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Abstract: Migratory insect identification has been concerning entomology and pest managers for a
long time. Their nocturnal behavior, as well as very small radar cross-section (RCS), makes individual
detection challenging for any radar network. Typical entomological radars work at the X-band
(9.4 GHz) with a vertical pencil beam. The measured RCS can be used to estimate insect mass and
wingbeat frequency, and then migratory insects can be categorized into broad taxon classes using the
estimated parameters. However, current entomological radars cannot achieve species identification
with any higher precision or confidence. The limited frequency range of current insect radars have
precluded the acquisition of more information useful for the identification of individual insects.
In this paper, we report an improved measurement method of insect mass and body length using
a radar with many more measurement frequencies than current entomological radars. The insect
mass and body length can be extracted from the multi-frequency RCSs with uncertainties of 16.31%
and 10.74%, respectively. The estimation of the thorax width and aspect ratio can also be achieved
with uncertainties of 13.37% and 7.99%, respectively. Furthermore, by analyzing the statistical data of
5532 insects representing 23 species in East China, we found that the correct identification probabilities
exceed 0.5 for all of the 23 species and are higher than 0.8 for 15 of the 23 species under the achievable
measurement precision of the proposed technique. These findings provide promising improvements
of individual parameter measurement for entomological radars and imply a possibility of species
identification with higher precision.

Keywords: insects; multi frequency; radar cross-sections; parameter extraction; support vector
machines

1. Introduction

Animal migration is increasingly recognized to have ecological effects on both habitats and
ecosystems by transport effects and trophic effects [1–3]. These ecological interactions make every
species of migrant play an irreplaceable role in the entire circulatory system [4]. Among animal
migrants, the migratory insects have the largest individual numbers [5]. Many migratory insects
provide essential ecosystem services such as crop pollination, seed spreading and energy transfer [4],
but some migratory pests cause losses to human society, such as crop damages [2,6] and virus
transmission [7]. Therefore, studies on insect migration are critically important.

Most migratory insects are too small (a few milligrams of individual mass) for individual tracking,
and their high flying altitudes (a few hundred meters, or even 2–3 km) during migration also limit
their effective monitoring [8]. Therefore, the knowledge of insect migration has lagged behind that of
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other aerial organisms such as birds and bats. To study insect migration, many tools and techniques,
including aerial net sampling and searchlight trapping have been applied [9,10]. In contrast to these
traditional monitoring tools and techniques, radars have the advantages of a long detection range and
the capability for continuous observation [1,11]. The distinctive capacity of radar to monitor over-flying
nocturnal insects makes it widely used in the study of the migration behavior of high-altitude migratory
insects. Researchers in entomology have built various kinds of entomological radars, including airborne
entomological radar [12,13], scanning entomological radar [14], tracking entomological radar [15] and
vertical-looking radar (VLR) [16–18]. Among these radars, scanning entomological radar and vertical
entomological radar are the most widely used in the research of insect migration, which have greatly
promoted the development of radar entomology. Since the late 2000s, radar-led research has refined
our knowledge of the strategies and sensory capabilities employed by migratory insects in flight at
night such as navigation, aggregation and orientation [19–21].

With the development of insect migration research, individual observation is becoming increasingly
important. To study the behavior of individual insects, the first and the second generations of VLRs
were built [22,23]. VLRs not only enable the long-term automated monitoring of migratory insects,
but also have the ability to retrieve the mass, wing frequency and shape-related parameters of the
target insect from the radar echo [24], which can be used to identify high-flying insect species [25].
The identification of insect migrants is an essential step in understanding the role of specific insects in
population dynamics and community interactions, which may contribute to a better understanding of
the ecological significance of insect migration. However, the ability of existing entomological radars to
identify species identification is still insufficient. The detected insects can only be assigned to broad
taxonomic classes (e.g., big moth or small moth) in most cases [26]. It is therefore necessary to improve
the capability of the current entomological radar in species identification.

The morphological parameters of insects (e.g., shape and size) are the main basis of species
identification [27]. To more precisely identify insect species, species-exclusive parameters should
be estimated from radar data, and the estimation accuracy of these parameters must be improved.
The wingbeat frequency, mass, body length, aspect ratio (i.e., the ratio of length to width) and thorax
width are the five most important morphological parameters. The wingbeat frequency of a flying
insect can be measured by a VLR with an uncertainty of 1 Hz [28]. For insect mass and body length,
the multi-frequency radar cross-sections (RCSs) were investigated and the estimation of mass and
body length could be achieved with uncertainties of 23.7% and 15.7%, respectively [29]. Aside from
species identification, the estimation of biomass of high-flying insects can contribute to the study of the
relationship between migration of insects and its impacts on the ecosystems, and it can be profoundly
affected by the estimation of insect mass [2], with both requiring a higher estimation accuracy of
insect mass. In addition, a significant relationship has been found between the aspect ratio and RCS
shape (i.e., the ratio of the RCSs for the polarization direction parallel and perpendicular to the body
axis), which is only limited to small insects [26]. Among the research of morphological parameter
measurement with insect radar, little has been done to investigate the relationship between insect
thorax width and radar data.

In our experiment, the multi-frequency RCSs of 15 insects (belonging to 11 species and
3 families, caught in Jiangsu, East China) were measured using an experimental multi-frequency
radar. The frequency dependence of insect RCS was fully studied, and the estimation accuracy of
mass and body length was further improved. The measured RCS vs. frequency curves were proven
to contain information highly correlated with the aspect ratio and thorax width, and therefore using
multi-frequency RCSs may be useful for improving the aspect ratio and thorax width estimation.
Under the assumption that the mass, body length, wingbeat frequency, aspect ratio and thorax width
of flying insects can be measured by insect radar using the proposed technique, an identification
simulation was implemented by analyzing the statistical records of insect migrants (belong to 23 species
and 7 families, trapped in the Bohai migration corridor, China). The results indicate that the correct
identification probabilities exceed 0.5 for all of the 23 species and are higher than 0.8 for 15 of the
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23 species. The identification simulation demonstrated that accurate estimations of the morphological
parameters of migratory insects could increase the identification capability of entomological radar.

The remainder of this paper is organized as follows. In Section 2, the multi-frequency RCS
measurements of migratory insects are first introduced and the estimation accuracy of the morphological
parameters with experimental data is then analyzed. In Section 3, we provide an evaluation of the
identification performance on the migratory insects based on their morphological parameters. Section 4
outlines the discussion concerning the strengths and weaknesses of the proposed method as well as its
future improvement and application. Our main conclusion is outlined in Section 5.

2. Estimation of Morphological Parameters

RCS represents an inherent property (i.e., scattering ability) of a target and defines how a
target intercepts and redirects an electromagnetic wave [30]. The measured RCS is a function of
shape, composition and aspect of the target and the wavelength and polarization of the transmitted
radiation [30,31]. For the radar scattering characteristics of insects, the polarization, temporal and
angular variations of the RCSs are the main research foci [26,32,33]. Variations in RCS across the
frequency range have been proven to carry some information that can be used to estimate the insect
morphological parameters [29]. However, the morphological parameters that can be measured using
radar are limited, and current inversion methods of insect mass and body length have insufficient
accuracy [26,29]. Therefore, further research was conducted to extract other potential parameters and
improve the estimation accuracy.

2.1. Multi-Frequency Insect RCS Measurements

The multi-frequency RCSs of migratory insects are required for research on the frequency
dependence of insect RCSs. For this, an experimental multi-frequency radar was constructed with
a vector network analyzer and four horn antennas (two antennas working at X-band and the other
two antennas working at K-band) in a microwave anechoic chamber [29]. A total of 15 insects were
trapped by a light trap the night before the experiment in our research base located in Soochow, China.
Each insect adhered to a short polyethylene (PE) thread on its back, and then was hung directly above
the antennas with its body axis direction parallel to the polarization direction of the antennas.

The variation of the RCS (i.e., σ) with the direction of polarization angle φ can be represented
as [31]

σ(φ) = a0[1 + α2 cos 2(φ− β) + α4 cos 4(φ− β)], (1)

where α0 is the polarization-averaged RCS; α2 and α4 are dimensionless parameters with non-negative
values [31,34]; and β represents the insect’s body axis (i.e., the orientation of the insect).

These three coefficients (i.e., a0, α2 and α4) can be used to calculate the two conventional RCS
values of the target (σxx and σyy) as follows [26]:

σxx = a0(1 + α2 + α4), (2)

σyy = a0(1− α2 + α4). (3)

When the longitudinal axis of the insect’s body is parallel to the polarization plane, the RCS value
is usually the maximum of the polarization pattern, denoted as σxx. σyy is the RCS value when the
polarisation plane is orthogonal to that of σxx [33,35].

Considering the selection of the polarization direction in our experiment, the measured RCS of
the insects was also denoted as σxx to be consistent with the former research [31,33]. The measurement
results can be found in Tables S1 and S2. Each insect was alive during the experiment. Before the
experiment, the mass, body length and thorax width of each insect were measured and recorded, and
the aspect ratio was calculated as shown in Table S3. The mass, body length, thorax width and aspect
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ratio ranged from 11.5 to 514.5 mg, 6 to 28 mm, 1 to 5 mm and 5.0 to 8.4, respectively. For convenience,
each insect was identified with a distinguished class label following an uppercase letter order.

2.2. Multi-Frequency Scattering Characteristic Analysis

Hobbs et al. presented the RCS measurements for 68 insects, representing 24 species with an
insect mass from 9 mg to 3 g at a frequency of 9.4 GHz [33]. The measured σxx–mass curve is shown in
Figure 1. The curve can be divided into three sections: Rayleigh region, resonance region and optical
region. In the first section, when the scattering of small insects (mass < 100 mg) at X-band is generally
in the Rayleigh region, σxx is positively related to mass [33]. As the insect mass increases, the scattering
of insects falls into the resonance region where the RCS varies in a more complicated way due to
the size to wavelength ratio being close to unity. Therefore, the σxx and mass are negatively related.
When the insect is quite large (mass > 1000 mg), the scattering begins to fall into the optical region in
which the target size is significantly larger than the wavelength. In the optical region, σxx regains its
positive correlation with mass.
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Figure 1. σxx versus mass at a frequency of 9.4 GHz. Note: Red squares denote radar cross-section
(RCS) data provided in the study of Hobbs et al. [33] and black lines denote approximate fitting.
σxx represents the RCS value when the body axis direction is parallel to the polarization direction.

RCS is related to insect mass [27]. To explore the variation of this relationship across the frequency
range, the σxx vs. mass curves at different frequencies obtained from our measurements are shown in
Figure 2. Through contrastive analysis, we found that the σxx vs. mass curves at other frequencies
have similar shapes as those at a frequency of 9.4 GHz. The data presented in Figure 2a illustrate the
behavior of the insects’ RCS at the end of the Rayleigh region towards the first RCS maxima for the
X-band frequency. As expected, the RCS increases with the increase in frequency, and then reaches a
maximum. The maximum point moves in negative directions for both the horizontal and vertical axes
as the frequency increases. The data presented in Figure 2b illustrate the behavior in the resonance
region toward the optical region for the K band frequency. These phenomena can be explained by
the sizes of these insects becoming comparable to the wavelength for the K-band frequency, leading
to the scattering of these insects in the resonance region toward the optical region. For the insects
with a mass larger than 100 mg, the RCSs at K-band are smaller than those at X-band, which can be
explained by RCS oscillating in the resonant region. In addition, a high frequency, such as K-band, has
the advantage of a larger RCS when detecting small insects, which can provide recommendations for
radar system designs.
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measured radar cross-section in our experiment. For better observation, lines of the same colors denote
simple polynomial fittings to them. The fit order is 3 for data at X-band and 5 for data at K-band.

2.3. Multi-Frequency Scattering Feature Extraction

The previous subsection explored how the σxx vs. mass curve varies with frequency. To further
investigate the frequency dependence of insect RCS, we explored the relationship between the σxx vs.
frequency curves and the morphological parameters of insects. Firstly, a simulation was conducted to
comprehensively analyze the multi-frequency RCS characteristics due to the limited frequencies of
our experimental data. As the shape and composition of insects are complex, a simple and acceptable
digital model should be selected to emulate the scattering characteristics of the migratory insects.
A prolate spheroid is widely used to emulate the body shape of all insect taxa [29,36]. Another
important factor to consider is the dielectric composition [37]. Mirkovic demonstrated that a prolate
ellipsoid with an internal dielectric of homogenized chitin and hemolymph mixture can emulate true
insect characteristics [36]. A prolate ellipsoid with an internal dielectric of the spinal cord best replicates
the experiment measurements [29]. In this study, the spinal cord prolate spheroids were used as the
approximate model of insects for the qualitative analysis of multi-frequency scattering characteristics.

The simulation results for different prolate spheroids are shown in Figure 3. The lengths of these
prolate spheroids ranged from 5 to 28 mm, and the aspect ratio was set to 5. Least squares polynomial
fitting was adopted of the simulation data. The σxx vs. frequency curves have similar shapes. The RCS
increases or oscillates for each of the models as the frequency increases. As the length increases, the
horizontal coordinates of the global maxima decrease and the vertical coordinates of the global maxima
increase. The black dots represent the estimated global maxima, which were proven useful for the
estimation of the body length and mass [29]. The global maximum of the RCS vs. frequency curve is
the resonance parameter, which has a well-documented quantity, especially in radar meteorology [38].
The estimated global maxima were also considered as characteristic information for further analysis in
this paper.
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2.4. Estimation of Morphological Parameters

The experimental data were processed similarly to extract the estimated global maxima using least
squares fitting. Further details for global maxima estimation are available in the original publication [29].
The global maximum of the σxx vs. frequency curve is denoted as σmax and λmax as listed in Table S3.
σmax is expressed in dBsm and λmax is expressed in mm, and these two parameters were applied to
estimate insect morphological parameters.

Wang et al. demonstrate that the experimentally measured λmax and σmax are linearly related to
the body length and logarithm of mass of an insect, respectively, and the estimation of body length and
mass could be achieved with uncertainties (i.e., root mean square percentage error, see Appendix A)
of 15.7% and 23.7%, respectively [29]. However, this linear relationship was proposed based on
the simulated data, and some differences were observed between the simulation models and the
experimental insects. Compared with the models, the insects have more complex shapes and the
insects are composed of different materials and different portions of the insect bodies have different
dielectric properties. Therefore, some differences may exist between the simulation and experimental
data, indicating that the proposed linear relationship may be imprecise for the experimental data.

Through analysis, we found that improved mass and body length estimates could be obtained by
adopting a high-order polynomial fitting as shown in Figure 4b,c. Insect mass estimated from σmax has
an uncertainty of 23.53%, and body length estimated from λmax has an uncertainty of 11.25% (Table 1).
The variations of mass with λmax and body length with σmax are also shown in Figure 4a,d. Based on
these relationships, we found that the measured λmax can also be used to extract the mass and the
measured σmax can be used to extract the body length. All Spearman’s rank correlation coefficients
were larger than 0.85, indicating high correlations between the analyzed values. The thorax width is
also an important insect characteristic and the variations of the body with σmax and λmax are shown in
Figure 4e,f. Both these two parameters showed a significant relationship with the thorax width for
these specimens. Therefore, the thorax width can also be estimated.
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Table 1. Morphological data of measured species and scattering features extracted from
multi-frequency RCSs.

Method
Mass Body Length Thorax Width

rs
1 (p 2) RMSPE 3 rs (p) RMSPE rs (p) RMSPE

λmax 0.9526 (<0.001) 16.31% 0.8836 (<0.001) 11.25% 0.916 (<0.001) 13.37%
σmax 0.9464 (<0.001) 23.53% 0.8927 (<0.001) 10.74% 0.8575 (<0.001) 20.86%

1 rs is the Spearman’s rank correlation coefficient; 2 p means p-value; 3 RMSPE represents root mean square
percentage error (see Appendix A).
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All estimation results were compared as listed in Table 1. The lowest estimation errors of the
mass and body length were 16.31% and 10.74%, reduced from 23.7% and 15.7% in Wang et al. [29],
respectively. For the thorax width, no paper has reported its estimation based on radar measurement.
This is the first time that the thorax width has been extracted from multi-frequency RCSs with high
accuracy. The aspect ratio is also an important feature used to characterize insect shape, and this
shape parameter can be expected to provide further information on the target’s identity. Therefore, the
aspect ratio is also estimated based on the measured body length and thorax width. The distribution
of the estimated aspect ratio versus the true aspect ratio is shown in Figure 5. The aspect ratio has an
estimation error of 7.99%. The best-fitting lines of insect mass, body length and thorax width can be
respectively represented as

mass(mg) = −771.81λ4
max + 125.54λ3

max − 7.23λ2
max + 0.17λmax, (4)

log10[length(mm)] = −54.31σ3
max + 2.94σ2

max + 0.08σmax, (5)

width(mm) = −4.41λ3
max + 0.69λ2

max − 0.03λmax. (6)
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We also assessed the traditional mass estimation method with the laboratory-measured RCSs from
a published database following the same process. A data set including 57 insects was taken as the test
input. The data originated from two separate data sources: RCS data of 43 insects (mass ranging from
45 to 648 mg) measured by Aldhous [33], denoted here as A, and RCS data of 14 insects (mass ranging
from 9 to 254 mg) measured by Wolf et al. [30], denoted here as W. Based on laboratory measurements
of RCS and mass, Chapman presented two empirical equations to estimate the mass from the RCS
parameters [24]. The calculated RMSPE is 0.446 for data A and 0.474 for data W, which are both three
times as large as the value based on the new method. We also analyzed the distributions of percent
relative error (PRE, see Appendix A) for the three datasets above (Figure 6). Figure 6 shows that the
measurement results for our data are more concentrated in the area of small errors, indicating that a
high estimation accuracy of the mass can be achieved for most insects based on the proposed method.
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3. Species Identification of Migratory Insects

Insect identification with radars is critically important for insect migration research. The ability to
identify a target has many application prospects for using radars as entomological tools [30]. However,
establishing a radar classification scheme based on the present knowledge of radar measurements would
be inadequate [30]. We stated that morphological features can be used to discriminate different insect
species [39]. We proved that additional morphological features can be extracted from entomological
radar data, yet lacking the multi-frequency capability at this moment makes it harder to implement
insect identification. In the following section we explore the identification performance of various
morphological parameters.

3.1. Data Description

In this study, insect classification between 23 species of 5532 total insects is carried out. All insects
were caught using a search-light trap at Beihuangcheng Island, in Bohai Gulf, China, from August
to October 2015. Beihuangcheng island has been proven to be an important stop for migratory
insects and birds in the migration corridor between Shandong Peninsula and Liaodong Peninsula [40].
The species, quantities and measured thorax widths are listed in Table 2. The other morphological
parameters (i.e., mass, body length, aspect ratio and wingbeat frequency) were published in former
research [39]. The number 1 to 23 is representative of the species. All of the species are moths. Among
them, seven species were trapped with less than 50 individuals. Due to the limited quantities of
these species, a data extension approach was adopted to extend each species to 5000 samples [39].
Definite measurement errors were introduced into the extension dataset to evaluate the identification
performance. Specifically, the constructed measurement deviations of morphological parameters
(i.e., mass, body length, thorax width, aspect ratio and wingbeat frequency) were 17%, 11%, 14%, 8%
and 1 Hz, respectively, which is consistent with the estimation precision of the proposed parameter
estimation method. Next, the new dataset was used for further analysis.
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Table 2. The primary information of the 23 insect species.

Label Species Family Order Quantity
Thorax Width (mm)

Range Mean Std. Dev.

1 Eriopyga grandis Noctuidae Lepidoptera 473 2–5 3.35 0.68
2 Agrotis tokionis Noctuidae Lepidoptera 382 5–9 7.11 0.84
3 Xestia c-nigrum Noctuidae Lepidoptera 43 5–7 5.47 0.55
4 Agrotis praecox Noctuidae Lepidoptera 78 5–6 5.70 0.46
5 Spodoptera litura Noctuidae Lepidoptera 129 3–5 3.86 0.54
6 Heliothis dipsacea Noctuidae Lepidoptera 84 2–5 3.58 0.54
7 Speiredonia retorta Noctuidae Lepidoptera 32 3–5 3.91 0.69
8 Dermaleipa juno Noctuidae Lepidoptera 61 10–14 11.52 0.89
9 Acronicta rumicis Noctuidae Lepidoptera 58 2–3 2.97 0.18

10 Calospilos suspecta Geometridae Lepidoptera 147 2–3 2.03 0.16
11 Spilarctia subcarnea Arctiidae Lepidoptera 296 2–6 4.33 0.70
12 Spilosoma niveus Arctiidae Lepidoptera 48 4–6 5.46 0.54
13 Amsacta lactinea Arctiidae Lepidoptera 27 4–6 5.26 0.53
14 Rhyparioides amurensis Arctiidae Lepidoptera 144 3–5 3.78 0.43
15 Clanis bilineata Sphingidae Lepidoptera 53 8–16 12.34 1.75
16 Psilogramma menephron Sphingidae Lepidoptera 29 7–10 8.52 0.63
17 Ampelophaga rubiginosa Sphingidae Lepidoptera 41 7–11 9.24 0.77
18 Callambulyx tartarunovii Sphingidae Lepidoptera 35 12–15 13.91 0.95

19 Macroglossum
stellatarum Sphingidae Lepidoptera 84 10–14 12.37 0.77

20 Loxostege sticticalis Pyralididae Lepidoptera 892 1–2 1.37 0.48
21 Spoladea recurvalis Pyralididae Lepidoptera 1574 1–2 1.02 0.13
22 Pantala flavescens Libellulidae Odonata 768 11–14 12.39 0.72
23 Enallagma cyathigerum Coenagriidae Odonata 54 4–6 5.28 0.56

3.2. Classification Method

The species identification of migratory insects is a multi-classification problem. Machine learning
algorithms can be selected to solve the problem. Support vector machine (SVM) was originally put
forward to solve binary classification problems with the advantages of global optimization, a simple
structure and high practicability [41–43]. The SVM algorithm has been widely used in many research
fields and works well with limited training samples [44]. Mayo et al. demonstrated that the algorithm
SVM achieved the best result in the identification of 35 species of moths compared with four other
machine learning methods (Bayes, instance-based learning, decision trees and random forests) [45].

Focusing on the classification issues in our study, the SVM algorithm is selected. In the classification
process, SVM defines a maximal margin hyperplane in the feature space to separate two labeled
targets [41]. To classify non-linearly separable classes, the radial basis function (RBF) is selected due to
its superiority over other functions [46].

SVM is a binary classifier. To solve the multi-classification task, the decision-tree-based support
vector machine (DTSVM) method was adopted [47]. DTSVM is a formulation of the SVM algorithm that
converts a multi-class problem into the integration of several binary classification problems using a tree
structure [47]. As shown in Figure 7, a binary tree is developed based on a certain separability measure.
Four maximal margin hyperplanes should be calculated for the five-class classification problem.
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3.3. Separability Analysis of the Thorax Width

We reported that the mass, body length, aspect ratio and wingbeat frequency can be combined
to discriminate different insect species, and the distributions and separability of these four features
have been fully analyzed and discussed [39]. In this paper, we proved that the thorax width could
also be extracted from the radar signal with a high level of accuracy. The thorax width is a usual and
important feature for characterizing insect size and is also easy to measure. Therefore, it is necessary to
combine the thorax width for further analysis of insect identification.

For the intuitive analysis of the thorax width distribution, the median and min–max range are
shown in Figure 8. The thorax width of all specimens ranges from 1 to 16 mm. The distribution range
of the thorax width is relatively narrow for most species.
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The thorax width probability distribution curves of the extended data are shown in Figure 9.
The probability distribution curve of the thorax width of each species follows a Gaussian distribution,
which is in accordance with the actual situation. The range of the thorax width overlaps severely
for some species, which cannot be identified based only on the thorax width. However, some other
species can be distinguished based only on the thorax width, so the thorax width can also be used as
an identification feature that may contribute to further improvement of the identification accuracy.
In the subsequent section, the thorax width is used to identify insects incorporating other features.
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3.4. Classification Performance Achieved Using All Features

The identification performance of insect species based on the selected insect morphological
parameters (i.e., mass, body length, thorax width, aspect ratio and wingbeat frequency) was analyzed
in this section. Based on the DTSVM algorithm, the classification scheme was built using the measured
morphological features (Figure 10). Twenty-two binary SVM classifiers are needed for the 23 species.
In classification, the class that is farthest from the remaining classes is recursively separated until all
classes are separated.

Extension samples were randomly attributed to either a training or testing set. The training set
was used to train the binary SVM classifiers in the classification scheme (Figure 10). Once all the
binary SVM classifiers were trained, the testing database of 57,500 migratory insects was imported
to evaluate the classification performance. Then, the identification probability of each insect species
was calculated.

The classification results are shown in Figure 11. The correct identification probabilities are higher
than 0.5 for all of the 23 species, which means that we have an acceptable recognition ability for all
of the species. In addition, the correct identification probabilities are higher than 0.8 for 15 of the
23 species (~65%), indicating that we have a reasonably high recognition ability for about half the
species. The average correct identification probability is 0.85.
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length, aspect ratio and thorax width.

The normalized confusion matrix of the classification results is shown in Figure 12, which describes
how many species were correctly classified and how many species were incorrectly classified for
each of the categories. The diagonal of the matrix represents the correct classification probability of
each species, i.e., it is classified to itself. Each species is more likely to be classified to itself than to
other species, which verifies the correctness of the classification method. In addition, some confusion
occurred between the species Agrotis tokionis (Butler) (Species No.: 3) and Xestia c-nigrum (Linnaeus)
(Species No.: 4). This is because these two species are similar in the body shape and belongs to the
same family (i.e., Lepidoptera: Noctuidae).



Remote Sens. 2019, 11, 1977 14 of 19

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 19 

 

some confusion occurred between the species Agrotis tokionis (Butler) (Species No.: 3) and Xestia c-
nigrum (Linnaeus) (Species No.: 4). This is because these two species are similar in the body shape 
and belongs to the same family (i.e., Lepidoptera: Noctuidae). 

For comparative analysis, a simulation using the measurement precision of existing methods 
(insect mass uncertainty 24%, insect body length uncertainty 16% and wingbeat frequency deviation 
1Hz) was also conducted, which produced an average correct identification probability of only 0.72. 
Therefore, the thorax width and aspect ratio are also effective features for insect identification. To 
summarize, the above statistics show that we can identify migratory insects with the current 
parameter measurement accuracy. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Predicted Species No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

Figure 12. Normalized 23 × 23 confusion matrix of classification results. The value of the element in 
the matrix that has a row number of i and a column number of j (i,j = 1,2,…,23) represents the 
probability that insect i is considered to be insect j after the classification process. 

3.5. Classification Performance Achieved Using Single Features 

Using multiple features may result in a good classification performance. Nevertheless, the 
evaluation of the significance of single features is also important, therefore it is necessary to assess 
the classification performance based on independent features. The multi-class classification 
algorithm of the SVM was used here to solve the multi-class classification problems based on single 
features [40]. 

The classification results, as listed in Table 3, reveal the degree of relevancy of these features to 
the given classification problem. Notably, no error was added to the single features during the 
training and testing phases in this section. In contrast, we ascertained that mass is the most critical 
feature for insect discrimination, and the identification accuracy based on mass is much higher than 
that based on the other features because the mass distribution ranges of different insect species vary 
dramatically. Based only on insect mass, the correct identification probabilities are higher than 0.5 for 
18 of the 23 species (~78%). The body length and thorax width are the second and third most 
important features, respectively. However, the aspect ratio contributed the least to the identification 
compared with the other morphological features. Body length and thorax width can be 
approximately assumed to be more intuitive and practical for species identification compared with 
the aspect ratio. The wingbeat frequency was also proven to be an impactful feature for insect 
classification. 

Figure 12. Normalized 23 × 23 confusion matrix of classification results. The value of the element
in the matrix that has a row number of i and a column number of j (i,j = 1,2, . . . ,23) represents the
probability that insect i is considered to be insect j after the classification process.

For comparative analysis, a simulation using the measurement precision of existing methods
(insect mass uncertainty 24%, insect body length uncertainty 16% and wingbeat frequency deviation
1Hz) was also conducted, which produced an average correct identification probability of only
0.72. Therefore, the thorax width and aspect ratio are also effective features for insect identification.
To summarize, the above statistics show that we can identify migratory insects with the current
parameter measurement accuracy.

3.5. Classification Performance Achieved Using Single Features

Using multiple features may result in a good classification performance. Nevertheless, the
evaluation of the significance of single features is also important, therefore it is necessary to assess the
classification performance based on independent features. The multi-class classification algorithm of
the SVM was used here to solve the multi-class classification problems based on single features [40].

The classification results, as listed in Table 3, reveal the degree of relevancy of these features to the
given classification problem. Notably, no error was added to the single features during the training
and testing phases in this section. In contrast, we ascertained that mass is the most critical feature for
insect discrimination, and the identification accuracy based on mass is much higher than that based on
the other features because the mass distribution ranges of different insect species vary dramatically.
Based only on insect mass, the correct identification probabilities are higher than 0.5 for 18 of the
23 species (~78%). The body length and thorax width are the second and third most important features,
respectively. However, the aspect ratio contributed the least to the identification compared with the
other morphological features. Body length and thorax width can be approximately assumed to be
more intuitive and practical for species identification compared with the aspect ratio. The wingbeat
frequency was also proven to be an impactful feature for insect classification.
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Table 3. Identification accuracy for each of the 23 species based on single features.

Label
Identification Accuracy

Wingbeat Frequency Mass Body Length Thorax Width Aspect Ratio

1 0 0.804 0.8576 0.0052 0.1184
2 0.3228 0.9928 0.0332 0.0144 0.6388
3 0 0.8628 0.0616 0.0256 0
4 0 0.6608 0.5372 0.2388 0.6532
5 0 0.9648 0.0396 0 0.0228
6 0.118 0.9436 0.2248 0 0.1464
7 0.5804 0.1428 0 0.1848 0
8 0.6884 0.8952 0.8832 0.8132 0.5088
9 0.012 0.8564 0.7596 0.7692 1
10 0.226 0.8852 0.3772 0.776 1
11 0 0.8632 0.46 0 0.2188
12 0.4056 0.9724 0.608 0 0.078
13 0.6932 0 0.68 0.0556 0.1952
14 0.0432 0.8492 0.4248 0 0.7172
15 0.9272 0.4732 0.0304 0.2644 0.0052
16 0.7876 0.9304 0.1628 0.0224 0.6488
17 0.6764 0.9992 0.7688 0.028 0.5936
18 0.474 0.7544 0.9104 0.5156 0.75
19 0.9996 0.4964 0.2896 0.5052 0.6272
20 0 0.8332 0.9276 0.03 0.468
21 0 1 0.986 0.618 1
22 1 0.3928 1 0.566 0.0636
23 0.996 0.9376 0.1632 0.3812 0.1632

The correct classification rates of different insects based on independent features are also graphically
shown in Figure 13. The results rise, fall and differ considerably when different features are used. For a
certain species, its correct classification rate can range from 0 to 1 based on different features. Some of
the species can be undoubtedly identified only by using certain features. However, if all single feature
identification algorithms are just combined, without feature ranking, it may not result in improved
identification probabilities.
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The correct classification rates of different insects based on independent features are also 
graphically shown in Figure 13. The results rise, fall and differ considerably when different features 
are used. For a certain species, its correct classification rate can range from 0 to 1 based on different 
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if all single feature identification algorithms are just combined, without feature ranking, it may not 
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4. Discussion

The simple and comprehensive relationships between an insect’s morphological parameters and
scattering features, to a certain extent, reflect the different scattering mechanisms of insects as dielectric
scatterers in the Rayleigh and resonance regions. The experimental results show that the insect’s RCSs
has obvious fluctuations with the variation of frequencies even in the Rayleigh region, which might
be caused by the insect’s complex body composition. Therefore, the estimation of morphological
parameters based on a single frequency may have a negative impact on the accuracy and robustness of
the result. In addition, the insects have more complex organism structures and shapes in contrast to
the selected digital model, and thus more complex shapes and components should be considered in
order to make the model closer to reality.

The reliable identification of radar targets is a prerequisite for using radars as a research instrument.
Species identification of airborne insects will help biologists and entomologists conduct research on
subclasses or even exact categories and interspecific behavioral characteristics. Additionally, if the
species of migrating pests can be known, people can apply more targeted prevention and control
measures. Given the lack of identification ability, migratory insects studied with the traditional use of
radars are only differentiated between broad categories [48], or even without any classification (only
with birds or raindrops) [49], which has seriously affected further analysis of the observed results.
Therefore, the species identification of migratory insects requires further analysis.

We proved that the morphological parameters can be used to discriminate different species with
high accuracy based on the DTSVM algorithm. Given that the morphological parameters can be
extracted from multi-frequency RCSs of insects, we assume that the multi-frequency RCSs can also be
used to identify species of migratory insects directly. Therefore, the identification of insect species
based on multi-frequency RCSs should be studied in the future, although more data are needed for
this. In addition, if entomological radars have the ability to acquire fully polarized data, then other
useful parameters can be acquired and estimation accuracy can be improved, which would contribute
to a higher species identification accuracy.

5. Conclusions

In this paper, an improved method for the measurement of insect mass and body length using
multi-frequency RCSs was proposed, and the lowest estimation errors of the mass and body length
were ~17% and ~11%, respectively. The thorax width and aspect ratio can also be extracted from the
radar signal with estimation errors of ~14% and ~8%, respectively. Then, the identification performance
is evaluated based on these four features and the wingbeat frequency under the achievable estimation
precision of the proposed parameter estimation method. The correct identification probabilities are
higher than 0.5 for all of the 23 species and are higher than 0.8 for 15 of the 23 species. Finally,
we evaluated the classification performance using independent features and found that insect mass
is the most effective feature for discriminating different insect species. These findings provide
improvements in individual parameter measurement for insect radars and imply the possibility of
higher precision species identification, which would promote the biomass quantification of over-flying
migratory insects to enable studying the role of insect migration in ecosystems and pest control.
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Appendix A

The Spearman’s rank correlation coefficient (denoted as rs), a nonparametric measure of the rank
values of two variables, was calculated to evaluate the correlation between the estimated and true
values of the morphological parameters [50]. The Spearman’s correlation evaluates the monotonic
relationships between two variables, even if their relationship is not linear [50]. The p-value is also
calculated to test the null hypothesis of no correlation.

The root mean square percentage error (RMSPE) was used to evaluate the deviations between the
true values and the estimates [51]. A smaller value of the RMSPE indicates a higher mean estimation
accuracy. The percent relative error (PRE) was used to evaluate the estimation error of each insect.
A smaller value of the MRE indicates a higher estimation accuracy.

The Spearman’s rank correlation coefficient is defined as [50]

rs = 1−
6

N∑
i=1

d2
i

N3 −N
(A1)

where di is the difference between the two ranks of XM and XR.
The RMSPE is defined as [51]

RMSPE =

√√√
1
N

N∑
i=1

(
XM[i] −XR[i]

XR[i]

)2

×100% (A2)

where XM and XR are estimates and true values, respectively, and N is the number of specimens.
The PRE is defined as [52]

PRE =

∣∣∣∣∣∣XM[i] −XR[i]
XR[i]

∣∣∣∣∣∣× 100%. (A3)
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