Burn Severity and Post-Fire Land Surface Albedo Relationship in Mediterranean Forest Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; Defries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the earth system. Science 2009, 324, 481–548. [Google Scholar] [CrossRef] [PubMed]
- Ichoku, C.; Kahn, R.; Chin, M. Satellite contributions to the quantitative characterization of biomass burning for climate modeling. Atmos. Res. 2012, 111, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Poupkou, A.; Markakis, K.; Liora, N.; Giannaros, T.M.; Zanis, P.; Im, U.; Daskalakis, N.; Myriokefalitakis, S.; Kaiser, J.W.; Melas, D.; et al. A modelling study of the impact of the 2007 Greek forest fires on the gaseous pollutant levels in the Eastern Mediterranean. Atmos. Res. 2014, 2014. 149, 1–17. [Google Scholar] [CrossRef]
- García-Llamas, P.; Suárez-Seoane, S.; Taboada, A.; Marcos, E.; Fernández-Manso, A.; Quintano, C.; Fernández-García, V.; Fernández-Guisuraga, J.M.; Calvo, L. Environmental drivers of fire severity in extreme fire events that affect Mediterranean pine forest ecosystems. Forest Ecol. Manage. 2019, 2019. 433, 24–32. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape Assessment: Ground Measure of Severity, the Composite Burn Indexand Remote Sensing of Severity, the Normalized Burn Ratio. In FIREMON Fire Effects Monitoring and Inventory System; Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J., Eds.; Gen. Tech. Rep. RMRS-GTR-164-CD: LA; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2006; pp. 1–51. [Google Scholar]
- Parks, S.A.; Holsinger, L.M.; Koontz, M.J.; Collins, L.; Whitman, E.; Parisien, M.-A.; Loehman, R.A.; Barnes, J.L.; Bourdon, J.-F.; Boucher, J.; et al. Giving Ecological Meaning to Satellite-Derived Fire Severity Metrics across North American Forests. Remote Sens. 2019, 11, 1735. [Google Scholar] [CrossRef]
- Quintano, C.; Fernández-Manso, A.; Calvo, L.; Roberts, D.A. Vegetation and Soil Fire Damage Analysis Based on Species Distribution Modeling Trained with Multispectral Satellite Data. Remote Sens. 2019, 11, 1832. [Google Scholar] [CrossRef]
- Araújo, F.M.D.; Ferreira, L.G. Satellite-based automated burned area detection: A performance assessment of the MODIS MCD45A1 in the Brazilian savanna. Int. J. Appl. Earth Obs. 2015, 36, 94–102. [Google Scholar] [CrossRef]
- Colson, D.; Petropoulos, G.P.; Ferentinos, K.P. Exploring the Potential of Sentinels-1 & 2 of the Copernicus Mission in Support of Rapid and Cost-effective Wildfire Assessment. Int. J. Appl. Earth Obs. 2018, 73, 262–276. [Google Scholar]
- Marcos, B.; Gonçalves, J.; Alcaraz-Segura, D.; Cunha, M.; Honrado, J.P. Improving the detection of wildfire disturbances in space and time based on indicators extracted from MODIS data: a case study in northern Portugal. Int. J. Appl. Earth Obs. 2019, 78, 77–85. [Google Scholar] [CrossRef]
- Arnett, J.T.T.R.; Coops, N.C.; Daniels, L.D.; Falls, R.W. Detecting forest damage after a low-severity fire using remote sensing at multiple scales. Int. J. Appl. Earth Obs. 2015, 35, 239–246. [Google Scholar] [CrossRef]
- Harris, S.; Veraverbeke, S.; Hook., S. Evaluating spectral indices for assessing fire severity in Chaparral scosystems (Southern California) Using MODIS/ASTER (MASTER) Airborne Simulator Data. Remote Sens. 2011, 3, 2403–2419. [Google Scholar] [CrossRef]
- Stambaugh, M.C.; Hammer, L.D.; Godfrey, R. Performance of Burn-Severity Metrics and Classification in Oak Woodlands and Grasslands. Remote Sens. 2015, 7, 10501–10522. [Google Scholar] [CrossRef] [Green Version]
- French, N.; Kasischke, E.; Hall, R.; Murphy, K.; Verbyla, D.; Hoy, E.; Allen, J. Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results. Int. J. Wildland Fire 2008, 17, 443–462. [Google Scholar] [CrossRef]
- He, T.; Liang, S.; Wang, D.; Wu, H.; Yu, Y.; Wang, J. Estimation of surface albedo and directional reflectance from Moderate Resolution Imaging Spectroradiometer (MODIS) observations. Remote Sens. Env. 2012, 119, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.; Jordán, A.; Cerdá, A.; Martín, D. Editorial: The role of ash in fire-affected ecosystems. Catena. 2014. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; van de Kerchove, R.; Goossens, R. Assessment of post-fire changes in land surface temperature and surface albedo, and their relation with fire–burn severity using multitemporal MODIS imagery. Int. J. Wildland Fire. 2012, 21, 243–256. [Google Scholar] [CrossRef]
- Beringer, J.; Hutley, L.; Tapper, N.; Coutts, A.; Kerley, A.; O’Grady, A. Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia. Int. J. Wildland Fire 2003, 12, 333–340. [Google Scholar] [CrossRef]
- Gatebe, C.K.; Ichoku, C.M.; Poudyal, R.; Román, M.O.; Wilcox, E. Surface albedo darkening from wildfires in northern sub-Saharan Africa. Environ. Res. Lett. 2014, 9, 065003. [Google Scholar] [CrossRef] [Green Version]
- Lyons, E.A.; Jin, Y.; Randerson, J.T. Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations. J. Geophys. Res. 2008, 113, 1–15. [Google Scholar] [CrossRef]
- Jin, Y.; Randerson, J.T.; Goetz, S.J.; Beck, P.S.A.; Loranty, M.M.; Goulden, M.L. The influence of burn severity on postfire vegetation recovery and albedo change during early sucesión in North American boreal forests. J. Geophys. Res. Biogeosci. 2012. [Google Scholar] [CrossRef]
- Mack, M.C.; Treseder, K.K.; Manies, K.L.; Harden, J.W.; Schuur, E.A.G.; Vogel, J.G.; Randerson, J.T.; Chapin, F.S. Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska. Ecosystems 2008, 11, 209–225. [Google Scholar] [CrossRef]
- Schmuck, G.; San-Miguel-Ayanz, J.; Camia, T.; Durrant, T.; Boca, R.; Libertá, G. Forest Fires in Europe, Middle East and North Africa 2012. In Reference Report by the Joint Research Centre of the European Commission; Joint Research Centre of the European Commission: Brussels, Belgium, 2012; p. 118. [Google Scholar]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the slope-aspect correction of multispectral scanner data. Can. J. Remote Sens. 1982, 8, 84–106. [Google Scholar] [CrossRef]
- Chavez, P.S., Jr. Image-based atmospheric corrections—Revisited and improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1036. [Google Scholar]
- Liang, S. Narrowband to broadband conversions of land surface albedo. I Algorithms. Remote Sens. Environ. 2000, 76, 213–238. [Google Scholar] [CrossRef]
- Liang, S.; Shuey, C.J.; Russ, A.L.; Fang, H.; Chen, M.; Walthall, C.L.; Daughtry, C.S.T.; Hunt, R., Jr. Narrowband to broadband conversions of land surface albedo: II. Validation. Remote Sens. Environ. 2002, 84, 25–41. [Google Scholar] [CrossRef]
- Coakley, J.A., Jr. Reflectance and Albedo, Surface. Encyclopedia of the Atmosphere; Holton, J.R., Curry, J.A., Eds.; Academic Press: Cambridge, MA, USA, 2002; pp. 1914–1923. [Google Scholar]
- Loboda, T.V.; French, N.H.F.; Hight-Harf, C.; Jenkins, L.; Miller, M.E. Mapping fire extent and burn severity in Alaskan tussock tundra: An analysis of the spectral response of tundra vegetation to wildland fire. Remote Sens. Environ. 2013, 134, 194–209. [Google Scholar] [CrossRef]
- O’Halloran, T.L.; Law, B.E.; Goulden, M.L.; Wang, Z.; Barr, J.G. Radiative forcing of natural forest disturbances. Glob. Change Biol. 2012, 18, 555–565. [Google Scholar] [CrossRef]
- Chambers, S.D.; Chapin III, F.S. Fire effects on surface atmosphere energy exchange in Alaskan black spruce ecosystems: Implications for feedbacks to regional climate. J. Geophys. Res. 2002, 107, 8145. [Google Scholar] [CrossRef]
- McMillan, A.M.S.; Goulden, M.L. Age-dependent variation in the biophysical properties of boreal forests. Global Biogeochem. Cy. 2008, 22, GB2023. [Google Scholar]
- Franch, B.; Vermote, E.F.; Claverie, M. Intercomparison of Landsat albedo retrieval techniques and evaluation against in situ measurements across the US SURFRAD network. Remote Sens. Environ. 2014, 152, 627–637. [Google Scholar] [CrossRef]
- Calvo, L.; Torres, O.; Valbuena, L.; Luis, E. Recruitment and early growth of Pinus pinaster seedlings over five years after a wildfire in NW Spain. Forest Systems. 2013, 22, 582–586. [Google Scholar] [CrossRef]
- Amiro, B.D.; Orchansky, A.L.; Barr, A.G.; Black, T.A.; Chambers, S.D.; Chapin III, F.S.; Goulden, M.L.; Litvak, M.; Liu, H.P.; McCaughey, J.H.; et al. The effect of postfire stand age on the boreal forest energy balance. Agr. Forest Meteorol. 2006, 140, 41–50. [Google Scholar] [CrossRef]
- Roberts, D.A.; Ustin, S.L.; Ogunjemiyo, S.; Greenberg, J.; Dobrowski, S.Z.; Chen, J.Q.; Hinckley, T.M. Spectral and structural measures of northwest forest vegetation at leaf to landscape scales. Ecosystems 2004, 7, 545–562. [Google Scholar] [CrossRef]
- Fuller, O.D.; Ottke, C. Land cover, rainfall and land-surface albedo in West Africa. Climatic Change 2002, 54, 181–204. [Google Scholar] [CrossRef]
- Cocke, A.E.; Fulé, P.Z.; Crouse, J.E. Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data. Int. J. Wildland Fire 2005, 14, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Tanase, M.; de la Riva, J.; Pérez-Cabello, F. Estimating burn severity in Aragón pine forest using optical based indices. Can. J. Forest Res. 2011, 41, 863–872. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Fernández, C.; Vega, J.A.; Keizer, J.J. Does soil burn severity affect the post-fire runoff and interrill erosion response? A review bases on meta-analysis of field rainfall simulation data. J. Hydrol. 2015, 523, 452–464. [Google Scholar] [CrossRef]
- Vega, J.A.; Fontúrbel, M.T.; Fernández, C.; Arellano, A.; Díaz-Raviña, M.; Carballas, T.; Martín, A.; González-Prieto, S.; Merino, A.; Benito, E. Acciones urgentes contra la erosión en áreas forestales quemadas: Guía para su planificación en Galicia; Andavira, D.L., Ed.; Xunta de Galicia: Santiago de Compostela, Spain, 2013; p. 139. ISBN 978-84-8408-716-8. [Google Scholar]
- Ireland, G.; Petropoulos, G.P. Exploring the relationships between post-fire vegetation regeneration dynamics, topography and burn severity: A case study from the Montane Cordillera Ecozones of Western Canada. Appl. Geogr. 2015, 56, 232–248. [Google Scholar] [CrossRef]
- Chambers, S.D.; Beringer, J.; Randerson, J.T.; Chapin III, F.S. Fire effects on net radiation and energy partitioning: Contrasting responses of tundra and boreal forest ecosystems. J. Geophys. Res. 2005, 110, D09106. [Google Scholar] [CrossRef]
- Miettinen, J. Variability of fire-induced changes in MODIS surface reflectance by land-cover type in Borneo. Int. J. Remote Sens. 2007, 28, 4967–4984. [Google Scholar] [CrossRef]
- Pereira, J.M. Remote sensing of burned areas in tropical savannas. Int. J. Wildland Fire. 2003, 12, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.M.N.; Cadima, J.F.C.L.; Pereira, J.M.C.; Grégoire, J.-M. Assessing the feasibility of a global model for multitemporal burned area mapping using SPOT-VEGETATION data. Int. J. Remote Sens. 2004, 25, 4889–4913. [Google Scholar] [CrossRef]
Burn Severity Levels | LSAshort | LSAvis | LSAvis-diffuse | LSAvis-direct | LSANIR | LSANIR-diffuse | LSANIR-direct | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
μ | HG | μ | HG | μ | HG | μ | HG | μ | HG | Μ | HG | μ | HG | |
Landsat 7 ETM+. September 6th, 2012 | ||||||||||||||
Unburned | 0.1041 | a | 0.0458 | a | 0.0409 | a | 0.0475 | a | 0.1633 | a | 0.1656 | a | 0.1645 | a |
Low | 0.0971 | b | 0.0607 | b | 0.0555 | b | 0.0625 | b | 0.1358 | b | 0.1249 | b | 0.1346 | b |
Moderate | 0.0838 | c | 0.0535 | b | 0.0490 | b | 0.0550 | b | 0.1159 | c | 0.1054 | c | 0.1132 | c |
High | 0.0820 | c | 0.0527 | b | 0.0482 | b | 0.0542 | b | 0.1129 | c | 0.1041 | c | 0.1102 | c |
Landsat 7 ETM+. September 9th, 2013 | ||||||||||||||
Unburned | 0.1060 | a | 0.0365 | a | 0.0314 | a | 0.0383 | a | 0.1761 | a | 0.1823 | a | 0.1772 | a |
Low | 0.1280 | b | 0.0667 | b | 0.0598 | b | 0.0692 | b | 0.1935 | a | 0.1820 | a | 0.1958 | a |
Moderate | 0.1398 | b | 0.0791 | b | 0.0713 | b | 0.0822 | b | 0.2062 | b | 0.1899 | a | 0.2087 | b |
High | 0.1321 | b | 0.0728 | b | 0.0656 | b | 0.0755 | b | 0.1963 | b | 0.1802 | a | 0.1981 | b |
LSAshort | LSAvis | LSAvis-diffuse | LSAvis-direct | LSANIR | LSANIR-diffuse | LSANIR-direct | |
---|---|---|---|---|---|---|---|
Intercept | 5.3802 | 1.9086 | 1.6805 | 2.0123 | 4.9754 | 4.6587 | 4.8010 |
Slope | −40.8008 | −1.8548 | 2.9281 | −3.79334 | −25.1403 | −23.8127 | −24.048 |
Correlation coefficient | −0.7136 | −0.0164 | 0.0244 | −0.0344 | −0.7902 | −0.8207 | −0.7976 |
R2adj (%) | 50.35 | −1.15 | −1.12 | −1.06 | 62.00 | 66.98 | 63.20 |
Standard error | 0.7972 | 1.1379 | 1.1377 | 1.1374 | 0.69747 | 0.6502 | 0.6864 |
Mean absolute error | 0.6723 | 0.9657 | 0.9694 | 0.9632 | 0.5752 | 0.5133 | 0.5625 |
LSA2010–LSA2012 | LSA2010–LSA2013 | |||||||
---|---|---|---|---|---|---|---|---|
Linear regression models (CBI = a× dLSA + b) | ||||||||
dLSAshort | dLSANIR | dLSAshort | dLSANIR | |||||
Intercept | 0.9300 | 0.4448 | 1.4154 | 1.6314 | ||||
Slope | 46.5521 | 28.5414 | −19.2374 | −8.5627 | ||||
Correlation coefficient | 0.6667 | 0.7811 | −0.4503 | −0.2561 | ||||
R2adj (%) | 44.45 | 61.09 | 20.27 | 6.56 | ||||
Standard error | 0.8501 | 0.7114 | 1.0356 | 1.1212 | ||||
Mean absolute error | 0.7278 | 0.5900 | 0.8715 | 0.9563 | ||||
Fisher’s least significant difference test for the spectral indices and burn severity levels. | ||||||||
dLSAshort | dLSANIR | dLSAshort | dLSANIR | |||||
Burn severity levels | μ | HG | μ | HG | μ | HG | μ | HG |
Unburned | 0.0040 | a | 0.0121 | a | 0.0053 | a | 0.0020 | a |
Low | 0.0155 | b | 0.0489 | b | −0.0206 | b | −0.015 | b |
Moderate | 0.0267 | c | 0.0631 | c | −0.0292 | b | −0.0290 | b |
High | 0.0245 | c | 0.0606 | c | −0.0266 | b | −0.0219 | b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintano, C.; Fernandez-Manso, A.; Marcos, E.; Calvo, L. Burn Severity and Post-Fire Land Surface Albedo Relationship in Mediterranean Forest Ecosystems. Remote Sens. 2019, 11, 2309. https://doi.org/10.3390/rs11192309
Quintano C, Fernandez-Manso A, Marcos E, Calvo L. Burn Severity and Post-Fire Land Surface Albedo Relationship in Mediterranean Forest Ecosystems. Remote Sensing. 2019; 11(19):2309. https://doi.org/10.3390/rs11192309
Chicago/Turabian StyleQuintano, Carmen, Alfonso Fernandez-Manso, Elena Marcos, and Leonor Calvo. 2019. "Burn Severity and Post-Fire Land Surface Albedo Relationship in Mediterranean Forest Ecosystems" Remote Sensing 11, no. 19: 2309. https://doi.org/10.3390/rs11192309
APA StyleQuintano, C., Fernandez-Manso, A., Marcos, E., & Calvo, L. (2019). Burn Severity and Post-Fire Land Surface Albedo Relationship in Mediterranean Forest Ecosystems. Remote Sensing, 11(19), 2309. https://doi.org/10.3390/rs11192309