Evaluation of GPM IMERG V05B and TRMM 3B42V7 Precipitation Products over High Mountainous Tributaries in Lhasa with Dense Rain Gauges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Ground Data
2.2.2. Satellite Precipitation Products
2.3. Method
2.3.1. Scale Handling of Rain Gauges and Pixels and Classification of Precipitation Events
2.3.2. Statistical Metrics for Evaluating Satellite Precipitation Products
3. Results
3.1. Evaluation of IMERG and 3B42V7 at Grid Scale
3.2. Evaluation of IMERG and 3B42V7 at Region Scale
3.3. Evaluation of IMERG and 3B42V7 at Different Time Scale
3.4. Evaluation of 3B42V7 and IMERG under Different Precipitation Intensity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yuan, F.; Zhang, L.; Win, K.W.W.; Ren, L.; Zhao, C.; Zhu, Y.; Jiang, S.; Liu, Y. Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data sparse mountainous watershed in Myanmar. Remote Sens. 2017, 9, 302. [Google Scholar]
- Xia, T.; Wang, Z.; Zheng, H. Topography and Data Mining Based Methods for Improving Satellite Precipitation in Mountainous Areas of China. Atmosphere 2015, 6, 983–1005. [Google Scholar] [Green Version]
- Jiang, S.; Liu, S.; Ren, L.; Yong, B.; Zhang, L.; Wang, M.; Lu, Y.; He, Y. Hydrologic Evaluation of Six High Resolution Satellite Precipitation Products in Capturing Extreme Precipitation and Streamflow over a Medium-Sized Basin in China. Water 2017, 10, 25. [Google Scholar] [Green Version]
- Borga, M.; Anagnostou, E.N.; Blöschl, G.; Creutin, J. Flash Floods: Observations and analysis of hydro-meteorological controls. J. Hydrol. 2010, 394, 1–3. [Google Scholar]
- Germann, U.; Galli, G.; Boscacci, M.; Bolliger, M. Radar precipitation measurement in a mountainous region. Q. J. R. Meteorol. Soc. 2006, 132, 1669–1692. [Google Scholar]
- Steiner, M.; Smith, J.A.; Burges, S.J.; Alonso, C.V.; Darden, R.W. Effect of bias adjustment and rain gage data quality control on radar rainfall estimation. Water Resour. Res. 1999, 35, 2487–2503. [Google Scholar]
- Hrachowitz, M.; Weiler, M. Uncertainty of Precipitation Estimates Caused by Sparse Gauging Networks in a Small, Mountainous Watershed. J. Hydrol. Eng. 2011, 16, 460–471. [Google Scholar]
- Mei, Y.; Anagnostou, E.N.; Nikolopoulos, E.I.; Borga, M. Error Analysis of Satellite Precipitation Products in Mountainous Basins. J. Hydrometeorol. 2014, 15, 1778–1793. [Google Scholar]
- Yi, L.; Zhang, W.; Wang, K. Evaluation of heavy precipitation simulated by the WRF model using 4D-Var data assimilation with TRMM 3B42 and GPM IMERG over the Huaihe River basin China. Remote Sens. 2018, 10, 646. [Google Scholar]
- Tan, M.L.; Duan, Z. Assessment of GPM and TRMM Precipitation Products over Singapore. Remote Sens. 2017, 9, 720. [Google Scholar] [Green Version]
- Guo, R.; Liu, Y. Evaluation of satellite precipitation products with rain gauge data at different scales: Implications for hydrological applications. Water 2016, 8, 281. [Google Scholar]
- Ma, Z.; Zhou, L.; Yu, W.; Yang, Y.; Teng, H.; Shi, Z. Improving TMPA 3B43 V7 Data Sets Using Land-Surface Characteristics and Ground Observations on the Qinghai-Tibet Plateau. IEEE Geosci. Remote Sens. Lett. 2018, 15, 178–182. [Google Scholar]
- Janowiak, J.E.; Gruber, A.; Kondragunta, C.R.; Livezey, R.E.; Huffman, G.J. A Comparison of the NCEP-NCAR Reanalysis Precipitation and the GPCP Rain Gauge-Satellite Combined Dataset with Observational Error Considerations. J. Clim. 1998, 11, 2960–2979. [Google Scholar]
- Sorooshian, S.; Hsu, K.L.; Gao, X.; Gupta, H.V.; Braithwaite, D. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar]
- Guo, J.; Zhai, P.; Wu, L.; Cribb, M.; Li, Z.; Ma, Z.; Wang, F.; Chu, D.; Wang, P.; Zhang, J. Diurnal variation and the influential factors of precipitation from surface and satellite measurements in Tibet. Int. J. Climatol. 2014, 34, 2940–2956. [Google Scholar]
- Simpson, J. The Tropical Rainfall Measuring Mission (TRMM). Meteorol. Atmos. Phys. 1988, 60, 19–36. [Google Scholar]
- Tong, K.; Su, F.; Yang, D.; Hao, Z. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol. 2014, 519, 423–437. [Google Scholar]
- Sohn, B.J.; Han, H.J.; Seo, E.K. Validation of Satellite-Based High-Resolution Rainfall Products over the Korean Peninsula Using Data from a Dense Rain Gauge Network. J. Appl. Meteorol. Climatol. 2010, 49, 701–714. [Google Scholar]
- Ringard, J.; Becker, M.; Seyler, F.; Linguet, L. Temporal and spatial assessment of four satellite rainfall estimates over French Guiana and north Brazil. Remote Sens. 2015, 7, 16441–16459. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar]
- Chandrasekar, V.; Le, M. Evaluation of profile classification module of GPM-DPR algorithm after launch. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 5174–5177. [Google Scholar]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar]
- Liu, Z.; Ostrenga, D.; Vollmer, B.; Deshong, B.; Macritchie, K.; Greene, M.; Kempler, S. Global precipitation measurement mission products and services at the NASA GES DISC. Bull. Am. Meteorol. Soc. 2017, 98, 437–444. [Google Scholar]
- Hussain, Y.; Satgé, F.; Hussain, M.B. Performance of CMORPH, TMPA, and PERSIANN rainfall datasets over plain, mountainous, and glacial regions of Pakistan. Theor. Appl. Climatol. 2018, 131, 1119–1132. [Google Scholar]
- Kim, J.P.; Jung, I.W.; Park, K.P.; Yoon, S.K.; Lee, D. Hydrological utility and uncertainty of multi-satellite precipitation products in the mountainous region of South Korea. Remote Sens. 2016, 8, 608. [Google Scholar]
- Bitew, M.M.; Gebremichael, M. Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and Other Precipitation Products against Gauge Data under Different Topographic and Climatic Conditions in Iran: Preliminary Results. Remote Sens. 2016, 8, 135. [Google Scholar] [Green Version]
- Tang, G.; Ma, Y.; Di, L.; Zhong, L.; Yang, H. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar]
- Kim, K.; Park, J.; Baik, J.; Choi, M. Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia. Atmos. Res. 2017, 187, 95–105. [Google Scholar]
- He, Z.; Yang, L.; Tian, F.; Ni, G.; Hou, A.; Lu, H. Intercomparisons of Rainfall Estimates from TRMM and GPM Multisatellite Products over the Upper Mekong River Basin. J. Hydrometeorol. 2017, 18, 413–430. [Google Scholar]
- Frédéric, S.; Xavier, A.; Zolá, R.P.; Hussain, Y.; Timouk, F.; Garnier, J.; Bonnet, M.P. Comparative Assessments of the Latest GPM Mission’s Spatially Enhanced Satellite Rainfall Products over the Main Bolivian Watersheds. Remote Sens. 2017, 9, 369. [Google Scholar]
- Beria, H.; Nanda, T.; Bisht, D.S.; Chatterjee, C. Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale. Hydrol. Earth Syst. Sci. 2017, 21, 6117–6134. [Google Scholar] [Green Version]
- Wang, X.; Ding, Y.; Zhao, C.; Wang, J. Similarities and improvements of GPM IMERG upon TRMM 3B42 precipitation product under complex topographic and climatic conditions over Hexi region, Northeastern Tibetan Plateau. Atmos. Res. 2019, 218, 347–363. [Google Scholar]
- Li, X.; Zhang, Q.; Xu, C.Y. Assessing the performance of satellite-based precipitation products and its dependence on topography over Poyang Lake basin. Theor. Appl. Climatol. 2014, 115, 713–729. [Google Scholar]
- Dinku, T.; Chidzambwa, S.; Ceccato, P.; Connor, S.J.; Ropelewski, C.F. Validation of high-resolution satellite rainfall products over complex terrain. Int. J. Remote Sens. 2008, 29, 4097–4110. [Google Scholar]
- Mauricio, Z.B.; Alexandra, N.; Christian, B.; Koen, V.; Lars, R. Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile. Hydrol. Earth Syst. Sci. 2017, 21, 1295–1320. [Google Scholar] [Green Version]
- Hong, Y.; Hsu, K.L.; Moradkhani, H.; Sorooshian, S. Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Long, D.; Hong, Y.; Gao, J.; Wan, W. Documentation of multifactorial relationships between precipitation and topography of the Tibetan Plateau using spaceborne precipitation radars. Remote Sens. Environ. 2018, 208, 82–96. [Google Scholar]
- Zhang, S.; Wang, D.; Qin, Z.; Zheng, Y.; Guo, J. Assessment of the GPM and TRMM Precipitation Products Using the Rain Gauge Network over the Tibetan Plateau. J. Meteorol. Res. 2018, 32, 324–336. [Google Scholar]
- Ma, Y.; Tang, G.; Long, D.; Yong, B.; Zhong, L.; Wan, W.; Hong, Y. Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau. Remote Sens. 2016, 8, 569. [Google Scholar]
- Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou, A. Ground validation of GPM IMERG and trmm 3B42V7 rainfall products over Southern Tibetan plateau based on a high-density rain gauge network. J. Geophys. Res. 2017, 122, 910–924. [Google Scholar]
- Xie, J.; Liu, J.; Du, M.; Kang, S.; Wang, K. Analysis of the Observation Results of Temperature and Precipitation over an Alpine Mountain, the Lhasa River Basin. Prog. Geogr. 2010, 28, 223–230. [Google Scholar]
- Ning, A.; Liu, T.C. Characteristics of isotope distribution of atmospheric precipitation in the lasa river area. J. Miner. Petrol. 2000, 65, 95–99. [Google Scholar]
- Liu, T. Hydrological characteristics of Yalungzangbo River. Acta Geogr. Sin. 1999, 54, 157–164. [Google Scholar]
- Lin, X.; Zhang, Y.; Yao, Z.; Gong, T.; Wang, H.; Chu, D.; Liu, L.; Zhang, F. The trend on runoff variations in the Lhasa River Basin. J. Geogr. Sci. 2008, 18, 95–106. [Google Scholar]
- Dai, F.; Lv, Z.; Liu, G. Assessing Soil Quality for Sustainable Cropland Management Based on Factor Analysis and Fuzzy Sets: A Case Study in the Lhasa River Valley, Tibetan Plateau. Sustainability 2018, 10, 3477. [Google Scholar]
- Shen, Y.; Xiong, A. Validation and comparison of a new gauge-based precipitation analysis over mainland China. Int. J. Climatol. 2016, 265, 252–265. [Google Scholar]
- Legates, D.R.; Willmott, C.J. Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol. 1990, 10, 111–127. [Google Scholar]
- Wang, Z.; Zhong, R.; Lai, C. Evaluation and hydrologic validation of TMPA satellite precipitation product downstream of the Pearl River Basin, China. Hydrol. Process. 2017, 31, 4169–4182. [Google Scholar]
- Mcclave, J.; Benson, P.G.; Sincich, T. Statistics for Business and Economics: Pearson New International Edition; Pearson Schweiz Ag: Zug, Switzerland, 2013; Volume 29, pp. 1823–1830. [Google Scholar]
- Lei, S. Assessment of local influence for f-test in linear regression model. J. Syst. Sci. Math. Sci. 1999, 12, 33–39. [Google Scholar]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar]
- Zhe, L.; Yang, D.; Yang, H. Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. J. Hydrol. 2013, 500, 157–169. [Google Scholar]
- Kirstetter, P.E.; Hong, Y.; Gourley, J.J.; Schwaller, M.; Petersen, W.; Zhang, J. Comparison of TRMM 2A25 products, version 6 and version 7, with NOAA/NSSL ground radar-based national mosaic QPE. J. Hydrometeorol. 2013, 14, 661–669. [Google Scholar]
- Prat, O.P.; Nelson, B.R. Precipitation Contribution of Tropical Cyclones in the Southeastern United States from 1998 to 2009 Using TRMM Satellite Data. J. Clim. 2013, 26, 1047–1062. [Google Scholar]
- Beighley, E.; Ray, R.L.; He, Y.; Lee, H.; Schaller, L.; Andreadis, K.; Durand, M.; Alsdorf, D.; Shum, C.K. Comparing satellite derived precipitation datasets using the Hillslope River Routing (HRR) model in the Congo River Basin. Hydrol. Process. 2011, 25, 3216–3229. [Google Scholar]
- Whipple, K.X.; Gasparini, N.M. Tectonic control of topography, rainfall patterns, and erosion during rapid post-12 Ma uplift of the Bolivian Andes. Lithosphere 2014, 6, 251–268. [Google Scholar]
- Tapponnier, P.; Xu, Z.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Yang, J. Oblique stepwise rise and growth of the Tibet plateau. Science 2001, 294, 1671–1677. [Google Scholar]
- Champagnac, J.D.; Molnar, P.; Sue, C.; Herman, F. Tectonics, Climate, and Mountain Topography. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Whipple, K.X.; Kirby, E.; Brocklehurst, S.H. Geomorphic limits to climate-induced increases in topographic relief. Nature 1999, 401, 39–43. [Google Scholar]
- Yuan, F.; Wang, B.; Shi, C.; Cui, W.; Zhao, C.; Liu, Y.; Ren, L.; Zhang, L.; Zhu, Y.; Chen, T.; et al. Evaluation of hydrological utility of IMERG Final run V05 and TMPA 3B42V7 satellite precipitation products in the Yellow River source region, China. J. Hydrol. 2018, 567, 596–711. [Google Scholar]
- Leong, M.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar]
- Villarini, G.; Krajewski, W.F. Review of the Different Sources of Uncertainty in Single Polarization Radar-Based Estimates of Rainfall. Surv. Geophys. 2010, 31, 107–129. [Google Scholar]
Statistical Index | Unit | Formula | Perfect Value |
---|---|---|---|
Correlation coefficient (CC) | NA | 1 | |
Root mean square error (RMSE) | mm | 0 | |
Mean absolute error (MBE) | mm | 0 | |
Relative bias (BIAS) | NA | 0 | |
Probability of detection (POD) | NA | 1 | |
False alarm ratio (FAR) | NA | 0 | |
Frequency bias index (FBI) | NA | 1 | |
Equitable threat score (ETS) | NA | 1 |
Grid | Name of Gauges | Number of Precipitation Days a | Average Precipitation (mm/day) in Precipitation Days | Average Precipitation (mm/day) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Gauge | Average b | 3B42V7 | Gauge | Average c | 3B42V7 | Gauge | Average d | 3B42V7 | ||
A1 | Bolaqie | 219 | 233 | 206 | 7.6 | 7.2 | 9.1 | 3.0 | 3.0 | 3.4 |
Wumatang | 237 | 6.9 | 3.0 | |||||||
Dangquka | 232 | 6.6 | 2.8 | |||||||
Guoqing | 231 | 6.6 | 2.8 | |||||||
Dishugang | 244 | 8.7 | 3.9 | |||||||
Baqiongduo | 239 | 6.9 | 3.0 | |||||||
Gesangka | 225 | 7.0 | 2.9 | |||||||
Longreng | 234 | 7.1 | 3.0 | |||||||
A2 | Zhalangduo | 218 | 209 | 208 | 6.2 | 6.2 | 9.4 | 2.5 | 2.4 | 3.6 |
Mengga | 205 | 6.1 | 2.3 | |||||||
Maxiang | 216 | 6.7 | 2.6 | |||||||
Ema | 196 | 5.9 | 2.1 | |||||||
A3 | Chundui | 222 | 216 | 220 | 7.7 | 7.7 | 10.1 | 3.1 | 3.0 | 4.0 |
Kadong | 213 | 8.4 | 3.3 | |||||||
Kazi | 206 | 6.9 | 2.6 | |||||||
Palangdui | 219 | 7.7 | 3.1 | |||||||
Nianbo | 224 | 8.0 | 3.3 | |||||||
Baya | 216 | 7.8 | 3.1 | |||||||
Baiding | 212 | 7.4 | 2.9 | |||||||
A4 | Emuduo | 264 | 255 | 247 | 7.1 | 7.9 | 9.8 | 3.4 | 3.7 | 4.4 |
Niaoduogang | 243 | 8.1 | 3.6 | |||||||
Demoxiong | 257 | 8.5 | 4.0 | |||||||
A5 | Puba | 173 | 181 | 177 | 6.8 | 7.0 | 9.7 | 2.1 | 2.3 | 3.1 |
Laduo | 190 | 6.8 | 2.4 | |||||||
Pusong | 188 | 7.7 | 2.6 | |||||||
Xuela | 171 | 6.8 | 2.1 |
Grids | Name of Gauges | Number of Precipitation Days a | Average Precipitation (mm/day) in Precipitation Days | Average Precipitation (mm/day) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gauge | Average b | 3B42V7 | IMERG | Gauge | Average c | 3B42V7 | IMERG | Gauge | Average d | 3B42V7 | IMERG | ||
B1 | Guoqing | 231 | 238 | 206 | 261 | 6.6 | 7.4 | 9.1 | 7.4 | 2.8 | 3.2 | 3.4 | 3.5 |
Dishugang | 244 | 8.7 | 3.9 | ||||||||||
Baqiongduo | 239 | 6.9 | 3.0 | ||||||||||
B2 | Zhalangduo | 218 | 213 | 208 | 242 | 6.2 | 6.3 | 9.4 | 6.3 | 2.5 | 2.5 | 3.6 | 2.8 |
Mengga | 205 | 6.1 | 2.3 | ||||||||||
Maxiang | 216 | 6.7 | 2.6 | ||||||||||
B3 | Kazi | 206 | 215 | 220 | 260 | 6.9 | 7.5 | 10.1 | 7.0 | 2.6 | 2.9 | 4.0 | 3.3 |
Nianbo | 224 | 8.0 | 3.3 | ||||||||||
B4 | Emuduo | 264 | 254 | 247 | 267 | 7.1 | 7.6 | 9.8 | 7.1 | 3.4 | 3.5 | 4.4 | 3.5 |
Niaoduogang | 243 | 8.1 | 3.6 | ||||||||||
B5 | Puba | 173 | 181 | 177 | 214 | 6.8 | 7.0 | 9.7 | 6.4 | 2.1 | 2.3 | 3.1 | 2.5 |
Laduo | 190 | 6.8 | 2.4 | ||||||||||
Pusong | 188 | 7.7 | 2.6 | ||||||||||
Xuela | 171 | 6.8 | 2.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Liu, J.; Wang, J.; Qiao, X.; Zhang, J. Evaluation of GPM IMERG V05B and TRMM 3B42V7 Precipitation Products over High Mountainous Tributaries in Lhasa with Dense Rain Gauges. Remote Sens. 2019, 11, 2080. https://doi.org/10.3390/rs11182080
Wang S, Liu J, Wang J, Qiao X, Zhang J. Evaluation of GPM IMERG V05B and TRMM 3B42V7 Precipitation Products over High Mountainous Tributaries in Lhasa with Dense Rain Gauges. Remote Sensing. 2019; 11(18):2080. https://doi.org/10.3390/rs11182080
Chicago/Turabian StyleWang, Shuhong, Jintao Liu, Jiarong Wang, Xiao Qiao, and Jie Zhang. 2019. "Evaluation of GPM IMERG V05B and TRMM 3B42V7 Precipitation Products over High Mountainous Tributaries in Lhasa with Dense Rain Gauges" Remote Sensing 11, no. 18: 2080. https://doi.org/10.3390/rs11182080
APA StyleWang, S., Liu, J., Wang, J., Qiao, X., & Zhang, J. (2019). Evaluation of GPM IMERG V05B and TRMM 3B42V7 Precipitation Products over High Mountainous Tributaries in Lhasa with Dense Rain Gauges. Remote Sensing, 11(18), 2080. https://doi.org/10.3390/rs11182080