Spatial Variation of NO2 and Its Impact Factors in China: An Application of Sentinel-5P Products
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Collection
3.1.1. Remote Sensing Images
3.1.2. Statistical Bulletin Data
3.2. Spatial–Temporal Variation Models
3.2.1. Coefficient of Variation of Tropospheric NO2 Columns
3.2.2. Spatial Autocorrelation of Troposphere NO2 Columns
3.3. Impact Factors Analysis
3.3.1. Filtration of Impact Factors
3.3.2. Spatial Econometric Model
3.3.3. Geographically Weighted Regression
4. Results
4.1. Coherence of NO2 Surface Concentration and Tropospheric Columns
4.2. Spatial–Temporal Characteristics of Tropospheric NO2 Columns
4.2.1. General characteristics
4.2.2. The Spatial Heterogeneity of NO2 Columns at Provincial Units
4.2.3. The Spatial Heterogeneity of NO2 Columns at Prefectural Units
4.3. Impact Factors of Tropospheric NO2 Columns
4.3.1. Impacts Factor Analysis at Provincial Units
4.3.2. Impact Factors Analysis at Prefectural Units
5. Discussion
5.1. Division Line of Tropospheric NO2 Columns
5.2. Spatial−Temporal Characteristics Comparison at Different Administrative Units Level
5.3. The Impact Factors Analysis at Different Administrator Units Level
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guan, X.L.; Wei, H.K.; Lu, S.S.; Dai, Q.; Su, H.J. Assessment on the urbanization strategy in China: Achievements, challenges and reflections. Habitat Int. 2018, 71, 97–109. [Google Scholar] [CrossRef]
- Richter, A.; Burrows, J.P.; Nüß, H.; Granier, C.; Niemeier, U. Increase in tropospheric nitrogen dioxide over China observed from space. Nature 2005, 437, 129. [Google Scholar] [CrossRef] [PubMed]
- Van Der A, R.J.; Peters, D.H.M.U.; Eskes, H.; Boersma, K.F.; Van Roozendael, M.; De Smedt, I.; Kelder, H.M. Detection of the trend and seasonal variation in tropospheric NO2 over China. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Duncan, B.N.; Lamsal, L.N.; Thompson, A.M.; Yoshida, Y.; Lu, Z.F.; Streets, D.G.; Hurwitz, M.M.; Pickering, K.E. A Space-based, high-resolution view of notable changes in urban NOX pollution around the world (2005–2014). J. Geophys. Res. Atmos. 2016, 121, 976–996. [Google Scholar] [CrossRef]
- Schneider, P.; Lahoz, W.A.; Van der, A.R. Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide. Atmos. Chem. Phys. 2015, 15, 1205–1220. [Google Scholar] [CrossRef] [Green Version]
- Georgoulias, A.K.; Van der A, R.J.; Stammes, P.; Boersma, K.F.; Eskes, H.J. Trends and trend reversal detection in 2 decades of tropospheric NO2 satellite observations. Atmos. Chem. Phys. 2019, 19, 6269–6294. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N.; Noone, K. Atmospheric chemistry and physics: From air pollution to climate change. Phys. Today 1998, 51, 88. [Google Scholar] [CrossRef]
- Crutzen, P.J. The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Annu. Rev. Earth Planet. Sci. 1979, 7, 443–472. [Google Scholar] [CrossRef]
- Crutzen, P.J.; Schmailzl, U. Chemical budgets of the stratosphere. Planet. Space Sci. 1983, 31, 1009–1032. [Google Scholar] [CrossRef]
- Lee, D.S.; Köhler, I.; Grobler, E.; Rohrer, F.; Sausen, R.; Gallardo-Klenner, L.; Olivier, J.G.; Dentener, F.J.; Bouwman, A.F. Estimations of global no, emissions and their uncertainties. Atmos. Environ. 1997, 31, 1735–1749. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.; Tignor, M.; Miller, K.L. The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Beirle, S.; Platt, U.; Wenig, M.; Wagner, T. Weekly cycle of NO2 by GOME measurements: A signature of anthropogenic sources. Atmos. Chem. Phys. 2003, 3, 2225–2232. [Google Scholar] [CrossRef]
- Van Der A, R.J.; Eskes, H.J.; Boersma, K.F.; Van Noije, T.P.C.; Van Roozendael, M.; De Smedt, I.; Peters, D.H.M.; Meijer, E.W. Trends, seasonal variability and dominant NOX source derived from a ten year record of NO2 measured from space. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Tian, H.; Wang, Y.; Zhao, D.; Chai, F.; Xing, Z.; Chen, K. Zhongguo Taihangshan Donglu NOX Zhongwuran Chengyin Fenxi. Chin. Sci. Bull. 2011, 56, 1464–1469. [Google Scholar]
- Huang, H.J.; Fu, D.Y.; Qi, W. Effect of driving restrictions on air quality in Lanzhou, China: Analysis integrated with internet data source. J. Clean. Prod. 2017, 142, 1013–1020. [Google Scholar] [CrossRef]
- Diao, B.D.; Zeng, K.F.; Su, P.D.; Ding, L.; Liu, C. Temporal-spatial distribution characteristics of provincial industrial NOX emissions and driving factors in China from 2006 to 2013. Resour. Sci. 2016, 38, 1768–1779. [Google Scholar]
- Hendrick, F.; Mahieu, E.; Bodeker, G.E.; Boersma, K.F.; Chipperfield, M.P.; Maziere, M.D.; Smedt, I.D.; Demoulin, P.; Fayt, C.; Hermans, C.; et al. Analysis of stratospheric NO2 trends above Jungfraujoch using ground-based UV-visible, FTIR, and satellite nadir observations. Atmos. Chem. Phys. 2012, 12, 8851–8864. [Google Scholar] [CrossRef]
- Velders, G.J.; Granier, C.; Portmann, R.W.; Pfeilsticker, K.; Wenig, M.; Wagner, T.; Platt, U.; Richter, A.; Burrows, J.P. Global tropospheric NO2 column distributions: Comparing three-dimensional model calculations with GOME measurements. J. Geophys. Res. Atmos. 2001, 106, 12643–12660. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, P.; Zhang, Y.; Li, Y.; Qiu, H. Zhongguo Duiliuceng NO2 de Bianhua Qushi, Shikong Fenbu Tezheng Jiqi Laiyuan Jiexi. Sci. China 2007, 37, 1409. [Google Scholar]
- Xiao, Z.; Jiang, H.; Chen, M. Characteristics of atmospheric NO2 over China using OMI remote sensing data. Acta Sci. Circumstantiae 2011, 31, 2080–2090. [Google Scholar]
- Sun, C.W.; Luo, Y.; Li, J.L. Urban traffic infrastructure investment and air pollution: Evidence from the 83 cities in China. J. Clean. Prod. 2018, 172, 488–496. [Google Scholar] [CrossRef]
- Liu, W.Q.; Chen, Z.Y.; Liu, J.G.; Xie, P.H. Stereoscopic monitoring technology and applications for the atmospheric environment in China. Chin. Sci. Bull. 2016, 61, 3196–3207. [Google Scholar] [CrossRef] [Green Version]
- Tømmervik, H.; Johansen, B.E.; Pedersen, J.P. Monitoring the effects of air pollution on terrestrial ecosystems in Varanger (Norway) and Nikel-Pechenga (Russia) using remote sensing. Sci. Total Environ. 1995, 160, 753–767. [Google Scholar] [CrossRef]
- Emeis, S.; Schäfer, K. Remote sensing methods to investigate boundary-layer structures relevant to air pollution in cities. Bound. Layer Meteorol. 2006, 121, 377–385. [Google Scholar] [CrossRef]
- Gupta, P.; Christopher, S.A.; Wang, J.; Gehrig, R.; Lee, Y.C.; Kumar, N. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 2006, 40, 5880–5892. [Google Scholar] [CrossRef]
- Peng, J.; Chen, S.; Lv, H.L.; Liu, Y.X.; Wu, J.S. Spatiotemporal patterns of remotely sensed PM2.5 concentration in China from 1999 to 2011. Remote Sens. Environ. 2016, 174, 109–121. [Google Scholar] [CrossRef]
- Xue, T.; Zheng, Y.X.; Geng, G.N.; Zheng, B.; Jiang, X.J.; Zhang, Q.; He, K.B. Fusing observational, satellite remote sensing and air quality model simulated data to estimate spatiotemporal variations of PM2.5 exposure in China. Remote Sens. 2017, 9, 221. [Google Scholar] [CrossRef]
- Marinello, F. Last generation instrument for agriculture multispectral data collection. Agric. Eng. Int. CIGR J. 2017, 19, 87–93. [Google Scholar]
- Stolarski, R.S.; Bloomfield, P.; McPeters, R.D.; Herman, J.R. Total ozone trends deduced from Nimbus 7 TOMS data. Geophys. Res. Lett. 1991, 18, 1015–1018. [Google Scholar] [CrossRef]
- Burrows, J.P.; Weber, M.; Buchwitz, M.; Rozanov, V.; Ladstätter-Weißenmayer, A.; Richter, A.; DeBeek, R.; Hoogen, R.; Bramstedt, K.; Eichmann, K.; et al. The global ozone monitoring experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci. 1999, 56, 151–175. [Google Scholar] [CrossRef]
- Desnos, Y.L.; Buck, C.; Guijarro, J.; Levrini, G.; Suchail, J.L.; Torres, R.; Laur, H.; Closa, J.; Rosich, B. The ENVISAT advanced synthetic aperture radar system. In Proceedings of the IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000; Volume 3, pp. 1171–1173. [Google Scholar]
- Krotkov, N.A.; McLinden, C.A.; Li, C.; Lamsal, L.N.; Celarier, E.A.; Marchenko, S.V.; Swartz, W.H.; Bucsela, E.J.; Joiner, J.; Duncan, B.N.; et al. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos. Chem. Phys. 2016, 16, 4605–4629. [Google Scholar] [CrossRef]
- Munro, R.; Lang, R.; Klaes, D.; Poli, G.; Retscher, C.; Lindstrot, R.; Huckle, R.; Lacan, A.; Grzegorski, M.; Holdak, A.; et al. The GOME-2 instrument on the Metop series of satellites: Instrument design, calibration, and level 1 data processing-An overview. Atmos. Meas. Tech. 2016, 9, 1279–1301. [Google Scholar] [CrossRef]
- Hassinen, S.; Balis, D.; Bauer, H.; Begoin, M.; Delcloo, A.; Eleftheratos, K.; Garcia, S.G.; Granville, J.; Grossi, M.; Hao, N.; et al. Overview of the O3M SAF GOME-2 operational atmospheric composition and UV radiation data products and data availability. Atmos. Meas. Tech. 2016, 9, 383–407. [Google Scholar] [CrossRef] [Green Version]
- Showstack, R. Sentinel satellites initiate new era in earth observation. Eos Trans. Am. Geophys. Union 2014, 95, 239–240. [Google Scholar] [CrossRef]
- Berger, M.; Moreno, J.; Johannessen, J.A.; Levelt, P.F.; Hanssen, R.F. ESA’s sentinel missions in support of Earth system science. Remote Sens. Environ. 2012, 120, 84–90. [Google Scholar] [CrossRef]
- Guanter, L.; Aben, I.; Tol, P.; Krijger, J.M.; Hollstein, A.; Köhler, P.; Damm, A.; Joiner, J.; Frankenberg, C.; Landgraf, J. Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence. Atmos. Meas. Tech. 2015, 8, 1337–1352. [Google Scholar] [CrossRef] [Green Version]
- S5P Mission Performance Centre Nitrogen Dioxide [L2 NO2] Readme. Available online: https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Nitrogen-Dioxide-Level-2-Product-Readme-File (accessed on 23 July 2019).
- Guan, D.; Hubacek, K.; Weber, C.L.; Peters, G.P.; Reiner, D.M. The drivers of Chinese CO2 emissions from 1980 to 2030. Glob. Environ. Chang. 2008, 18, 626–634. [Google Scholar] [CrossRef]
- Li, K.; Bai, K.X. Spatiotemporal associations between PM2.5 and SO2 as well as NO2 in China from 2015 to 2018. Int. J. Environ. Res. Public Health 2019, 16, 2352. [Google Scholar] [CrossRef]
- Li, Y.; Wei, Y.D. The spatial-temporal hierarchy of regional inequality of China. Appl. Geogr. 2010, 30, 303–316. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; De Vries, J.; Otter, G.; Class, J.; Eskes, H.J.; De Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Galli, A.; Butz, A.; Scheepmaker, R.A.; Hasekamp, O.; Landgraf, J.; Tol, P.; Wunch, D.; Deutscher, P.O.; Toon, G.C.; Wennberg, P.O.; et al. CH4, CO, and H2O spectroscopy for the Sentinel-5 Precursor mission: An assessment with the Total Carbon Column Observing Network measurements. Atmos. Meas. Tech. 2012, 5, 1387–1398. [Google Scholar] [CrossRef]
- Cao, C.; Xiong, J.; Blonski, S.; Liu, Q.; Uprety, S.; Shao, X.; Bai, Y.; Weng, F. Suomi NPP VIIRS sensor data record verification, validation, and long-term performance monitoring. J. Geophys. Res. Atmos. 2013, 118, 11–664. [Google Scholar] [CrossRef]
- Li, F.; Wei, A.H.; Mi, X.N.; Sun, G.T. An approach of GDP spatialization in Hebei Province using NPP/VIIRS nighttime light data. J. Xinyang Norm. Univ. 2016, 29, 152–156. [Google Scholar]
- Monthly Report on Urban Air Quality. Available online: http://www.mee.gov.cn/hjzl/dqhj/cskqzlzkyb/ (accessed on 23 July 2019).
- Abdi, H. Coefficient of variation. Encycl. Res. Des. 2010, 1, 169–171. [Google Scholar]
- Reed, G.F.; Lynn, F.; Meade, B.D. Use of coefficient of variation in assessing variability of quantitative assays. Clin. Vaccine Immunol. 2002, 9, 1235–1239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Q.; Chen, J.F. Study on construction land distribution in Fujian and Taiwan Provinces based on spatial autocorrelation analysis. Prog. Geogr. 2007, 26, 11–17. [Google Scholar]
- Boots, B.; Tiefelsdorf, M. Global and local spatial autocorrelation in bounded regular tessellations. J. Geogr. Syst. 2000, 2, 319–348. [Google Scholar] [CrossRef]
- Premo, L.S. Local spatial autocorrelation statistics quantify multi-scale patterns in distributional data: An example from the Maya Lowlands. J. Archaeol. Sci. 2004, 31, 855–866. [Google Scholar] [CrossRef]
- Yang, W.; Chen, B.Y.; Cao, X.; Li, T.; Li, P. The spatial characteristics and influencing factors of modal accessibility gaps: A case study for Guangzhou, China. J. Transp. Geogr. 2017, 60, 21–32. [Google Scholar] [CrossRef]
- Burridge, P. On the Cliff-Ord Test for Spatial Correlation. J. R. Stat. Soc. 1980, 42, 107–108. [Google Scholar] [CrossRef]
- Anselin, L. Lagrange Multiplier Test Diagnostics for Spatial Dependence and Spatial Heterogeneity. Geogr. Anal. 1988, 20, 1–17. [Google Scholar] [CrossRef]
- Wang, P.; Wu, W.; Zhu, B.; Wei, Y. Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China. Appl. Energy 2013, 106, 65–71. [Google Scholar] [CrossRef]
- Xie, X.; Liao, L. A study on the relationship between tourism development and economic growth in Yunnan Province based on spatial econometric model. J. Kunming Univ. Sci. Technol. 2015, 15, 77–84. [Google Scholar]
- Tobler, W. On the first law of geography: A reply. Ann. Assoc. Am. Geogr. 2004, 94, 304–310. [Google Scholar] [CrossRef]
- Wheeler, D.C.; Calder, C.A. An assessment of coefficient accuracy in linear regression models with spatially varying coefficients. J. Geogr. Syst. 2007, 9, 145–166. [Google Scholar] [CrossRef]
- Kramer, L.J.; Leigh, R.J.; Remedios, J.J.; Monks, P.S. Comparison of OMI and ground-based in situ and MAX-DOAS measurements of tropospheric nitrogen dioxide in an urban area. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Bucsela, E.J.; Perring, A.E.; Cohen, R.C.; Boersma, K.F.; Celarier, E.A.; Gleason, J.F.; Wenig, M.O.; Bertram, T.H.; Wooldridge, P.J.; Dirksen, R.; et al. Comparison of tropospheric NO2 from in situ aircraft measurements with near-real-time and standard product data from OMI. J. Geophys. Res. Atmos 2008, 113. [Google Scholar] [CrossRef]
- Huijnen, V.; Eskes, H.J.; Poupkou, A.; Elbern, H.; Boersma, K.F.; Foret, G.; Sofiev, M.; Valdebenito, A.; Flemming, J.; Stein, O.; et al. Comparison of OMI NO2 tropospheric columns with an ensemble of global and European regional air quality models. Atmos. Chem. Phys. 2010, 10, 3273–3296. [Google Scholar] [CrossRef]
- Qiu, P.; Tang, X.; Lu, M.; Huang, Y.; Zhou, J. Forecast of changing air pollution trends in Wuhan city. J. Nanjing Univ. Inf. Sci. Technol. 2018, 10, 571–578. [Google Scholar]
- Ma, W.; Li, Y.H.; Hou, X.G. Characteristics of Atmospheric NO2 Vertical Column Densities in Heating Period of Urumqi. Ecol. Environ. Sci. 2016, 25, 1351–1355. [Google Scholar]
- Sun, R.G.; Gao, Y.; Chen, Z.; Zang, Q.D. Characteristics of Temporal and Spatial Distribution of Atmospheric NO2 in Main Urban Areas of Chongqing. Earth Environ. 2019, 47, 26–33. [Google Scholar]
- Zheng, X.X.; Li, L.J.; Zhao, W.J.; Zhao, W.H. Spatial and Temporal Characteristics of Atmospheric NO2 in the Beijing- Tianjin-Hebei Region. Ecol. Environ. Sci. 2014, 23, 1938–1945. [Google Scholar]
- Zheng, Z.H.; Chen, Y.B.; Wu, Z.F.; Ye, X.Y.; Guo, G.H.; Qian, Q.L. The desaturation method of DMSP/OLS nighttime light data based on vector data: Taking the rapidly urbanized China as an example. Int. J. Geogr. Inf. Sci. 2019, 33, 431–453. [Google Scholar] [CrossRef]
- Misra, P.; Takeuchi, W. Analysis of air quality and nighttime light for Indian urban regions. IOP Conf. Ser. Earth Environ. Sci. 2016, 37, 012077. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.C.; Yue, W.Z.; Xu, H.H.; Wu, J.S.; Yue, H. Environmental consequences of rapid urbanization in Zhejiang Province, East China. Int. J. Environ. Res. Public Health 2014, 11, 7045–7059. [Google Scholar] [CrossRef]
- Chen, M.; Gong, Y.; Li, Y.; Lu, D.; Zhang, H. Population distribution and urbanization on both sides of the Hu Huanyong Line: Answering the Premier’s question. J. Geogr. Sci. 2016, 26, 1593–1610. [Google Scholar] [CrossRef]
- Fu, C.B.; Tang, J.X.; Dan, L.; Xue, Y.J. Satellite-based long-term trends analysis in TroNO2 over Hainan Island and its possible resaon. Acta Sci. Circumstantiae 2016, 36, 1402–1410. [Google Scholar]
- Memmesheimer, M.; Jakobs, H.J.; Wurzler, S.; Hebbinghaus, H.; Friese, E.; Piekorz, G.; Kessler, C.; Ebel, A. Possible impact of increased fraction of NO2-emissions due to road traffice on air pollutant concentration in Central Europe and North-Rhine Westphalia. EGU Gen. Assem. 2010, 2, 9554. [Google Scholar]
- Chen, Z.M.; Xie, W. Relations between Traffic Vehicles and Environmental Pollution. In Proceedings of the 2010 Second IITA International Conference on Geoscience and Remote Sensing (IITA-GRS 2010), Qingdao, China, 28–31 August 2010; 2010; Volume 1. [Google Scholar]
Year | 2018 | 2019 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Month | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Jan |
Min | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Max | 29.01 | 27.99 | 23.54 | 22.65 | 14.33 | 11.19 | 15.86 | 16.01 | 37.96 | 38.41 | 34.40 | 41.52 |
Mean | 1.90 | 1.84 | 1.68 | 1.52 | 1.45 | 1.35 | 1.35 | 1.47 | 1.94 | 2.24 | 2.60 | 2.61 |
Std | 2.71 | 2.47 | 2.06 | 1.56 | 1.24 | 0.90 | 0.98 | 1.52 | 2.66 | 3.40 | 4.13 | 4.23 |
Temperature | −2.0 | 7.0 | 12.3 | 17.0 | 20.7 | 22.9 | 21.9 | 16.7 | 9.8 | 3.1 | −3.8 | −4.1 |
Impact Factor | Coefficient | Std.Error | z-Value | Probability |
---|---|---|---|---|
W_NO2 | 0.454 | 0.174 | 2.614 | 0.009 |
CONSTANT | −12.337 | 5.668 | −2.176 | 0.030 |
Nighttime light intensity | 0.451 | 0.128 | 3.527 | 0.000 |
Digital Elevation Model (DEM) | −0.038 | 0.028 | −1.323 | 0.186 |
Proportion of second industry | 0.146 | 0.064 | 2.275 | 0.023 |
Proportion of third industry | 0.156 | 0.071 | 2.194 | 0.028 |
R-squared | 0.781(0.722) | Log Likelihood | −54.212(−57.268) | |
Akaike Info Criterion | 120.423(124.536) | Prob | 0.01342 | |
Schwarz Criterion | 129.027(131.706) |
Model | GWR | OLS | |
---|---|---|---|
Model indicator | R2 | 0.643 | 0.505 |
Adj.R2 | 0.620 | 0.497 | |
Akaike Info Criterion corrected (AICc) | 1395 | 1488 | |
Sigma-Squared | 3.040 | 4.025 | |
Sigma-square Maximum Likelihood (Sigma-square ML) | 2.855 | 3.956 | |
P-value | 0.000 | 0.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Yang, Z.; Wu, Z.; Marinello, F. Spatial Variation of NO2 and Its Impact Factors in China: An Application of Sentinel-5P Products. Remote Sens. 2019, 11, 1939. https://doi.org/10.3390/rs11161939
Zheng Z, Yang Z, Wu Z, Marinello F. Spatial Variation of NO2 and Its Impact Factors in China: An Application of Sentinel-5P Products. Remote Sensing. 2019; 11(16):1939. https://doi.org/10.3390/rs11161939
Chicago/Turabian StyleZheng, Zihao, Zhiwei Yang, Zhifeng Wu, and Francesco Marinello. 2019. "Spatial Variation of NO2 and Its Impact Factors in China: An Application of Sentinel-5P Products" Remote Sensing 11, no. 16: 1939. https://doi.org/10.3390/rs11161939
APA StyleZheng, Z., Yang, Z., Wu, Z., & Marinello, F. (2019). Spatial Variation of NO2 and Its Impact Factors in China: An Application of Sentinel-5P Products. Remote Sensing, 11(16), 1939. https://doi.org/10.3390/rs11161939