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Abstract: Groundwater recharge (GR) is a key component of regional and global water cycles and is
a critical flux for water resource management. However, recharge estimates are difficult to obtain
at regional scales due to the lack of an accurate measurement method. Here, we estimate GR using
Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation System
(GLDAS) data. The regional-scale GR rate is calculated based on the groundwater storage fluctuation,
which is, in turn, calculated from the difference between GRACE and root zone soil water storage
from GLDAS data. We estimated GR in the Ordos Basin of the Chinese Loess Plateau from 2002
to 2012. There was no obvious long-term trend in GR, but the annual recharge varies greatly from
30.8 to 66.5 mm year−1, 42% of which can be explained by the variability in the annual precipitation.
The average GR rate over the 11-year period from GRACE data was 48.3 mm year−1, which did
not differ significantly from the long-term average recharge estimate of 39.9 mm year−1 from the
environmental tracer methods and one-dimensional models. Moreover, the standard deviation of the
11-year average GR is 16.0 mm year−1, with a coefficient of variation (CV) of 33.1%, which is, in most
cases, comparable to or smaller than estimates from other GR methods. The improved method
could provide critically needed, regional-scale GR estimates for groundwater management and may
eventually lead to a sustainable use of groundwater resources.

Keywords: water table fluctuation; water storage fluctuation; Loess Plateau; Ordos Basin; interannual
groundwater recharge; GRACE

1. Introduction

Groundwater recharge is a key link between surface water and groundwater. The recharge water
not only replenishes groundwater reservoirs, but also carries solutes from the upper strata, which
could potentially contaminate groundwater. Thus, groundwater recharge influences both groundwater
quality and quantity. Therefore, sustainable management of aquifers requires accurate estimates of
GR [1,2].

GR has been estimated using a variety of techniques, including physical, chemical, isotopic,
and modelling techniques [3–5]. Among these methods, the tritium (3H) peak concentration method
and chloride mass balance method (CMB) have been widely used in arid and semiarid regions at the
point scale [3,6,7]. The half-life of 3H is 12.5 years. Therefore, the concentrations currently account for
1/16 of that in the early 1960s. It was confirmed that the bomb test tritium peak was undetectable in
many places around the globe [8,9]. Even if it may be detectable at some locations, the 3H introduced by
thermonuclear tests can now be found either at great depths (>20 m) or even in the groundwater [10],
which practically eliminates the method for estimating recharge using historical 3H from the portfolio
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of methods when the unsaturated zone is shallow [11]. The CMB method can be further divided into
the unsaturated zone and the saturated zone CMB. The unsaturated zone CMB estimates long-term
GR rates from the chloride (Cl) concentrations in the soil profile at the point scale [6,12]. The saturated
zone CMB, however, estimates GR from the Cl concentrations in the groundwater, which is a result of
long-term mixing of Cl from various recharge sources. Therefore, the recharge rates obtained by the
saturated zone CMB are at intermediate scales, ranging from 1 m2 to 10,000 m2 [3]. However, the Cl
input from precipitation at the surface must balance the Cl output (GR) below the root zone for the
unsaturated zone CMB and the Cl input to groundwater for the saturated zone CMB. Unfortunately,
any land use or climate change could significantly disturb the equilibrium, and once it is disturbed,
to re-establish the equilibrium could take as long as years to decades for the unsaturated zone CMB
and decades to hundreds of years for the saturated zone CMB. Consequently, the CMB methods are
only applicable to cases where there has been no recent land use and climate change.

GR is known to be episodic, but only the long-term average of GR is reproduced by the
above-mentioned tracer methods, giving no information about the temporal evolution of GR. Conversely,
the groundwater table fluctuation method (WTF), taking advantage of the sharp water table rise in
response to a given recharge event, estimates GR on a much short time scale, such as the recharge
from a rainfall event. Therefore, WTF can be used to capture transient GR and is particularly suited
for investigating the seasonality and episodicity of GR. However, rainfall infiltration fronts tend to
disperse over a long distance [13], and thus, the sharp water table rise required by WTF may not occur
or may display only seasonal water-level fluctuations in a deep aquifer or in aquifers overlain by
fine-textured soils through which water moves slowly.

Moreover, these aforementioned methods can only estimate GR at small (unsaturated zone CMB)
or intermediate scales (saturated zone CMB and WTF) [3,11,14]. Because small-scale GR rates possess
strong spatial variability [4,7,15] and in many applications are sparsely measured, aggregation to
regional scales remains difficult. Even if an average for a region can be obtained, temporal information
is lost in the CMB methods [16–19]. To solve these problems, several efforts have been undertaken to
estimate the GR at large scales, such as modelling and baseflow separation methods. For the baseflow
separation method to estimate GR, pumpage, evapotranspiration, and underflow to deep aquifers
may be significant and should be estimated independently. Unfortunately, these estimates are rarely
available and are often based on many assumptions. The validity of these assumptions dictates the
accuracy of the estimated recharge rates [3,20]. Similarly, the model estimates largely depend on
the choice of parameterization [21–24], which often generates unsatisfactory flux estimates [25,26].
Therefore, an alternative method that can accurately estimate GR at large spatial scales but short time
scales is critically needed.

The Gravity Recovery and Climate Experiment (GRACE) satellites, launched in 2002 by the
National Aeronautics and Space Administration (NASA) and the German Aerospace Center, is no
longer active as of 2018. The GRACE product is derived from two satellites flying in tandem (GRACE-1
and GRACE-2) and has the potential to meet these demands [27–29]. Previous studies have evaluated
GRACE data with groundwater level monitoring data on seasonal or annual trend signals [30–40].
For example, Strassberg et al. [39] reported that the GRACE-derived seasonal groundwater storage
anomaly (GWSA) in the High Plains of the USA agreed well with estimates based on groundwater
level measurements. This was further corroborated by studies conducted in Jordan [41], India [30],
and China [36,38,42]. Furthermore, the GRACE-derived monthly GWSAs on the Chinese Loess Plateau
were highly correlated with in situ measured GWSA data [40]. Therefore, GRACE data have been the
most successful in evaluating the groundwater depletion rates.

Recently, a few attempts have been made to estimate regional-scale GR rates using GRACE
data [43–45]. All these approaches obtain groundwater storage anomaly (GWSA) by subtracting the
unsaturated zone soil water storage anomaly (SWSA) obtained through GLDAS product, from the
total water storage anomaly (TWSA) obtained from GRACE data. Then, the change in GWSA can be
related to GR through two regional-scale water budget approaches:
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1. The average recharge within a time period equals to the sum of change of groundwater storage
and groundwater discharge [44,45]; the average change of groundwater storage can be evaluated
by the slope of the best-fitted linear equation to the measured GWSA as a function of time; and the
groundwater discharge is the sum of natural discharge and total water withdrawn by pumping
wells, which need to be estimated from other methods or information.

2. The water storage fluctuation method [43] is used to estimate recharge from the change of
groundwater storage, which is analogous to the well-known water table fluctuation (WTF). More
specifically, the change in GWSA between the peak and trough over the time interval of interest
gives net recharge [43].

To obtain total recharge though approach (1), one must know a priori groundwater discharge due
to natural and anthropogenic reasons, which are rarely available at the regional-scale. Different from
approach (1), the attraction of approach (2) is that the GR can be estimated without additional regional
discharge information, but only gives net recharge, i.e., the increase in groundwater storage. The total
recharge as the sum of net recharge and the recharge that balance the discharge, cannot be evaluated
through approach (2). Therefore, the objectives of this paper are: (1) to extend the water storage
fluctuation method of Henry et al. [43] to estimate total GR at regional-scale without the hard-to-obtain
regional groundwater discharge data; (2) to evaluate the uncertainty of the estimated total GR rates at
the regional scale; and (3) to compare the obtained total recharge with the recharge obtained from the
environmental tracer methods and one-dimensional models. We tested the feasibility of this method
for regional-scale GR estimation in the Ordos Basin of the Chinese Loess Plateau.

2. Materials and Methods

2.1. Study Area

The Chinese Loess Plateau is in the middle reach of the Yellow River basin in North China.
It covers approximately 640,000 km2 (33◦∼41◦N, 100◦∼114◦E) (Figure 1). The Loess deposits represent
aeolian dust from the deserts of the north and northwest lifted by the winter northwesterlies and
deposited on the Loess Plateau. As a result, the soils are coarser in texture in the northwest and
finer in the southeast [46]. The continuous deposition in the last 800,000 years has resulted in a deep
unsaturated zone, ranging from 30 to 100 m [47].

The Loess Plateau is characterized by an arid and semiarid continental monsoon climate.
Precipitation mainly occurs from June to September, bringing 60–70% of the annual total precipitation
in the form of high-intensity rainstorms [48]. Because the distance to the vapor source increases from
southeast to northwest, the long-term annual precipitation decreases from more than 800 mm year−1 in
the southeast to less than 200 mm year−1 in the northwest (Figure 1). Consequently, the vegetation type
changes from forest through forest-steppe to typical-steppe, desert-steppe, and then to steppe-desert
zones from southeast to northwest [49].

We selected the Ordos Basin (280,000 km2) in the middle of the Loess Plateau as our study area
because a large body of work has been conducted to estimate GR from environmental tracers (tritium,
chloride) and models [17,50–57]. In addition, the Ordos Basin is one of the largest-scale groundwater
basins in the world, and is composed of different interconnected aquifer systems, including the
Cambrian-Ordovician Karst Aquifer System, Cretaceous Aquifer System, Carbonate-Jurassic Aquifer
System and Quaternary Aquifer System [58]. Moreover, there has been little irrigation [52,54,55],
and precipitation is the main source of GR [58].
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the tritium peak method and the one-dimensional model (Hydrus-1D [59]). Please see supplementary 
material for more information about GR estimated by different methods in Ordos Basin. 

2.2. Isolation of GWSA from TWSA 

TWSA changes at monthly or longer timescales should be dominated by SWSA and GWSA 
changes in the Ordos Basin. This is because other components have a negligible effect on TWSA. First, 
the estimated maximum snow water equivalent from the GLDAS model is 7.2 × 10−3 mm, which is 
three orders of magnitude lower than the TWSA and SWSA. Second, the interannual variations in 
biomass were shown to be negligible [60]. Third, on the Loess Plateau, the reservoir water storage is 
generally no greater than 0.53 mm yr−1 water equivalent based on the Yellow River Water Resources 
Bulletin (http://www.yellowriver.gov.cn/other/hhgb/) (accessed 18 November 2017) (Table S1). 
Because the largest reservoir is located at the edge of the Loess Plateau and away from the Ordos 
Basin, the reservoir effect will be even smaller. Fourth, only a small fraction of soil, with a mean of 
−0.44 mm yr−1 in water equivalent, is transported out of the study area due to erosion 
(http://www.yellowriver.gov.cn/nishagonggao/) (accessed 18 November 2017) (Table S2). Therefore, 
the erosion on the Loess Plateau, although severe, has a negligible effect on the TWSA. Therefore, in 
this study, we assume that the anomalies of TWSA are primarily determined by the SWSA and 
GWSA. 

TWSA can be derived conveniently from the GRACE data, which are available in two forms: 
spherical harmonics data and mass concentration (Mascon) solutions. Relative to the spherical 
harmonics data, the GRACE Mascon solutions from the Center for Space Research (CSR) 
(http://www.csr.utexas.edu/grace) (accessed 18 November 2017) have a reduced leakage from land 
to ocean [61,62]. Moreover, Mascon data do not require post-processing filtering and have less 
dependency on scale factors [62]. Therefore, the GRACE Mascon solutions are adopted in this study. 
In the Ordos Basin, there are 156 monthly TWSA measurements available between April 2002 and 
August 2016. Unfortunately, data are missing for 9 months between 2013 and 2015, making the 
recharge estimates unreliable. Thus, GRACE data from 2013 to 2016 were excluded for estimating 

Figure 1. Location of the Ordos Basin in the Loess Plateau of China and the sampling sites for different
methods in the Ordos Basin. These methods include CMB in the unsaturated zone and saturated zone,
the tritium peak method and the one-dimensional model (Hydrus-1D [59]). Please see Supplementary
Material for more information about GR estimated by different methods in Ordos Basin.

2.2. Isolation of GWSA from TWSA

TWSA changes at monthly or longer timescales should be dominated by SWSA and GWSA
changes in the Ordos Basin. This is because other components have a negligible effect on TWSA. First,
the estimated maximum snow water equivalent from the GLDAS model is 7.2 × 10−3 mm, which
is three orders of magnitude lower than the TWSA and SWSA. Second, the interannual variations
in biomass were shown to be negligible [60]. Third, on the Loess Plateau, the reservoir water
storage is generally no greater than 0.53 mm year−1 water equivalent based on the Yellow River
Water Resources Bulletin (http://www.yellowriver.gov.cn/other/hhgb/) (accessed 18 November 2017)
(Table S1). Because the largest reservoir is located at the edge of the Loess Plateau and away from
the Ordos Basin, the reservoir effect will be even smaller. Fourth, only a small fraction of soil, with a
mean of −0.44 mm year−1 in water equivalent, is transported out of the study area due to erosion
(http://www.yellowriver.gov.cn/nishagonggao/) (accessed 18 November 2017) (Table S2). Therefore,
the erosion on the Loess Plateau, although severe, has a negligible effect on the TWSA. Therefore, in this
study, we assume that the anomalies of TWSA are primarily determined by the SWSA and GWSA.

TWSA can be derived conveniently from the GRACE data, which are available in two forms:
spherical harmonics data and mass concentration (Mascon) solutions. Relative to the spherical
harmonics data, the GRACE Mascon solutions from the Center for Space Research (CSR) (http:
//www.csr.utexas.edu/grace) (accessed 18 November 2017) have a reduced leakage from land to
ocean [61,62]. Moreover, Mascon data do not require post-processing filtering and have less dependency
on scale factors [62]. Therefore, the GRACE Mascon solutions are adopted in this study. In the Ordos
Basin, there are 156 monthly TWSA measurements available between April 2002 and August 2016.
Unfortunately, data are missing for 9 months between 2013 and 2015, making the recharge estimates
unreliable. Thus, GRACE data from 2013 to 2016 were excluded for estimating GR. However, the data
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in this period still show the long-term trend of groundwater storage change, and thus the data were
included in the groundwater storage depletion calculation.

In the Ordos Basin, there has been a large volume of work on soil water storage, but the
measurements were not systematic enough in depth and frequency to obtain root zone soil water
storage over the period of 2002 to 2016. Instead, we adopted a similar approach to others [30,36,38,41,42]
by capitalizing on the GLDAS data and obtaining root zone SWSA with the four well-tested,
large-scale hydrological models, Community Land Model (CLM), National Centers for Environmental
Prediction/Oregon State University/Air Force/Hydrologic Research Lab model (NOAH), Mosaic and
Variable Infiltration Capacity model (VIC) of GLDAS model from NASA [63]. GLDAS integrates
satellite-based and ground-based data sets for parameterizing, forcing and constraining the hydrological
models. The simulated results included soil water contents in the top 3.4, 2.0, 3.5 and 1.9 m of the soil
column for CLM, NOAH, Mosaic and VIC, respectively [63]. GLDAS has been used in numerous
studies to estimate unsaturated zone storage where in situ measurements are not feasible in many and
diverse regions of the world [39,64–68].

Rainfall water infiltrating beyond the rooting depth can be considered GR. However, rooting
depth varies with climate, soil and vegetation. Rooting depths are generally greater in semiarid regions
than in humid regions [69–71]. In the Ordos Basin, the average rooting depth is approximately 2.0 m
for annual cereal crops and grasses [72–74] and is greater for some perennial grasses and woody
species [75–78]. For recharge estimates, the modelling depth should be greater than or equal to the
rooting depth. The four GLDAS models satisfy this requirement, and thus, we used the four models
to calculate SWSA. Although the four models have different root depths, as shown above, they all
simulate soil water in the root zone. Therefore, we regard the mean SWSA of the four models as the
root zone SWSA.

The GWSA is obtained by subtracting the average SWSA of the four GLDAS hydrologic models [63]
from the GRACE TWSA anomalies:

GWSA = TWSA− SWSA (1)

However, unlike the monthly average outputs from GLDAS [79], GRACE has irregular sampling
intervals. In addition, a few monthly values of the GRACE data are missing. In this case, we used the
linear interpolation method to acquire the regular monthly GRACE data that would match the GLDAS
data in time. When a GRACE measurement (TWS) is missing at a specific time t (e.g., 15 May 2002),
but TWS1 and TWS2 are available at an earlier t1 and later t2 point in time (t1 < t < t2), then the missing
measurement TWS is calculated by the following formula:

TWS = TWS1 ×
t− t1

t2 − t1
+ TWS2 ×

t2 − t
t2 − t1

(2)

2.3. Estimation of Groundwater Recharge

The WTF method was developed in the 1920s for estimating recharge from groundwater table
fluctuation and has since gained wide application [80–87]. Briefly, the GR rate can be calculated by
multiplying the change in head over a specified time interval by the specific yield [13]:

R = Sy
∆h
∆t

(3)

where R is the GR (in mm year−1), h is the height of the water table (in mm), and Sy is the specific yield
(in %). The primary advantage of the WTF method is that this method requires no assumptions on the
mechanisms for water movement through the unsaturated zone; thus, it can be applied to a variety
of recharge mechanisms, including direct recharge from precipitation or irrigation, indirect recharge
from flood channels, or local recharge through preferential flow paths [13]. There are two different
variations of the WTF method. An important distinction between the two implementations of the WTF
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is whether they consider correction for unrealized recession. Recessional processes (e.g., evaporation,
discharge to springs) continue while recharge is causing the water table to rise [86]. When ∆h is equal
to the difference between the peak of the rise and low point of the extrapolated antecedent recession
curve at the time of the peak (extrapolation method), the WTF method produces the total recharge.
When ∆h is the difference in heads between two points in time, the WTF method produces a value for
net recharge (no extrapolation) [13].

In this study, we use the WTF method to estimate the total GR. An important distinction between
GRACE data-based WTF and other WTF applications is how to define recharge episodes. A recharge
episode is defined as a period during which the total recharge significantly exceeds its steady-state
condition in response to a substantial water-input event [86]. In the saturated zone, WTF recognizes
a recharge episode by water table fluctuation following a storm [13]. In a thick unsaturated zone,
recharge is also episodic, particularly for recharge due to preferential flow and focused recharge.
The episodic recharge event may be short in duration, relative to the measurement interval of GRACE,
and can be randomly distributed over space. However, all recharges in an area add to soil water
and groundwater, increasing the mass of the area, and the resulting mass increase from each episode
accumulates with time and can be readily detected in the form of mass change in a subsequent GRACE
measurement. For a footprint as large as what GRACE has, a wet season (summer in the Ordos Basin)
consisting of a series of storm events results in a series of recharge episodes that accumulate over time,
creating GRACE-measurable storage increases. This is analogous to tree growth measurements: tree
growth has diurnal and seasonal variability; monthly measurements may not detect daily variability,
but can capture the salient feature of the growth rates over the season. Therefore, the convolution
of these recharge episodes may be considered a response to a large storm (convolution of rainfall
events minus evapotranspiration) and can be detected by GRACE as the total storage increment.
Consequently, a recharge episode appears from the trough of decline SB(tB) and finishes at the peak
of the rise SP(tP) (Figure 2). Additionally, the recessions continue after tB, while recharge causes the
GWSA rise. This part of the recession is called unrealized recession. To obtain recharge from the curve,
one approach is to assume that unrealized recession is negligible, while the second approach estimates
and corrects for it episode by episode, and the third approach quantifies the system behavior with a
functional relationship between the water level and the decline rate [86]. Here, we adopt the second
method by estimating and correcting for the unrealized recession on an episode-by-episode basis.
The antecedent recession curve was obtained by linear fitting GWSA as a function of time during the
seasonal recession from the peak in the previous year SA(tA) to the trough of decline SB(tB), and then
the obtained linear equation was extrapolated to the time of the peak tP. Finally, we obtain the SL(tP),
which is the GWSA extrapolated from the antecedent recession curve (solid line) at the time of the
peak (tP). The dashed line from SB(tB) to SL(tP) is the unrealized recession (Figure 2).

Because ∆GWSA = Sy × ∆h, the GR rate may be calculated by the following formula:

R =
∆GWSA

∆t
=

SP − SL

∆t
(4)

where SP is the peak of the rise and SL is the GWSA extrapolated from the antecedent recession curve
(dashed line) to the time of the peak. All terms are expressed as rates (e.g., mm year−1). Equation (4)
accounts for discharge occurring between tB and tP; thus, the obtained recharge is the sum of recharge
that compensates for discharge occurring (RD) and the recharge that causes the water storage increase
(RS) (Figure 2). However, if we replace SL with SB, we obtain the net recharge (RS), disregarding
the recharge (RD) that balances the discharge between tB to tP, as is adopted by Henry et al. [43].
Therefore, our method improves Henry et al. [43]’s method by incorporating the additional recharge
(RD in Figure 2) that occurs during recessions (red dotted line in Figure 2).
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Figure 2. The conceptual diagram to demonstrate the groundwater storage anomaly (GWSA) from
2003/01 to 2004/06 and the proposed methodology for estimating GR. SA(tA) is the peak in the previous
year, SB(tB) is the trough of decline, SP(tP) is the peak of the rise. The solid line is the antecedent
recession curve, which is the best fit of GWSA as a function of time between tA and tB. SL(tP) is the
GWSA extrapolated from antecedent recession curve at the time of the peak (tP). The dashed line is the
unrealized recession. RS is the change in groundwater storage or net recharge, RD is the recharge that
balances discharge.

Our method and Henry et al. [43]’s method are based on the traditional, widely used water table
fluctuation method (WTF), which takes the primary advantage of the WTF, without assuming the
mechanisms of water flow in the unsaturated zone. Furthermore, the lateral recharge or discharge
between two GRACE measurement grids needs to be known or may, in many cases, be negligible due
to the large footprint. Thus, the lateral recharge events within the footprint does not affect the total
recharge estimate within the footprint. Thus, it can be applied to a variety of recharge mechanisms
including direct recharge from precipitation or irrigation, indirect recharge from flood channels,
or local recharge through preferential flow paths and other complex recharge processes [13]. However,
WTF-based methods, including our study and that of Henry et al. [43], do not account for the recharge
during the recession [13,86]. We will discuss the uncertainty associated with neglecting this portion of
recharge in Section 2.4.

2.4. Uncertainty in Estimated Recharge Rates

We further considered the uncertainty in GR derived from the GRACE data and the hydrological
models. For random errors, the uncertainty in the obtained GR may be calculated from the error
propagation law [88,89]:

σ2
r = (

∂R
∂SP

)
2
σSP

2 + (
∂R
∂SL

)
2
σSL

2 (5)

σ2
SP = σ2

GWSA (6)

σ2
GWSA = σ2

TWSA + σ2
SWSA (7)

σr =

√∑n
i σ

2ri

n
(8)

where σ( ) represents the standard deviation of a certain variable and ∂R/∂( ) represents the partial
derivative of R with respect to a variable. σSL is the standard deviation of predicted SL using the
regression equation (Figure 2), n is the number of years, σr indicates the standard deviation of GR, i is
the ith year, and σr is the standard deviation of n-year average GR.

The TWSA uncertainty estimation was based on the approach suggested by Landerer and
Swenson [90] and Scanlon et al. [61]. First, we obtained the residuals by removing long-term trends
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and inter-annual, annual, and semi-annual amplitudes from TWSA. Then, the interannual signals were
further removed by fitting a 13-month moving average to the residuals because they also contributed
significantly to the TWSA in the Ordos Basin. The standard deviation of the residual approximates the
measurement uncertainty, which is expressed by σTWSA.

For SWSA, we do not have measurements of SWSA, as stated earlier. Instead, the uncertainty
of SWSA, σSWSA was obtained from the monthly standard deviation among the four hydrological
models [27,31,33,36,39,67,88].

The uncertainties considered above are random errors. However, there may be underestimation
or overestimation due to neglecting processes that affect GR, which is systematic error. For example,
the recharge during recessions is neglected, thus introducing systematic error. We define Rs max and
Rs min as the possible maximum and minimum mean annual recharge during recessions, respectively.
The maximum and minimum are considered the upper limit and lower limit of the 95% confidence
interval. Then, the standard deviation of the variable can be approximated by the following formula [91]:

σs =
Rs max −Rs min

4
(9)

σs is the standard deviation of neglecting mean GR during recessions.
The total error accounting for both systematic error and random error can be calculated as by

Vasquez and Whiting [92]:

σt = κ
√
(σs

2 + σr
2) (10)

σt is the total error of n-year average GR. κ is the value used to define uncertainty intervals for the
mean of large samples from a normal distribution For the 95% confidence, κ is approximately equal to
1.96 for a normally distributed variable.

CV =
σt

R
(11)

CV is the coefficient of variation of n-year average GR. R is the n-year average GR.

3. Results

3.1. GRACE-Derived Groundwater Storage Anomaly (GWSA) Variations

Figure 3a shows the temporal distribution of the monthly precipitation averaged over the Ordos
Basin from 2002 to 2016. There is pronounced seasonality in the monthly precipitation, characterized
by intense rainfall between June to September and infrequent, small monthly precipitation during the
remainder of the year. The wet season (May to October) accounts for 85% of the total precipitation,
while the dry season (November to April) accounts for 15% of the annual precipitation (Figure 3a).
The average annual precipitation over the Ordos Basin varied from 346 to 585 mm year−1 from 2002 to
2016 (Table S3), which is consistent with the findings of Feng et al. [93] and Xie et al. [40].

Figure 3b shows the temporal distribution of TWSA and SWSA over the Ordos Basin from 2002 to
2016. The monthly TWSA varied from 126.4 mm in 2004 to −107.1 mm in 2016 (Table S3), showing
a general declining trend with time. However, SWSA did not show a clear long-term trend, neither
decreasing nor increasing with time. Moreover, both TWSA and SWSA showed a pronounced seasonal
cycle, with peak values in autumn and low values in early summer (Figure 3b).
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Figure 3. The time series of precipitation, anomalies, and GR in the Ordos Basin between April 2002
and July 2016: (a) The annual precipitation (blue solid squares), monthly precipitation (column),
monthly average precipitation (red dots) and yearly average precipitation (red dot line) obtained
from an atmospheric forcing dataset for China [94], downloadable from the Institute of Tibetan
Plateau Research, Chinese Academy of Sciences (http://westdc.westgis.ac.cn/) (accessed 18 November
2017). (b) The monthly time series of soil water storage anomaly (SWSA) (orange squares) and
GRACE-derived total water storage anomaly (TWSA) (blue squares). The blue and orange shadows
represent the uncertainties in TWSA and SWSA, which were calculated by the method in Section 2.4.
(c) GRACE-derived groundwater storage anomaly (GWSA) (grey dots) in the Ordos Basin from April
2002 to July 2016. The shadows show the uncertainties in GWSA. Red dots represent the missing data
obtained by interpolation. Orange lines represent the regression of the rise curves. Blue lines represent
the regression of recession curves. Red solid squares represent the annual GR estimated from the
GRACE data. The whiskers represent the uncertainties of the annual GR estimates (Equations (5) to (7)).

Figure 3c shows the monthly distribution of GWSA over the Ordos Basin from 2002 to 2016.
Because GWSA = TWSA − SWSA, GWSA showed a similar decreasing trend as TWSA, with a
reduction of 6.0 mm year−1. Seasonality in GWSA is still apparent but much weaker than that of
TWSA (Figure 3b,c). TWSA, SWSA, and GWSA peaked, on average, on 1 October, 12 September,
and 3 February in the following year, respectively (Table S4). The month of maximum TWSA and SWSA
agrees with the occurrence of major precipitation events in the Ordos Basin during the wet season (May

http://westdc.westgis.ac.cn/
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to October). There was barely any delay in response to precipitation in TWSA and SWSA. However,
there was a nearly four-month lag in GWSA. The recession of GWSA starts, on average, in March and
ends in August (Table S4). Because of the four-month delay, the recession period corresponded to
the precipitation that occurred in dry seasons (from November to April). Similarly, the rising limb of
GWSA corresponded to the precipitation that occurred during the wet season (from May to October).

3.2. Comparison of GRACE-Derived Groundwater Recharge with Estimates from Other Methods

There was a recharge season in each year from 2002 to 2012 (Figure 3c), and a linear equation
was fitted to each of the recession curves according to Figure 2. The number of measurements in each
recession curve was 4 to 8, with an average of 6.5. The coefficient of determination R2 varied from
0.36 to 0.89, with an average of 0.63 (Table 1; p < 0.05), indicating the goodness of the fit. The 11-year
average GR was 48.3 ± 12.5 mm year−1 over the Ordos Basin from 2002 to 2012. The annual GR rates
varied from 30.8 to 66.5 mm year−1, indicating that the interannual GR varied greatly. However, there
was no obvious long-term trend, either decreasing or increasing, in GR from 2002 to 2012.

Table 1. The variables used in estimating groundwater recharge from groundwater storage anomaly.

Year SP
(mm)

σSP

(mm month−1)
SL

(mm)
σSL

(mm month−1)
GRi

(mm year−1)
σGRi

(mm year−1) N R2

2002 19.1 14.9 −18.2 23.7 37.3 28.7 5 0.52
2003 56.2 14.9 −8.1 8.0 64.3 18.1 4 0.66
2004 71.3 14.9 4.9 22.2 66.4 27.5 6 0.50
2005 46.9 14.9 14.1 31.7 32.8 35.6 8 0.36
2006 40.7 14.9 9.8 11.9 30.9 20.1 6 0.46
2007 29.1 14.9 −21.8 13.5 50.9 21.1 6 0.81
2008 24.5 14.9 −23.1 10.0 47.6 19.0 5 0.89
2009 5.4 14.9 −54.3 15.0 59.7 22.1 5 0.88
2010 −0.4 14.9 −38.0 16.7 37.6 23.3 6 0.53
2011 −6.5 14.9 −63.2 32.8 56.7 36.6 6 0.63
2012 −4.9 14.9 −52.2 12.0 47.3 20.2 5 0.68

Mean 48.3 5.6 0.63

Note: σ( ) represents the standard deviation of a certain variable, SP is the peak of the rise, SL is the GWSA
extrapolated from antecedent recession curve at the time of the peak, GRi is the annual groundwater recharge. N is
the number of sampling points used to fit the antecedent recession curve.

We then compared estimates using our method, the method of Henry et al. [43], and the
environmental tracer method (Figure 4). The GR calculated using Henry et al. [43]’s method varies
from 9.6 to 50.8 mm year−1 (Table S5), with an average of 28.3 ± 13.8 mm year−1 for the 11 years.
We also summarized GR estimates from the literature using environmental tracers and modelling in
the region (in Table S6 and Figure 4). These estimates were strongly variable, ranging from 0.11 to
110 mm year−1 at different times and locations in the Ordos Basin, with an average of 39.9 ± 26.5 mm
year−1. Therefore, the obtained average GR rate from GRACE data is 20 mm year−1 larger than that
from the Henry et al. [43]’s method (p < 0.05). It is approximately 8 mm year−1 larger than that from
the point-scale environmental tracer method, but the difference is not significantly different from 0
(p > 0.05).
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Figure 4. Boxplot of GR in the Ordos Basin estimated from different methods. WTF-GRACE is the
estimate using the water table fluctuation method based on GRACE data. Henry’s method is the net GR
estimated by the method in Henry et al. [43]. Point-scale methods include unsaturated zone CMB, 3H
peak method and one-dimensional model (Hydrus-1D [59]). The points are values of all measurements
from those methods in the Ordos Basin in different studies presently available. The boxes represent the
interquartile range. The whiskers extend to 1.5 times the interquartile range. The horizontal line in the
boxes represents the mean value.

3.3. Evaluation of the Uncertainty of the Estimated Total Groundwater Recharge Rates at Regional Scale

Table 2 lists the different error components in the uncertainty estimates based on Section 2.4.
The obtained σTWSA is 14.9 mm month−1 in the Ordos Basin, which is similar to the standard deviation
of 13.5 mm month−1 in the Yellow River basin [61]. For random errors, the standard deviations varied
from 18.1 to 36.6 mm year−1 for estimated annual GR (Equations (5) to (7)) but decreased to 7.7 mm
year−1 for the 11-year average GR (Equation (8)).

Table 2. Different error components in estimating GR.

Uncertainty Equation

σSWSA 8.3 mm month−1

(5) to (8)σTWSA 14.9 mm month−1

σr 7.7 mm year−1

Rs min 0 mm year−1

(9)Rs max 8.5 mm year−1

σs 2.1 mm year−1

σt 16.0 mm year−1 (10)

CV 33.1% (11)

Note: Please see Table 1 for other calculation details.

As illustrated above, our method cannot account for GR in dry seasons. Fortunately, there
is substantially smaller precipitation and larger evaporation-to-precipitation ratio in dry seasons
than in wet season in the Ordos Basin [35,95]. In addition, because of that, the ratio of recharge to
precipitation has been shown to be substantially smaller in dry seasons than in wet seasons in most
climate zones [35,96,97]. Therefore, the recharge in dry seasons should be substantially smaller than
that of wet seasons. However, in order to characterize the potential errors introduced by neglecting the
dry season recharge, we assumed the worst-case scenarios: the ratio of recharge to precipitation in
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dry seasons is equal to that in wet seasons. In this case, since dry season precipitation was only 17.6%
of that in the wet season (Figure 3a), the GR in the dry season was calculated as 8.5 mm year−1 (wet
season recharge 48.3 mm × 17.6%). Therefore, the underestimation as a form of systematic error σs is
equal to 2.1 mm year−1 (Equation (9)).

Combining the random errors and systematic errors, we calculated the total error and CV for the
11-year average GR from GRACE to be 16.0 mm year−1 and 33.1%, respectively (Equations (9) and (10)).

4. Discussion

4.1. GWSA Seasonality, Long-Term Change and Delay in Response to Precipitation

Seasonality in GWSA is still apparent but much weaker than that of TWSA (Figure 3b,c).
The weakened GWSA may be attributed to root water uptake and evaporation that may have reduced
precipitation-induced GWSA fluctuation. The exclusion of the “active” surface soil, where water
storage fluctuates strongly due to frequent precipitation and evaporation, may also be a reason
(Figure 3c). Similar seasonality in TWSA, SWSA and GWSA has also been observed in other regions
around the world [39,98–101]. However, the seasonality in GWSA shown in the Ordos Basin is weaker
than in the North China Plain [36], indicating a weaker control of climate (mainly precipitation) on
GWSA. This may be due to the lower amount of precipitation in the Ordos Basin (472.1 mm on average)
(Table S3) than on the North China Plain (589 mm on average) [36].

Precipitation was stable from 2002 to 2012, but increased drastically from 2013 to 2015. However,
TWSA decreased with time, which is in line with previous reports in the same region [40]. Generally,
precipitation should be the dominant factor of total water storage. In our case, however, the decreasing
total water storage from 2002 to 2016 can be explained by groundwater depletion [40]. The average
reduction of groundwater storage was 6.0 mm year−1 in the Ordos Basin from 2002 to 2016, which
is consistent with the reported 6.5 mm year−1 from Xie et al. [40] in the Loess Plateau from 2005
to 2014. Xie et al. [40] compared GWSA variations derived from the spherical harmonics solutions,
mascon solutions, and the Slepian localization of spherical harmonics solutions (Slepian solutions) of
GRACE data, with those derived from 136 groundwater observation wells on the Loess Plateau. They
showed that GWSA derived from GRACE matched well with that from groundwater observation wells.
Although pumping for irrigation is not a widespread phenomenon in our study region, pumping of
groundwater is essential for coal mining, industry and residential life. Furthermore, the precipitation
and coal mining data were used by Xie et al. [40] for analyzing the causes of groundwater depletion,
and their results showed that seasonal changes in groundwater storage are closely related to rainfall,
but the groundwater depletion is mainly due to human activities (e.g., coal mining). Thus, Xie et al. [40]
provided convincing evidence for the use of GRACE data to estimate GWSA in the Loess Plateau.
Because the Ordos Basin is in the middle of the Loess Plateau and accounts for approximately one-half
of the Loess Plateau (Figure 1), the conclusions regarding GRACE data validation and the reason
for groundwater storage depletion in Xie et al. [40] are likely to be applicable to the Ordos Basin.
Many studies have shown much larger long-term groundwater depletion. For example, there were
GWSA depletion rates of 20.0, 22.0 and 20.4 mm year−1 in North India, North China and California’s
Central Valley, respectively [31,33,102]. Unlike the Ordos Basin, those regions are under the influence
of intensive pumping of groundwater for irrigation.

There was barely any delay in response to precipitation in TWSA and SWSA. However, there was
a nearly four-month lag in GWSA. This time lag results from the time it takes for water to percolate
from the soil surface to beyond the root zone. Water percolation can be a slow process, and may take
months or years for the water from a given precipitation event to pass the root zone, and decades
to thousands of years for the water to reach groundwater [51,54,103]. As shown in Figure 3a, 2003
was an extremely wet year, and the 2004, 2005, and 2006 were relatively dry years. As an example, at
Changwu (southern portion of the Ordos Basin), the extreme rainfall event (313 mm) in August 2003
created a wetting front at a depth of 3.5 m by mid-October, 4 m by the end of November, and 5 m by
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the end of December in 2003 [104]. Meanwhile, for years without extreme precipitation, as indicated
by the peaks of GWSA, soil water would mainly infiltrate to the bottom of the root zone early in the
next year (February and March) (Table S4).

4.2. What Is the Difference between Estimates from Our Method and Other Methods?

The obtained average GR rate from GRACE data is not significantly different from the point-scale
method (p > 0.05). Theoretically, the GRACE-derived GR should be larger than the average of the
point-scale methods. This is because point-scale estimates, such as those from the CMB and 3H
in the unsaturated zone, only represent piston flow recharge [53,54,105]; they do not account for
preferential flow recharge. Preferential flow exists widely even in uniform soil [106]. Studies indicate
that preferential flow recharge can be significant (38% to 87% of the recharge) in the Ordos Basin [17,107].
The contribution of the preferential flow could have been masked by the great variability in recharge
estimates by the point-scale methods.

Our estimates are 20.0 mm year−1 greater than the mean net recharge obtained from the method
of Henry et al. [43] (Figure 4). As we stated earlier, the total recharge is the sum of net recharge and the
portion of the recharge that compensates for the discharge. However, the method of Henry et al. [43]
only accounts for the net recharge that elevates the groundwater storage (RS in Figure 2). In contrast,
our method not only considers the RS but also incorporates the recharge that compensates for the
discharge (RD in Figure 2).

4.3. Precipitation Dominated the Interannual Variability in Groundwater Recharge between 2002 and 2012

There is no obvious long-term trend in GR from 2002 to 2012, but the annual recharge varies greatly
(Figure 4). The interannual variability can partially be explained by the precipitation; there was a linear
relationship between annual GR rates and annual precipitation, with an R2 of 0.2 (Figure 5). However,
there was an obvious outlier (2004) in the linear relationship. Although the annual precipitation in 2004
(point A) was 15.7% lower than the long-term average annual rainfall, its annual GR rate was 66.5 mm
year−1, which was much higher than the 11-year average. The residual effect from the previous year’s
large precipitation may be the reason for the large GR in 2004, a low precipitation year.
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Therefore, the GR in 2004 is excluded, and the R2 between GR and precipitation is as high as
0.42 (p < 0.05), which indicates that in the Ordos Basin, precipitation, in most cases, regulates GR.
Many similar studies have also reported the dominance of GR by precipitation, with R2 > 0.7 [108–111].
The high R2 may be related to only temporal variability in our recharge data because we treated the
Ordos Basin as one unit in the recharge calculation. However, when spatial variability is also included,
the R2 can be much lower. For example, R2 < 0.3 was observed for recharge data synthesized from
around the globe and from Australia [5,7]. This is because other explanatory variables, such as soil
texture [112,113] and root depth [114], also contributed to the variability in the recharge.

4.4. Uncertainty of the Groundwater Recharge Estimate Based on GRACE Data Compared with Other Methods

In our uncertainty analysis, we assumed that recharge to precipitation ratios in the dry season
were smaller than those in the wet season. Recharges in semiarid and arid regions mainly occur during
periods of heavy rainfall, and thus exhibit a distinct seasonal pattern [96,97,115]. Groundwater is
recharged by seasonally high rainfall in the Ordos Basin [35]. However, precipitation is much lower in
the dry season [95]; thus, there is most likely a much smaller ratio of recharge to precipitation than in
the wet season. Therefore, the obtained uncertainty estimate for the GR is likely to be conservative.

The total error and CV are 16.0 mm year−1 and 33.1%, respectively (Equations (10) and (11)) for
the 11-year average GR. The CV values for the estimated water flux by CMB varied between 23 and
51% [17,52,116], whereas those based on historical tracer 3H were between 10% and 20% [10,117].
Thus, the uncertainty in the mean recharge estimate from GRACE data is acceptable, despite its
large footprint.

4.5. Limitation

There was a consistent decreasing trend in GWSA. However, the average decreasing rate was
6.0 mm year−1 from 2002 to 2016, which is much smaller relative to the mean annual amplitude of
GWSA (28.3 mm), and thus will likely not mask the seasonal rise in GWSA. In addition, the total GR
rates were estimated from the difference between the peak GWSA and the extrapolated recession at the
time of peak; thus, the declining trend does not affect the difference between SP and SL.

Ideally, GLDAS data should be validated at the regional scale. However, the validation requires
long-term, extensive ground truthing, which has been done in only a few regions [118]. An alternative,
as commonly practiced, is to use the average of multiple model outputs [30,33,36,39]. In our study, we
took the average of four GLDAS models as a representative SWSA. The peak times between SWSA and
TWSA matched well in most years, but differed in some years (on average, the difference was about 0.6
months). The “shifts” may reflect the poor timing of simulated soil-water storage changes as reported
by several studies [43,119–121]. These may arise from the shallow simulation depth and the inaccurate
vegetation and soil parameters for the GLDAS modelling region [43]. For more accurate estimation
of groundwater recharge, some sort of calibration is desirable, but this is rarely done because of the
scarcity of quality validation data. Despite the problem, Henry et al. [43] found the average annual net
recharge using the GRACE data-based WTF was very similar to the recharge estimated from historical
well observations [43]. This suggests the “shift” had a negligible influence on the estimated recharge,
but a quantitative evaluation of the influence is a subject of future research.

The strong spatial variability in tracer-derived GR is quite typical worldwide [4]. Because the
environmental tracer methods only yield long-term average GR rates at a point scale, we took the areal
average of all the point-scale recharge estimates from the environmental tracer method. Although
the timescales and spatial scales represented by the GRACE method and the environmental tracer
methods are quite different, the average of many point-scale estimates distributed over the Ordos
Basin using the environmental tracer method may be used to compare and constrain our GRACE
estimates. This methodology is also used by many others [122–124]. In additional, WTF-GRACE (our
method) and Henry et al. [43]’s method have the same data size and time scale (2002 to 2012). However,
the point-scale methods (CMB, 3H peak method, one-dimensional model) estimate GR at different time
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scales: the CMB method calculates the GR of the past decades to thousands of years [116]; the 3H peak
method estimates the average GR since the 1960s; the one-dimensional model outputs GR at any time
scale, but the outputs are subject to high uncertainty due to lack of calibration data. Thus, it is very
difficult to constrain the results of the three methods to the same number of years. However, there
is little change in the long-term average precipitation on the Loess Plateau in the past 60 years [95].
Therefore, the long-term GR estimated from different methods may be comparable.

5. Conclusions

In this study, the improved WTF method was used to estimate regional-scale GR based on TWSA
obtained from the GRACE satellites and SWSA inferred from GLDAS models. We tested this improved
method in the Ordos Basin on the Chinese Loess Plateau from 2002 to 2012 and compared the estimated
GR with that estimated by other widely used methods. The results show the following:

1. Annual recharge varies from 30.8 to 66.5 mm year−1 between 2002 and 2012, 42% of which can
be explained by annual precipitation variation. There was no obvious long-term trend in GR in
the period. This suggests that precipitation dominates the interannual variability of GR in the
Ordos Basin.

2. The estimated mean recharge (48.3 mm year−1) was 20.0 mm year−1 greater than the mean net
recharge obtained from the method of Henry et al. [43] and had no significant difference from the
reported point-scale estimates.

3. The estimated long-term recharge had a standard deviation of 16.0 mm year−1 and a CV of 33.1%,
which was, in most cases, comparable to or smaller than that of other methods.

The results indicate that this improved method has acceptable accuracy. Different from previous
methods, the improved method presented in this study can be used to estimate total GR at regional
scales, which may also be applicable to regions with monsoon, continental and Mediterranean climates
and where alternating wet-dry season cycles occur around the world. The improved method is
projected to provide rational GR estimates at regional scales for preferable management and budgeting
of groundwater resources.
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Abbreviations

Cl Chloride
CLM Community Land Model
CMB Chloride Mass Balance method
CSR Center for Space Research
GLDAS Global Land Data Assimilation System
GRACE Gravity Recovery and Climate Experiment
GR groundwater recharge
GWSA Groundwater Storage Anomaly
3H Tritium
Mascon Mass concentration
NASA National Aeronautics and Space Administration

NOAH
National Centers for Environmental Prediction/Oregon State
University/Air Force/Hydrologic Research Lab model

Slepian solutions the Slepian localization of spherical harmonics solutions
SWSA Soil Water Storage Anomaly
TWSA Total Water Storage Anomaly
VIC Variable Infiltration Capacity
WTF Groundwater Table Fluctuation
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