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Abstract: Despite the popularity of random forests (RF) as a prediction algorithm, methods for
constructing confidence intervals for population means using this technique are still only sparsely
reported. For two regional study areas (Spain and Norway) RF was used to predict forest volume
or aboveground biomass using remotely sensed auxiliary data obtained from multiple sensors.
Additionally, the changes per unit area of these forest attributes were estimated using indirect
and direct methods. Multiple inferential frameworks have attracted increased recent attention for
estimating the variances required for confidence intervals. For this study, three different statistical
frameworks, design-based expansion, model-assisted and model-based estimators, were used for
estimating population parameters and their variances. Pairs and wild bootstrapping approaches
at different levels were compared for estimating the variances of the model-based estimates of the
population means, as well as for mapping the uncertainty of the change predictions. The RF models
accurately represented the relationship between the response and remotely sensed predictor variables,
resulting in increased precision for estimates of the population means relative to design-based
expansion estimates. Standard errors based on pairs bootstrapping within or internal to RF were
considerably larger than standard errors based on both pairs and wild external bootstrapping of the
entire RF algorithm. Pairs and wild external bootstrapping produced similar standard errors, but
wild bootstrapping better mimicked the original structure of the sample data and better preserved
the ranges of the predictor variables.

Keywords: bootstrapping; model-assisted; model-based; population parameters

1. Introduction

National forest inventories (NFIs) were initiated to collect information that could be used to
ensure sustainable use of wood resources. As the forest functions of interest broadened, a substantial
number of new variables were introduced to NFI field surveys [1] with growing forest stock volume
and biomass now among the most commonly assessed. These variables are of fundamental importance
for ensuring maintenance of wood production, formulating and implementing global forest policy,
assessing sustainability, and improving decision-making regarding management decisions such as
harvests. Traditionally, data obtained for ground plots that are spatially distributed using statistical
sampling designs have satisfied the need for accurate forest parameter estimates, albeit at great cost
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and only for limited spatial and temporal scales. Remote sensing technologies provide valuable
auxiliary information that can be used to enhance the precision and timeliness of forest parameter
estimates [2–4].

On one hand, airborne laser scanning (ALS) has been claimed to be an outstanding information
source for predicting vertical forest structure, with the result that numerous countries have allocated
money to develop specific national programs for the purpose of acquiring ALS data [5]. The standard
procedure for forest management inventory is the area-based approach (ABA). With ABA, models are
used to describe relationships between field plot measurements and metrics derived from ALS point
clouds with the models then applied to predict forest variables in a spatially continuous manner [6,7].
A great number of inventory attributes of interest have been predicted satisfactorily [6,8,9], even with
low density ALS data [9–11]. Additionally, multi-temporal ALS data have been shown to be useful for
modeling and predicting forest attribute changes [12–14]. These changes rely on two different methods:
indirect and direct. The indirect method entails constructing a model for predicting the variable of
interest for each point in time, whereas, the direct method predicts the change directly by creating
change data as differences in the forest attribute between the two points [15,16]. On the other hand,
forest attribute mapping methods have capitalized on the integration of ALS and multispectral data to
achieve even more accurate and precise results [17,18].

The increased availability of free satellite imagery has also prompted development of additional
inferential frameworks in which models are applied in large forest survey areas for the purpose
of increasing the precision of forest attribute estimates [19–21]. For instance, model-assisted and
model-based estimators have been applied successfully in large forest areas to estimate biomass [22,23]
and volume [21,24] using mainly linear and nonlinear regression models. Model-assisted inference
relies on a probability sampling (design-based) whereas model-based inference does not. Hence, the
latter can be used with both non-probability sample data and data external to the area of interest [25,26].
This feature makes model-based inference a very interesting option for areas where design-based
inference may be limited due to remoteness and inaccessibility [23]. However, the effectiveness of the
model-based approach relies on the correctness of the model, and consequently model-based estimators
may not be unbiased. Among the numerous modeling techniques, random forests (RF) has recently
emerged as a popular one due to its ability to select and rank a large number of predictor variables [27]
and its reliance on an ensemble of trees as a strategy to improve model robustness [14]. RF consists of
a combination of decision trees where each tree contributes a single prediction for each population unit
with the final prediction for each unit calculated as the mean over the RF tree predictions [28]. Each
tree is independently constructed using a different randomly selected training sample obtained using
bootstrap resampling procedures [27].

Although RF has been used extensively [16,29,30], little literature is available on model-based
mean square error (MSE) estimation for population parameters with this algorithm. Bootstrap
resampling methods have been used for model-based MSE estimation using multiple other prediction
techniques [31–33]. These procedures are well-suited for applications requiring assumptions whose
validity is difficult to assess and when only small sample sizes are available [34]. However, for
RF models, general approaches for model-based MSE estimation merit additional attention [35]
since estimates of MSE are necessary to construct inferences in the form of confidence intervals for
population parameters.

The study objectives were threefold: (1) to construct RF models to predict response variables
volume, biomass, and volume and biomass change for population units (ALS cells) in support of
estimation of population and population change parameters such as mean volume per unit area and
mean biomass per unit area; (2) to compare multiple bootstrap estimators of the model-based MSE of
the estimate of the population mean; and (3) to construct change maps and change uncertainty maps.
Two study areas were used, one in the La Rioja region of Spain and the other in Våler municipality,
southeastern Norway (Figure 1). The Spanish data included plot-level volume datasets acquired
at different times for different plots as well as corresponding ALS (2010–2016) and multi-spectral
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data. The Norwegian data included plot-level biomass datasets for two times for the same plots
and temporally consistent ALS data (1999, 2010). Mean volume change per unit area was estimated
with indirect methods for the Spanish study area and mean biomass change per unit area with direct
methods for the Norwegian study area. Evaluation of the methods for two climatically different study
areas, two response variables, and two approaches to estimating changes contributes to the robustness
of the results and conclusions.
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2. Materials and Methods

2.1. La Rioja, Spain

The study area is located in the La Rioja region of northern Spain (Figure 1) and consists of Scots
pine (Pinus sylvestris L.) forests. According to the Spanish National Forest Inventory (SNFI), it is the
second largest species formation in La Rioja, representing an area of approximately 27,000 hectares (ha),
predominantly in zones above 1000 m elevation which cover the highest areas of the mountain regions.
In general, La Rioja forests consist of pure and dense stands and were repopulated mainly due to the
importance of their timber production. In addition, human depopulation of rural areas during recent
decades has led to the natural expansion of the species. A Scots pine species mask was constructed
based on the Spanish National Forest Map (SNFM25) (scale: 1:25,000). Forest land polygons of 1 ha
minimum size in which Scots pine was the most dominant species were selected, resulting in a set of
areas in which Scots pine was either monospecific or dominant but mixed with other species.

The data used to construct the RF volume models were obtained from two different surveys
(Table 1): One characterized as La Rioja 2010 which consisted of ground data for a systematic sample
of plots from the 4th SNFI and the first ALS acquisition (Section 2.1.1, first campaign), and the other
characterized as La Rioja 2016 which consisted of ground data for a purposive sample of plots and the
second ALS acquisition (Section 2.1.2, second campaign).
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2.1.1. La Rioja Sampling Design

� First campaign

The 4th SNFI in La Rioja was conducted between 2011 and 2012 using permanent sample plots
established systematically at the intersections of a 1 × 1 km grid in areas identified as forest land by the
SNFM25 [36]. The SNFI sample units consist of four circular concentric plots of radius 5, 10, 15, and
25 m. Trees with diameter at breast height (DBH) of at least 75 mm are measured in a 5 m radius plot;
trees with DBH >125 mm are measured in a 10 m radius plot; trees with DBH >225 mm are measured
in a 15 m radius plot; and only trees with a DBH >425 mm are measured in the 25 m radius plot [36,37].
For each tree, DBH, total height, species, and the tree’s position relative to the plot center (direction and
distance) are recorded. Species-specific allometric models were used to predict individual tree volumes
which were weighted to predict the total plot stock volume [31]. We ignored the uncertainty associated
with individual tree allometric volume predictions based on the findings of McRoberts et al. [38,39].
When the allometric models are based on large calibration datasets and when the model fits the data
well, the effects of this model prediction uncertainty are small relative to the effects of plot-to-plot
sampling variability. However, if smaller calibration samples sizes are used as in La Rioja 2016, the
final uncertainty value could be underestimated.

All SNFI plots in the study area were filtered by selecting those for which the forest class under
consideration was dominant (more than 80% of total volume). Furthermore, only plots whose maximum
height (the height of the tallest tree, hmax) were consistent with the 99th height percentile, derived
from ALS 2010, were considered due to inaccuracy of plot center coordinates (5–15 m [40,41]). This
inaccuracy could lead to discrepancies between the field measured attribute and the population unit
remote sensing metrics. SNFI plots were removed from the analysis when their respective hmax was
different in the range of plus/minus 4 m with respect to the 99th height percentile. The resulting sample
after filtering by both criteria consisted of 155 field plots.

� Second campaign

Field data for the second survey were acquired during the summer of 2018 for 49 circular plots
with a 14.1 m radius. The center of each plot was recorded using a dual-frequency global navigation
satellite system receiver GEO7x (Trimble®GNSS) with sub-meter horizontal accuracy (0.4 m) after
post-processing correction. DBH and species were recorded for all trees with DBH >75 mm. Height
was measured for six randomly selected trees per plot. The heights of the remaining trees for each
plot were predicted using a generalized height–diameter model based on the tree heights measured
on all field plots. The total plot stock volume was predicted using the allometric models constructed
by Crecente-Campo et al. [42] for Scots pine using 2682 plots located in the major mountain ranges
of Spain.

The 49 circular plots were purposively selected considering the variability of the forest stands and
their distribution over the study area. The aim was to achieve a specific distribution that encompasses
different ranges and variability of forest structural attributes including height, forest canopy cover,
canopy relief ratio, elevation, and slope. Additionally, these plots were selected based on their
accessibility for field work, favoring those areas closest to forest tracks.

2.1.2. Remotely Sensed Data

ALS data were acquired in 2010 and 2016 during leaf-on conditions by the Spanish National
Programme of Aerial Orthophotography with a mean density of 0.5 points per m2 and vertical RMSE
<0.4 m for the former and 2 points per m2 and vertical RMSE <0.2 m for the latter. ALS tiles were
processed using FUSION software [43] to generate a 2-m digital elevation model from the ground
points, which facilitates estimation of height above the ground surface for each vegetation point.
Fifteen forest structure metrics were calculated, having previously removed the points below 2 m, both
for the field plots and 25-m × 25-m cells that tessellated the study area and served as population units.
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ALS metrics included mean, variance (varia), standard deviation (stdev), coefficient of variation (cv),
interquartile range (iq), kurtosis (kurto), percentiles (ranging from the 1st to 99th percentile: p1, p5,
p25, p50, p75, p95, and p99), canopy relief ratio (crr), and forest canopy cover (lfcc). The locations of the
25-m × 25-m cells were exactly the same for both ALS datasets. The 625 m2 (25-m × 25-m) size for the
population units was chosen because it is similar to the smallest sample plots (14.1 m radius; 625 m2)
used for the second campaign. Even the smallest plots and the ALS cells had enough ALS points to
estimate ALS metrics reliably. With a cell size of 625 m2 and a minimum point density of 0.5 points per
m2, there would be, on average, 312.5 points per plot and cell. Based on Vauhkonen et al. [44], more
than 300 points per plot should be sufficient.

The study area is covered by three Landsat scenes with paths (p) and rows (r): p201 r031, p200
r031, and p200 r030 (Figure 1). For each scene, two predominantly cloud free images (less than 10%
cloud cover) were downloaded corresponding to the years for the two ALS datasets (2010 and 2016).
From 18 July for p200 r030 and 23 June for the rest of Landsat scenes. Surface reflectance of individual
bands (blue, green, red, near infrared (NIR), and two shortwave infrared (SWIR)) and their respective
quality assurance (QA) bands were calculated. QA bands were used to remove the remaining cloud
and cloud shadows.

Each image was resampled using the nearest neighbor resampling method from 30-m × 30-m to
the corresponding 25-m × 25-m ALS cell size. From the cloud-free Landsat mosaic, the normalized
difference vegetation index (ndvi), the normalized burn ratio (nbr), and the normalized difference
moisture index (ndmi) were calculated [17,31,45]. Landsat bands as well as spectral vegetation index
values were calculated for each field plot.

2.2. Våler, Norway

The study area was located in a boreal forest region (approximately 850 ha) in Våler municipality
(Figure 1) in southeastern Norway with Norway spruce (Picea abies (L.) Karst.) and Scots pine as
the dominant species [7]. The dataset consisted of aboveground biomass (AGB) observations for 176
circular plots (200 m2) measured in 1999 and 2010 (hereafter, Våler 1999 and Våler 2010) and ALS
metrics derived from two ALS datasets acquired in the same years as the field campaigns. Field
data (Table 1) were acquired using a systematic sampling design and aggregated into four classes:
Regenerated forest (31 plots), young forest (55 plots), mature spruce dominated forest (58 plots), and
mature pine dominated forest (32 plots). Tree-level AGB was predicted for both 1999 and 2010 using
allometric models based on measurements of DBH and tree height. Plot-level AGB was predicted
as the sum of individual tree-level AGB predictions. The ALS metrics represented a range of height
percentiles (from the 0th to 90th percentile: p00, p10, p20, p30, p40, p50, p60, p70, p80, and p90) as well
as canopy densities (ranging from the 0th to 90th canopy density: d00, d10, d20, d30, d40, d50, d60,
d70, d80, and d90) and were calculated for each field plot and for 200-m2 square cells that tessellated
the area and constituted the population under study. For further details see [12,46].

Table 1. Statistics for total volume (VOL) and aboveground biomass (AGB) obtained from the La Rioja
sampling designs (La Rioja 2010 and La Rioja 2016) and the Våler sampling design.

Dataset Variable Number of Plots
Statistics

Mean Min Max Stdev

La Rioja 2010
VOL (m3/ha)

155 234.74 2.53 548.68 127.8
La Rioja 2016 49 236.53 5.21 517.15 135.39

Våler 1999 AGB (Mg/ha) 176 112.4 2.23 349.12 66.13
Våler 2010 176 131.15 0 462.17 91.83
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2.3. Random Forests Prediction Models

RF models were constructed using the R package RandomForest [47]. For this study RF models
were calibrated with the default settings of regression trees (ntree = 500) and the default value for the
number of variables to test at each node (mtry = p/3, where p is the total number of independent
variables). An ensemble of 500 regression trees was sufficient for estimates to stabilize. For the La
Rioja datasets, mean volume (VOL) per unit area was predicted using the information from the field
plot datasets, the set of ALS metrics and the Landsat auxiliary information. For the Våler datasets, RF
models were used to describe the relationships between mean AGB per unit area and the ALS metrics,
as well as to predict AGB change (Section 2.5). The change in biomass (∆AGB) was modeled directly
using change in biomass (between 2010 and 1999) on each field sample plot as the response variable,
and differences in ALS metrics between the two points in time as predictor variables. The importance
of each predictor variable was assessed through the RF importance metric percentage increase in the
model mean square error (%IncMSE) along with exploring the relationship between the response and
predictor variables by means of correlation analysis. RF %IncMSE and the correlation analysis results
were analyzed until four non-collinear (r < 0.80) predictor variables were selected.

2.4. Population Estimates and Inference

2.4.1. Expansion Estimator

Assuming an equal probability simple random or systematic sampling design, the expansion
(Exp) estimator, µ̂Exp, [48,49] (p.51) and its standard error, SE

(
µ̂Exp

)
, were calculated as:

µ̂Exp =
1
n

n∑
i = 1

yi (1)

SE
(
µ̂Exp

)
=

√√
1

n(n− 1)

n∑
i = 1

(yi − µ̂Exp)
2 (2)

where n is the sample size and yi is the observed value for each ith sample unit.

2.4.2. Model Assisted Estimator

Model-assisted (MA) estimators use models based on auxiliary data to enhance precision but rely
on probability samples for validity [24]. The model-assisted estimator, µ̂MA, was expressed as:

µ̂MA =
1
N

N∑
i = 1

ŷi −
1
n

n∑
i = 1

(ŷi − yi) (3)

where N is the total number of population units (cells). The first term 1
N

∑N
i = 1 ŷi is the mean of

the RF model predictions, ŷi, for all population units, and the second term, 1
n
∑n

i = 1(ŷi − yi), is a
correction factor (CF), also characterized as the bias estimate, based on the sample unit observations
and predictions to adjust for estimated systematic RF prediction error [50].

The model-assisted standard error, SE(µ̂MA), was calculated as:

SE(µ̂MA) =

√√
1

n(n− 1)

n∑
i = 1

(εi − ε)
2 (4)

where εi = ŷi − yi and ε = 1
n
∑n

i = 1 εi. Although the term regression is often used to characterize
these model-assisted estimators, multiple other prediction techniques including nonlinear regression
models and non-parametric prediction techniques have also been used [51–56].
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2.4.3. Model-Based Estimator

Because the La Rioja 2016 data were not acquired using a probability sampling design, a
model-based (MB) inference framework was necessary. The model-based estimator of the population
mean, µ̂MB, is based on population unit predictions, ŷi.

µ̂MB =
1
N

N∑
i = 1

ŷi (5)

Bootstrap procedures were used to estimate the MSE and the standard error, SE =
√

MSE of the
model-based estimate of the population mean and the mean population change. Two bootstrapping
approaches were considered: The wild bootstrap [57,58] and the pairs or non-parametric bootstrap [59].
All bootstrap methods depend on the notion of a bootstrap sample which must mimic the original
sampling design [57,59–62] (p. 2). In this sense, an advantage of the wild bootstrap is that it preserves
the systematic nature of the original sample, whereas pairs bootstrap generates resamples which do
not necessarily mimic the original sample structure.

Bootstrapping was used at two levels with RF. First, RF uses the pairs bootstrap to select a resample
for use with each new regression tree. With pairs bootstrap, we created a matrix containing in each row
the observed values of the dependent variable and the values of the corresponding predictor variables.
For each RF tree, a new bootstrap sample (of the same size as the original data) was constructed by
selecting rows randomly with replacement and was used to construct a new random forests model
and to estimate the population mean for the population. The standard deviations of the 500 estimates
of the population mean, one for each of the 500 default RF trees, can be used to estimate the MSE for
the estimate of the population mean. Because the RF bootstrap resample is randomly selected with
replacement, there is little control over the sample used to build each tree. This level of bootstrapping
is characterized by Mentch et al. [63] (p. 2) as internal.

Second, bootstrapping can be used to iterate over the entire RF algorithm to estimate the MSE.
Mentch et al. [63] (p. 11) characterize this level of bootstrapping as external. The pairs bootstrap is
used as previously described to select a resample of the original sample data for each iteration of the
RF algorithm. This bootstrap resample is then resampled again for each tree within the RF algorithm.
With the wild bootstrap, residual values for each sample plot unit are estimated as the difference
between the observation and random forests model prediction. For each sample unit, the estimated
residual is multiplied by a random number from a distribution with mean 0 and variance 1, but for
this study constrained to the interval between −2 and 2. Finally, this product is added to the model
prediction to construct the wild bootstrap resample observation. A new wild resample is constructed
for each bootstrap iteration of the RF algorithm with the wild resample then resampled again with the
algorithm. For both the external wild and pairs bootstraps, nboot = 10,000 iterations were performed for
each dataset and each study area.

Regardless of the external bootstrap used, the bootstrap mean, µ̂boot, was calculated as:

µ̂boot =
1

nboot

nboot∑
b = 1

µ̂b (6)

where µ̂b is the estimated population mean for the bth iteration. The SE was calculated as:

SE(µ̂boot) =

√√√
1

nboot − 1

nboot∑
b = 1

(µ̂b − µ̂boot)
2 (7)
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2.5. Population Change Estimation

For the La Rioja data, volume change (∆VOL) for each population unit was predicted as the
difference between the two VOL predictions for the population unit, one for La Rioja 2010 and one for
La Rioja2016 (Equation (8)). Because VOL observations were not available at two points in time for
the same plots, change could not be estimated using direct methods. For the Våler data, if the same
method were applied, an estimate of the covariance between the means for the two dates would be
necessary because population unit predictions are based on data for the same plots, albeit at different
times [64]. This calculation is cumbersome for RF models because the bootstrap sample used for each
tree from the first dataset may be different from the resample from the second dataset. Therefore, for
the Våler dataset, ∆AGB was predicted directly using RF (Equation (10)), differences between AGB
measurements for the same plots and differences for the explanatory variables (ALS metrics) derived
from the 1999 and 2010 ALS acquisitions.

For the La Rioja study area, the indirect estimate of mean ∆VOL per unit area was calculated as:

∆̂VOL = µ̂MB, La Rioja 2016 − µ̂MB, La Rioja 2010 (8)

with
SE

(
∆̂VOL

)
=

√
SE2

(
µ̂boot, La Rioja 2010

)
+ SE2

(
µ̂boot, La Rioja 2016

)
. (9)

For the Våler study area, the direct estimate of mean ∆AGB per unit area was calculated as:

∆̂AGB = µ̂MB (10)

with
SE

(
µ̂AGB

)
= SE(µ̂boot) (11)

from Equation (7).
A spatially continuous uncertainty map for ∆VOL and ∆AGB was constructed, respectively, for

the La Rioja and the Våler study area. For the La Rioja dataset, the total ∆VOL uncertainty for each
population unit was estimated as:

SE
(
∆̂yi

)
=

√
SE2

(
ŷi LaRioja 2010

)
+ SE2

(
ŷi LaRioja 2016

)
, (12)

where SE(ŷi) was the square root of the MSE estimate for each population unit and each dataset using
mean VOL predictions for each population unit in each wild bootstrap iteration. For the Våler dataset,
population unit uncertainty was estimated as the square root of the MSE estimate of the mean ∆AGB
predictions for each population unit.

2.6. Overall Workflow

A flowchart depicting the steps conducted in this study and previously described is presented
(Figure 2).
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3. Results

3.1. Random Forests Regression Models

For the La Rioja datasets, RF %IncMSE indicate that the most important variables for both La
Rioja datasets were the 25th and 50th percentiles and the ALS height mean (Figure 3). However,
because of the large correlations among these variables, only the 25th percentile was used (Figure 4).
Overall, all the ALS metrics had large correlations with VOL observations in the sample units (Figure 4)
with the exception of var, iq, cv, and stdev. Somewhat smaller correlations between VOL and the
Landsat spectral bands and vegetation indices were observed for La Rioja 2010 than for La Rioja 2016.
The final models for La Rioja 2010 that used the 25th and 99th percentiles, lfcc and crr as predictor
variables and for La Rioja 2016 that used the 25th and 99th percentile, lfcc and ndmi explained 82–86%
of the variability.
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For the Våler datasets, the 50th ALS height percentile was the most important predictor variable
for both datasets. However, similar importance values were observed for the 50th, 20th, 30th, 60th ALS
height percentiles and the 00th and 10th canopy densities for Våler 2010. For Våler 1999, the 40th ALS
height percentile and the 00th and 10th canopy densities also ranked high (Figure 3). As for La Rioja 2010
and 2016, ALS metrics, with the exception of 0th height percentile, had strong correlations with field
AGB with greater correlations for the percentile metrics than for the density metrics (Figure 4). Among
all the height percentile metrics, the 20th, 30th, 40th, 50th, and 60th had the greatest correlations with
AGB which agrees with the RF variable importance assessments. In fact, for the Våler change analysis
the most important predictor variables were the differences in the 20th, 50th, and 30th ALS height
percentiles. RF models constructed with the four most important non-collinear predictor variables
explained less variability than when using all ALS metrics. Therefore, AGB and ∆AGB models were
fitted using all the ALS metrics. The latter biomass models explained 83–86% of the variability for
AGB and 82% of the variability for ∆AGB.

3.2. Estimates of Population Parameters for Each Point in Time

The Exp estimators produced similar estimates of means for La Rioja 2010 and for La Rioja
2016; for the former, µ̂Exp = 234.74 m3/ha with SE

(
µ̂Exp

)
= 10 m3/ha (4.37%), whereas for the latter

µ̂Exp = 236.53 m3/ha with SE
(
µ̂Exp

)
= 19.34 m3/ha (8.17%) (Table 2). Differences in µ̂Exp for the Våler

datasets were greater than for the La Rioja datasets, although so was the elapsed time; for Våler 1999,
µ̂Exp = 112.40 Mg/ha with SE

(
µ̂Exp

)
= 5.00 Mg/ha (4.45%) and for Våler 2010, µ̂Exp = 131.15 Mg/ha with

SE
(
µ̂Exp

)
= 6.94 Mg/ha (5.29%). SE

(
µ̂Exp

)
were calculated as proportions of estimates of the respective

µ̂Exp. However, because µ̂Exp for La Rioja 2016 was not based on a probability sample, it is reported
only for comparison purposes.

Table 2. Population estimates for both study areas.

Estimate La Rioja 2010 La Rioja 2016 Våler 1999 Våler 2010

µ̂Exp 234.74 * 236.53 a 112.40 131.15
SE

(
µ̂Exp

)
10.26 * 19.34 a 5.00 6.94

µ̂MA 197.86 * 183.26 a 105.55 119.64
SE(µ̂MA) 4.33 * 7.09 a 2.04 2.6
µ̂MB 197.22 183.45 105.83 119.47
µ̂w boot 200.15 190.41 113.45 131.35

SE(µ̂RF boot) 6.14 24.88 2.96 3.34
SE(µ̂w boot) 3.5 7.44 1.92 2.25
SE

(
µ̂p boot

)
3.03 7.87 1.82 2.05

Note: RF boot: Pairs bootstrap at internal level; w boot: Wild bootstrap; and p boot: Pairs bootstrap. a Reported
only for comparative purposes because the sampling design was not probabilistic. * Considered as a probabilistic
sampling design in spite of the filtering operations that were undertaken and discarded sample units from the
probability sample.

The MA estimates of the means for both study areas were very similar to but smaller than the
Exp estimates, especially for La Rioja 2010 and 2016 (Table 2). In all cases, introduction of the remotely
sensed auxiliary variables for use with the MA estimators reduced the SEs with SE(µ̂MA) = 4.33 m3/ha
(2.19%) and SE(µ̂MA) = 4.33 m3/ha (3.87%) for La Rioja 2010 and La Rioja 2016, respectively, and
SE(µ̂MA) = 2.04 m3/ha (1.93%) and SE(µ̂MA) = 2.6 m3/ha (2.17%) for Våler 1999 and Våler 2010,
respectively. As for the Exp estimates, because neither µ̂MA nor CF for La Rioja 2016 were based on a
probability sample, they are reported only for comparison purposes. The CFs or bias estimates for
the MA estimator were less than 1% for each dataset and study area: −0.64 m3/ha and 0.19 m3/ha for
La Rioja 2010 and La Rioja 2016, and 0.28 Mg/ha and 0.17 Mg/ha for Våler 1999 and Våler 2010. These
small bias estimates, which are equivalent to the mean residual, reflect the quality of fit of the RF
models to the data and consequently the precision of the estimates. In addition, graphs of observations
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versus predictions (Figure 5) showed most points were located close to the 1:1 line, although there
were a few with greater deviations, particularly for smaller and greater prediction ranges. An inherent
feature in RF contributes to this phenomenon which is exacerbated by small sample sizes as in La
Rioja 2016. The mean for any node will be the mean of the number of sample observations in each
node. Therefore, no prediction can be smaller than the smallest sample observation or greater than the
greater sample observation.

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 21 

 

 

 

 
Figure 5. Observed values versus model predictions for the different RF models in La Rioja (Spain) 
and Våler (Norway) as well as residuals versus predicted values. Volume observations and volume 
predictions are shown for the La Rioja study area and biomass observations and biomass predictions 
for the Våler study area. 

3.3. Estimates of Population Parameters for Change 

3.3.1. Estimates of Parameters 

For the La Rioja study area, ΔVOL population unit predictions ranged from -397.43 to 161.31 
m3/ha (50% of the population units with negative values) with mean 𝜟𝑽𝑶𝑳തതതതതതതത = −10.41 m3/ha and SE 
(𝜟𝑽𝑶𝑳തതതതതതതത) = 8.22 m3/ha. As for the Våler study area, ΔAGB population unit predictions ranged from -
230.05 to 163.53 Mg/ha with only approximately 16% of the population units having negative ΔAGB 
predictions. The model-assisted direct estimate was 𝜟𝑨𝑮𝑩തതതതതതതത = 15.11 Mg/ha with SE (𝜟𝑨𝑮𝑩തതതതതതതത) = 2.61 
Mg/ha (17.27%). The model-based estimate was 𝜟𝑨𝑮𝑩തതതതതതതത = 17.02 Mg/ha with SE (𝜟𝑨𝑮𝑩തതതതതതതത) = 2.3 Mg/ha 
(13.51%). 
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and Våler (Norway) as well as residuals versus predicted values. Volume observations and volume
predictions are shown for the La Rioja study area and biomass observations and biomass predictions
for the Våler study area.

External bootstrapping produced SEs that were smaller than internal bootstrap SEs by factors
ranging from 1.63 to 3.03. At the external level, the two bootstrap approaches produced similar SEs,
albeit slightly smaller for the pairs bootstrap (Table 2). However, smaller should not be construed to
indicate more accurate; in particular, because wild bootstrapping mimics the structure of the original
sample, which the pairs bootstrapping does not for systematic samples, wild bootstrapping was
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considered the most reliable. For La Rioja 2010, SE(µ̂w boot) = 3.5 m3/ha (1.77%); for La Rioja 2016,
SE(µ̂w boot) = 7.44 m3/ha (4.06%); for Våler 1999, SE(µ̂w boot) = 1.92 Mg/ha (1.81%); and for Våler 2010,
SE(µ̂w boot) = 2.25 Mg/ha (1.88%) (Table 2). Although SE(µ̂w boot) estimates for Våler 1999 and Våler
2010 were almost identical, different results were observed for La Rioja 2010 and La Rioja 2016.

3.3. Estimates of Population Parameters for Change

3.3.1. Estimates of Parameters

For the La Rioja study area, ∆VOL population unit predictions ranged from−397.43 to 161.31 m3/ha
(50% of the population units with negative values) with mean ∆VOL = −10.41 m3/ha and SE
(∆VOL) = 8.22 m3/ha. As for the Våler study area, ∆AGB population unit predictions ranged from
−230.05 to 163.53 Mg/ha with only approximately 16% of the population units having negative ∆AGB
predictions. The model-assisted direct estimate was ∆AGB = 15.11 Mg/ha with SE (∆AGB) = 2.61 Mg/ha
(17.27%). The model-based estimate was ∆AGB = 17.02 Mg/ha with SE (∆AGB) = 2.3 Mg/ha (13.51%).

3.3.2. Mapping

Figure 6 shows the change maps for each study area along with their wall-to-wall uncertainty
maps. Cold colors (blue) indicate a loss of VOL or AGB while warm colors (yellow) indicate an
increase in the reported variables. Greater uncertainty values are associated with the greatest change
predictions. For the La Rioja study area, population units with negative ∆VOL predictions coincide
with areas where management practices such as clear-cutting or thinning were conducted. Overall,
there has been an increased in AGB in the Våler study area and the population units with negative
∆AGB predictions coincide with the deforestation activities classified in McRoberts et al. [46].
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4. Discussion

4.1. RF Optimitation: Landsat Variables

Even though SNFI plots are characterized by the lack of precision for plot center coordinates, the
RF models adequately described the relationship between the plot-level VOL observations and the
remotely sensed data resulting in smaller SE estimates. Nevertheless, for future analysis SNFI plot and
ALS cell sizes should be the same. The differences between the Exp and the MA estimates for La Rioja
2010 and for La Rioja 2016 might be due to differences in the sample and population distributions of the
auxiliary variables [35]. As shown in Table 3, the auxiliary variables for the population units have a
greater range than for the sample. Unlike regression models, RF cannot extrapolate beyond the range
of the response variable in the sample.

This study demonstrated that the use of remotely sensed auxiliary data led to smaller standard
error estimates. Overall, Landsat vegetation indices based on NIR and SWIR bands were the most
important variables among optical data in the La Rioja study area. This finding is consistent with
Dube and Mutanga [65] who reported that SWIR bands and vegetation indices were most important
for predicting AGB. In addition, Condés and McRoberts [31] confirmed that SWIR band and ndvi were
the most correlated with volume change. However, none of the optical variables were in the final
RF volume model for La Rioja 2010 due to their smaller correlations with the volume variable. This
result could be attributed to the less accurate plot center coordinates for La Rioja 2010 resulting in NFI
field plot observations that do not exactly match with the corresponding Landsat band values [66].
SNFI plots with complete forest cover could be located in population units that are not completely
forested with the result that the Landsat reflectance signal for the plot could be mixed with the bare
soil reflectance.
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Table 3. Ranges of the auxiliary variables in the sample and the population (Pop) for La Rioja 2010 and
La Rioja 2016.

Dataset Measure
Auxiliary Variable

p25 p99 crr lfcc

Sample Pop Sample Pop Sample Pop Sample Pop

La Rioja
2010

Mean 8.28 7.03 14.80 13.19 0.54 0.49 79.93 64.67
Min 2.40 0.00 4.51 0.00 0.25 0.00 7.79 0.00
Max 16.62 38.75 27.26 44.72 0.76 0.88 100 100

Range 14.22 38.75 22.75 44.72 0.51 0.88 92.21 100

p25 p99 ndmi lfcc

Sample Pop Sample Pop Sample Pop Sample Pop

La Rioja
2016

Mean 9.61 7.52 16.42 14.59 0.29 0.29 69.21 65.36
Min 2.22 0.00 3.36 0.00 0.06 −0.31 7.63 0.00
Max 17.27 39.23 24.92 44.58 0.48 0.79 99.93 100

Range 15.05 39.23 21.56 44.58 0.42 1.1 92.3 100

Note: p25, p99 are the 25th and 99th height percentiles (m), lfcc is the forest canopy cover (%) and ndmi is the
normalized difference moisturize index.

4.2. Statistical Inference and Bootstrap Techniques

The novelty of this study resides in the fact that model-based MSE estimation with the RF
algorithm is assessed through different bootstrapping approaches. Both the population mean and the
MSE of the estimate of the population mean are necessary for inferences for population parameters in
the form of confidence intervals. Because RF regression trees are constructed using resamples selected
with replacement from the original sample (i.e., pairs bootstrapping), the resample might not mimic the
original sample as is required for bootstrapping [33,58,60–62]. Further, resampling with replacement
may reduce the ranges of the predictor variables, particularly for small samples, thereby introducing
bias because of the inability of RF to extrapolate beyond the range of the sample or resample data.
These features could contribute to greater SEs when the internal bootstrapping pairs is used, as was
observed in La Rioja 2016, although greater SEs were only observed when Landsat variables were
included. When only the ALS metrics for La Rioja 2016 were used, SE(µ̂RF boot) = 12.13 m3/ha as
opposed to SE(µ̂RF boot) = 24.88 m3/ha. In this study, because the RF models were constructed with
only four predictor variables, only a single variable was considered by the algorithm for splitting a
node. Many of those nodes could have been split with the less-correlated predictor variable (ndmi)
with the response VOL variable among all the predictor variables with which the RF model was
constructed. This could lead to greater loss of volume prediction precision, and thereby, greater MSE
estimates. These findings lead us to exercise caution if internal pairs bootstrapping procedures are
used to estimate the model-based MSE. Because model-based MSE estimates were smaller when pairs
bootstrapping was used at both internal and external levels, further work should be directed to the
wild bootstrapping approach at both internal and external levels.

The greater SE(µ̂w boot) for La Rioja 2016 could be attributed to the smaller calibration data set size
used [20,39]. Nevertheless, even though the sampling intensity in La Rioja 2016 was smaller by a factor
of 3 compared to La Rioja 2010, the SE differences were not meaningful. Model-based SEs depend
not only on sample size but also on the model, the model estimates, the covariance for the model
estimates, and values of independent variables [24]. This suggests that little may be lost by using a
smaller purposively selected calibration data set. This feature is an appealing option for conducting
forest inventories in remote areas where the acquisition of field data for probability sampling designs
may be prohibitive, either for economic or logistic reasons. Reduction in field-plot sample sizes could
allow more money for remotely sensed data acquisition whose integration leads to greater precision
in estimates. Alternatively, RF models for La Rioja 2010 could be temporally transferred to the La
Rioja 2016 ALS data, thereby capitalizing on the greater SNFI sampling intensity and the greater point
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density of the 2016 ALS data [16,67]. However, the effectiveness of the RF model based on earlier data
could depend on the particular forest attribute predicted and the differences between point cloud
characteristics for the ALS data used to construct the model and the ALS data used when applying the
model [68]. Tompalski et al. [68] observed up to 6% differences in mean predicted volume when ALS
data of different pulse densities were used. Besides point density, other factors related to flight design
or sensor configuration can affect the main forest variables estimation at least as much as differences in
pulse densities [69]. Nationwide flight campaigns cover a wide range of forest types and topographic
structures, with highly variable and not always optimal flying conditions. Holmgren et al. [70] found
that canopy cover was more affected by scanning angle than laser height percentiles and Montaghi [71]
indicated that most plot-level prediction metrics were relatively unaffected by high scanning angles, up
to 20 degrees. Furthermore, the effects of climate change could change the natural conditions between
the data acquisition dates and compromise the effectiveness of an RF model constructed using earlier
data [72].

4.3. Population Change

A large number of studies have demonstrated the value of multi-temporal ALS data for estimating
changes in forest attributes [12,16,73]. Change maps are important for understanding the state and
dynamics of forests, and they can be used as an initial information source for reporting carbon emissions.
Even though our methodology focuses on a regional area, it could have national implications because
it mostly leverages open source data gathered to compile data for a better understanding of the forest
status. Numerous countries continue to acquire second coverage ALS data resulting in a greater
number of territories with multi-ALS flights in which our workflow could be replicated. The similarity
of the results obtained for this study (∆AGB = 15.11 Mg/ha with SE (∆AGB) = 2.61 Mg/ha (17.27%))
with previous studies on change estimation with remotely sensed data lend support for the suitability
of the RF algorithm. Nӕsset et al. [74] and McRoberts et al. [15] analyzed the same Våler data using
linear regression models with a direct change approach. The former reported ∆AGB = 11.9 Mg/ha with
SE (∆AGB) = 1.6 Mg/ha (13.44%), and the latter ∆AGB = 13.62 Mg/ha with SE (∆AGB) = 2.21 Mg/ha
(16.23%). Zhao et al. [14] found similar differences between linear regression models and RF when
estimating ∆AGB.

Although direct approaches are often reported as preferable in the scientific literature because
only errors from one model are incorporated [12,13,74], other studies have found greater accuracies
with indirect methods. Økseter et al. [75] estimated ∆AGB in boreal forest using multi-temporal ALS
data in Norway and reported the indirect approach as a more satisfactory. McRoberts et al. [15] showed
indirect methods produced greater precision when using nonlinear models with the same Våler data
as used for this study. Zhao et al. [14] estimated ∆AGB in a forested landscape in Scotland with the
indirect approaches showing slightly more precise performances. In addition, the indirect modeling
has been claimed to be less sensitive to extrapolating and it has been found to be a better alternative
to estimate changes more accurately at stand-level [73]. In light of the diversity of results, the most
accurate and/or precise approach may have to be determined by the data available for each study.

4.4. Data Considerations

Direct approaches require repeated measurements of the same field plots which are not always
possible due to economic constraints. Further, changes in sampling protocol or field crews between
measurements may complicate comparisons of repeated measurements [76]. Costs associated with
indirect approaches could be reduced by predicting forest attributes using models with temporal
transferability [16] but bearing in mind that temporal transferability should be conducted carefully as
previously mentioned.

Nevertheless, the notion of worldwide, multi-temporal, wall-to-wall ALS data available free of
charge is likely unrealistic. A substantial investment is required to acquire ALS data for large forest
areas, and subsequent processing requires large data storage capability. Because these factors hinder
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development of forest inventories based on this technology, other alternatives should be considered to
mitigate the costs. The increasing access to satellite images may contribute to development of more
cost-efficient forest inventories. Basal area removal has been modeled successfully with RF using
repeated measurements of NFI plots and Landsat based disturbance products over a 30-year period [77].
Landsat time series have also been explored for mapping AGB dynamics [78]. An alternative to
wall-to-wall ALS data could be acquisition of ALS transects in combination with other optical remotely
sensed data to estimate forest attributes in a spatially continuous manner [29,79]. Additionally, due
to the increased availability of satellite images, an upscaling approach to integrate remotely sensed
data from multiple sources has arisen as a suitable alternative for mapping forest attributes at large
scales [20,80].

5. Conclusions

Four main conclusions can be drawn from this study: (1) RF models adequately described the
relationship between field plot measurements of volume and biomass per unit area and remotely
sensed data; (2) model-assisted and model-based estimators based on RF predictions produced similar
estimates of population means and change estimates and smaller mean square error estimates than
the expansion estimators, thus indicating the utility of remotely sensed data for enhancing forest
inventories; (3) because pairs bootstrapping does not mimic the original sample structure and does not
preserve the range of predictor variables, wild bootstrapping for MSE estimation is recommended; and
(4) the essence of the RF bootstrapping technique could impact on the model-based MSE estimation
when internal pairs bootstrapping techniques are applied. By using multi-temporal ALS data, estimates
of change for each study area were obtained. For the La Rioja study area the population volume change
mean was −10.41 m3/ha (−26.85, 6.03 m3/ha), whereas for the Våler study area the population biomass
change mean was 15.11 Mg/ha (9.89, 17.37 Mg/ha). These results reflect a biomass gain in Våler from
1999 to 2010, while in La Rioja we cannot say whether from 2010 to 2016 there has been a loss or gain in
the volume stock of Scots pine forest as the volume change confidence interval contains the zero.
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