Quantifying Tidal Fluctuations in Remote Sensing Infrared SST Observations
Abstract
:1. Introduction
- from non tidal origin (e.g., wind-forced, lee-waves).
2. Data
2.1. Tidal Current Atlases
2.2. Atlas of SST Gradients
2.3. SST Observations
3. Method
4. Results
4.1. Northwest Australia
4.2. South Madagascar
4.3. Global Scale
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ANR | Agence National de la Recherche |
AMSR2 | Advanced Microwave Scanning Radiometer 2 |
AVHRR | Advanced Very High Resolution Radiometer |
CNES | Centre National d’Études Spatiales |
CSIC | Consejo Superior de Investigaciones Científicas |
FES | Finite Element Solution |
GHRSST | Group for High Resolution Sea Surface Temperature |
HRET | High Resolution Empirical Tide |
IFREMER | Institut Français pour l’Exploitation de la Mer |
IR | Infrared |
IW | Internal Wave |
MODIS | MODerate resolution Imaging Spectroradiometer |
OSISAF | Ocean and Sea Ice Satellite Application Facillity |
SEVIRI | Spinning Enhanced Visible and InfraRed Imager |
SST | Sea Surface Temperature |
SWOT | Surface Water and Ocean Topography |
VIIRS | Visible Infrared Imaging Radiometer Suite |
Appendix A. Free Cloud Pixel Probability
Appendix B. Other SST Observations
References
- Richman, J.G.; Arbic, B.K.; Shriver, J.F.; Metzger, E.J. Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Rocha, C.B.; Gille, S.T.; Chereskin, T.K.; Menemenlis, D. Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophys. Res. Lett. 2016, 43, 11–304. [Google Scholar] [CrossRef]
- Savage, A.C.; Arbic, B.K.; Richman, J.G.; Shriver, J.F.; Alford, M.H.; Buijsman, M.C.; Farrar, J.T.; Sharma, H.; Voet, G.; Wallcraft, A.J.; et al. Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies. J. Geophys. Res. Oceans 2017. [Google Scholar] [CrossRef]
- Arbic, B.K.; Lyard, F.; Ponte, A.; Ray, R.; Richman, J.G.; Shriver, J.F.; Zaron, E.; Zhao, Z. Tides and the SWOT mission: Transition from Science Definition Team to Science Team; Technical Report; CNES: Toulouse, France; NASA: Washington, DC, USA, 2015.
- Ray, R.D.; Zaron, E.D. M2 Internal Tides and Their Observed Wavenumber Spectra from Satellite Altimetry. J. Phys. Oceanogr. 2016, 46, 3–22. [Google Scholar] [CrossRef]
- Ponte, A.L.; Klein, P. Incoherent signature of internal tides on sea level in idealized numerical simulations. Geophys. Res. Lett. 2015, 42. [Google Scholar] [CrossRef]
- Zaron, E.D. Mapping the Non-Stationary Internal Tide with Satellite Altimetry. J. Geophys. Res. Oceans 2016, 122, 539–554. [Google Scholar] [CrossRef]
- Ponte, A.L.; Klein, P.; Dunphy, M.; Gentil, S.L. Low-mode internal tides and balanced dynamics disentanglement in altimetric observations: Synergy with surface density observations. J. Geophys. Res. Oceans 2017. [Google Scholar] [CrossRef]
- Zaron, E.D. Baroclinic Tidal Sea Level from Exact-Repeat Mission Altimetry. J. Phys. Oceanogr. 2019, 49, 193–210. [Google Scholar] [CrossRef]
- Donlon, C.J.; The GHRSST Science Team. The Recommended GHRSST-PP Data Processing Specification; Technical Report v1 revision 1.6; GHRSST: Exeter, UK, 2005.
- Donlon, C.; Rayner, N.; Robinson, I.; Poulter, D.; Casey, K.; Vazquez-Cuervo, J.; Armstrong, E.; Bingham, A.; Arino, O.; Gentemann, C.; et al. The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull. Am. Meteorol. Soc. 2007, 88, 1197–1213. [Google Scholar] [CrossRef]
- Maturi, E.; Harris, A.; Mittaz, J.; Sapper, J.; Wick, G.; Zhu, X.; Dash, P.; Koner, P. A New High-Resolution Sea Surface Temperature Blended Analysis. Bull. Am. Meteorol. Soc. 2017, 98, 1015–1026. [Google Scholar] [CrossRef]
- Hosoda, K. A review of satellite-based microwave observations of sea surface temperatures. J. Oceanogr. 2010, 66, 439–473. [Google Scholar] [CrossRef]
- Donlon, C.; Minnett, P.; Gentemann, C.; Nightingale, T.; Barton, I.; Ward, B.; Murray, M. Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef]
- Walsh, E.J.; Pinkel, R.; Hagan, D.; Weller, R.; Fairall, C.; Rogers, D.; Burns, S.; Baumgartner, M. Coupling of internal waves on the main thermocline to the diurnal surface layer and sea surface temperature during the Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. J. Geophys. Res. Oceans 1998, 103, 12613–12628. [Google Scholar] [CrossRef] [Green Version]
- Marmorino, G.O.; Smith, G.B.; Lindemann, G.J. Infrared imagery of ocean internal waves. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Zappa, C.J.; Jessup, A.T. High-Resolution Airborne Infrared Measurements of Ocean Skin Temperature. IEEE Geosci. Remote Sens. Lett. 2005, 2, 146–150. [Google Scholar] [CrossRef]
- Farrar, J.T.; Zappa, C.J.; Weller, R.A.; Jessup, A.T. Sea surface temperature signatures of oceanic internal waves in low winds. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Susanto, R.; Pan, J.; Devlin, A. Tidal Mixing Signatures in the Hong Kong Coastal Waters from Satellite-Derived Sea Surface Temperature. Remote Sens. 2019, 11, 5. [Google Scholar] [CrossRef]
- Carrere, L.; Lyard, F.; Cancet, M.; Guillot, A. FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015; Volume 17, p. 5481. [Google Scholar]
- Fu, L.L.; Alsdorf, D.; Morrow, R.; Rodriguez, E.; Mognard, N. (Eds.) SWOT: The Surface Water and Ocean Topography Mission; Jet Propulsion Laboratory: Pasadena, CA, USA, 2012.
- Cayula, J.F.; Cornillon, P.; Holyer, R.; Peckinpaugh, S. Comparative study of two recent edge-detection algorithms designed to process sea-surface temperature fields. IEEE Trans. Geosci. Remote Sens. 1991, 29, 175–177. [Google Scholar] [CrossRef] [Green Version]
- Cayula, J.F.; Cornillon, P. Edge Detection Algorithm for SST Images. J. Atmos. Ocean. Technol. 1992, 9, 67–80. [Google Scholar] [CrossRef]
- Cayula, J.F.; Cornillon, P. Multi-Image Edge Detection for SST Images. J. Atmos. Ocean. Technol. 1995, 12, 821. [Google Scholar] [CrossRef]
- Cayula, J.F.; Cornillon, P. Cloud detection from a sequence of SST images. Remote Sens. Environ. 1996, 55, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Ullman, D.S.; Cornillon, P.C. Satellite derived sea surface temperature fronts on the continental shelf off the northeast U.S. coast. J. Geophys. Res. Oceans 1999, 104, 23459–23478. [Google Scholar] [CrossRef]
- Ullman, D.S.; Cornillon, P.C. Evaluation of Front Detection Methods for Satellite-Derived SST Data Using In Situ Observations. J. Atmos. Ocean. Technol. 2000, 17, 1667–1675. [Google Scholar] [CrossRef]
- Ullman, D.S.; Cornillon, P.C. Continental shelf surface thermal fronts in winter off the northeast US coast. Cont. Shelf Res. 2001, 21, 1139–1156. [Google Scholar] [CrossRef]
- Andersen, S.; Belkin, I. Adaptation of Global Frontal Climatologies for Use in the OSISAF Global SST Cloudmasking Scheme; Technical Report 0614; DMI: Bethesda, MA, USA, 2006. [Google Scholar]
- EUMETSAT/OSI-SAF. Low Earth Orbiter Sea Surface Temperature Product User Manual, 3.3 ed.; EUMETSAT: Darmstadt, Germany, 2018. [Google Scholar]
- Sobel, I.; Feldman, G. A 3 × 3 Isotropic Gradient Operator for Image Processing; Stanford Artificial Intelligence Project (SAIL); Stanford University: Stanford, CA, USA, 1968. [Google Scholar]
- Danielsson, P.; Seger, O. Generalized and Separable Sobel Operators. In Machine Vision for Three-Dimensional Scenes; Academic Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Elipot, S.; Lumpkin, R.; Prieto, G. Modification of inertial oscillations by the mesoscale eddy field. J. Geophys. Res. Oceans 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Kawai, Y.; Wada, A. Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr. 2007, 63, 721–744. [Google Scholar] [CrossRef]
- Isern-Fontanet, J.; Hascoët, E. Diagnosis of high-resolution upper ocean dynamics from noisy sea surface temperatures. J. Geophys. Res. Oceans 2014, 119, 121–132. [Google Scholar] [CrossRef]
- Starck, J.L.; Murtagh, F. Astronomical Image and Data Analysis; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Autret, E. Analyse de champs de température de surface de la mer à partir d’observations satellite multi-sources. Ph.D. Thesis, Université Européenne de Bretagne, Rennes, France, 2014. [Google Scholar]
Number of Available L2 Granules | ||||
---|---|---|---|---|
2014 | 2015 | 2016 | TOTAL | |
METOP | 181 | 124 | 185 | 490 |
VIIRS | 160 | 147 | 120 | 427 |
MODIS | 59 | 152 | 120 | 331 |
Number of Available L2 Granules | ||||
---|---|---|---|---|
2014 | 2015 | 2016 | TOTAL | |
METOP | 130 | 147 | 114 | 391 |
VIIRS | 70 | 133 | 145 | 348 |
MODIS | 143 | 111 | 40 | 249 |
Granule ID | Sensor | Region | (K) |
---|---|---|---|
20160908174014 | VIIRS | Northwest Australia | 0.03 |
20160908174139 | VIIRS | Northwest Australia | 0.03 |
20160908174305 | VIIRS | Northwest Australia | 1.68 |
20140605062503 | AVHRR | South Madagascar | 0.67 |
20140605184903 | AVHRR | South Madagascar | 0.06 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Haro, C.; Ponte, A.; Autret, E. Quantifying Tidal Fluctuations in Remote Sensing Infrared SST Observations. Remote Sens. 2019, 11, 2313. https://doi.org/10.3390/rs11192313
González-Haro C, Ponte A, Autret E. Quantifying Tidal Fluctuations in Remote Sensing Infrared SST Observations. Remote Sensing. 2019; 11(19):2313. https://doi.org/10.3390/rs11192313
Chicago/Turabian StyleGonzález-Haro, Cristina, Aurélien Ponte, and Emmanuelle Autret. 2019. "Quantifying Tidal Fluctuations in Remote Sensing Infrared SST Observations" Remote Sensing 11, no. 19: 2313. https://doi.org/10.3390/rs11192313
APA StyleGonzález-Haro, C., Ponte, A., & Autret, E. (2019). Quantifying Tidal Fluctuations in Remote Sensing Infrared SST Observations. Remote Sensing, 11(19), 2313. https://doi.org/10.3390/rs11192313