been reported in other studies [4,56–58]. While the
RMSE-based validation characterized errors associated with the regression models they do not consider
errors related to forest measurement data collection or the allometric equations applied, both of which
add uncertainty to the study. We minimized uncertainty associated with the allometric equations by
using species-specific equations with consideration of the applicable tree DBH range. We were unable
to perform uncertainty analysis on forest measurement due to the lack of repeated tree measurement
and destructive AGB measurements though this is certainly a factor to consider in future studies.

Multiple studies have performed lidar sampling, with strips being the most commonly used
sampling pattern among the studies [16,19,20,59]. Sampling using data strips is consistent with the
nature of airplane flight planning, which makes it a good compromise between ease of use, lower cost,
and accuracy. The problem faced when using systematic sampling is inconsistency. Chen and Hay [19]
stated that different lidar transects would generate different results, which is consistent with our
outcomes as reported in Table 5 that shows the variability in the AGB estimates from the 12 systematic
sampling strategies. Systematic sampling using strips at 1500 m intervals showed better performance
in terms of RMSE than the other systematic sampling strategies at Huntington study area tested with
plot and lidar estimated AGB.

Systematic sampling strategy outcomes are highly connected with site conditions, modeling
technique, and the use of auxiliary data [60,61]. To test the uncertainty associated with site condition
variability, we explored the impact of the systematic sampling start point for strip sampling as well
as the random selection of sampling strips in terms of plot-based RMSE. Our study demonstrated
that even with consistency in terms of modeling technique and auxiliary data inputs, RMSE values
varied substantially (Figure 7) when we used different starting points to sample three strips at a
constant distance interval. RMSE values also varied substantially when we varied the location sampled
through random strip selection (Figure 8). These RMSE values varied from outperforming all other
systematic sampling strategies in Table 5 to be the worst sampling strategy. With such high variability
of RMSE, it is hard to discern the impact of sample percentages on the AGB estimation. From a practical
standpoint, it would be almost impossible to discern which systematic strategy would return a good
outcome since you cannot typically explore multiple systematic sampling combinations and would not
be considering sampling if the full lidar coverage was available. In our study, there was no general
trend in terms of the changes in accuracy with variation in systematic sampling intervals and sampling
pattern. This variability may have been linked to differences in forest condition in different regions.
Gregoire et al. [62] recommended considering the AGB gradient during the sampling stage. Although
Chen and Hay [19] got similar performance from N-S and E-W direction lidar samplings, this might be
attributed to the complexity of the forest ecosystem in their study site, which had no general trend
in any direction. If there was a general trend shown in a site, as might be the case for plantation
areas, considering sampling direction is highly recommended. Our study supported prior work that
demonstrated that systematic sampling is easy to apply, but the instability of the outputs suggests it
has lower transferability for AGB estimation at other sites.

We applied classification-based sampling with the goal of using readily available Landsat data to
select samples for acquiring lidar data that were representative of the entire study area. Land cover is
an important factor in modeling AGB [63,64] and it is easy to overlook some forest types especially
over large and heterogeneously distributed areas. Zheng et al. [64] showed that developing individual
regression models for each forest type could improve model accuracy. In general, hardwoods have
high canopy cover resulting in more horizontal expansion compared to softwood [63,65]. Selecting
lidar strips based on forest type classification result could avoid over or under representation of certain
forest types. The classification-based sampling outperformed 75% of the systematic sampling strategies
in Huntington study area, and more importantly, provided a means to plan lidar acquisition that
was lacking in the systematic sampling approach. Adopting this method to our test Heiberg area,
the classification-based sampling also worked effectively, with R2 and RMSE values acquired from the
classification-based sampling only moderately impacted when compared to the full lidar coverage
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model. The classification-based sampling method provides a means to substantially reduce lidar
acquisition without a major compromise in accuracy while providing a preprocessing step to guide
application in new study areas. The need to perform the classification does require additional analysis;
however, the random nature of systematic sampling can lead to substantial, and unknown a priori,
sample variability that potentially decreases transferability of this approach.

5. Conclusions

The framework in this study provides an approach to obtain wall-to-wall estimates of AGB
by merging lidar samples with Landsat imagery and forest inventory data. We focused on AGB
estimation accuracy based on systematic and classification-based lidar sampling strategies. While
systematic lidar sampling can achieve promising AGB estimates and is easy to implement, there
was high model outcome variability among systematic sampling strategies. Moreover, the results
attained from systematic sampling strategies were highly dependent on site condition, which provides
challenges in planning lidar acquisitions. Classification-based lidar sampling provides a planning
framework that is more readily transferable to new sites by guiding the selection of lidar samples
representative of the study site. The fusion of lidar samples and Landsat data had lower accuracies
in AGB estimation compared with full lidar coverage, which can be exacerbated by the uncertainties
introduced by the addition of Landsat data and the use of a second regression model. This study
performed a methodical comparison of systematic and classification-based lidar sampling approaches
to support AGB estimation. We propose using forest type classification as a means to guide lidar
sampling selection within this field. We anticipate the results of this study could facilitate cost-effective
lidar data collection for use in future studies.
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