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Abstract: Land surface temperature (LST) is one of the key parameters in hydrology, meteorology,
and the surface energy balance. The National Oceanic and Atmospheric Administration (NOAA)
Joint Polar Satellite System (JPSS) Enterprise algorithm is adapted to Landsat-8 data to obtain the
estimate of LST. The coefficients of the Enterprise algorithm were obtained by linear regression using
the analog data produced by comprehensive radiative transfer modeling. The performance of the
Enterprise algorithm was first tested by simulation data and then validated by ground measurements.
In addition, the accuracy of the Enterprise algorithm was compared to the generalized split-window
algorithm and the split-window algorithm of Sobrino et al. (1996). The validation results indicate the
Enterprise algorithm has a comparable accuracy to the other two split-window algorithms. The biases
(root mean square errors) of the Enterprise algorithm were 1.38 (3.22), 1.01 (2.32), 1.99 (3.49), 2.53
(3.46), and −0.15 K (1.11 K) at the SURFRAD, HiWATER_A, HiWATER_B, HiWATER_C sites and
BanGe site, respectively, whereas those values were 1.39 (3.20), 1.0 (2.30), 1.93 (3.48), 2.53 (3.35),
and −0.35 K (1.16 K) for the generalized split-window algorithm, 1.45 (3.39), 1.08 (2.41), 2.16 (3.67),
2.52 (3.58), and 0.02 K (1.12 K) for the split-window algorithm of Sobrino, respectively. This study
provides an alternative method to estimate LST from Landsat-8 data.
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1. Introduction

Land surface temperature (LST) is one of the key parameters in land–surface physical processes
on regional and global scales and has been widely applied to hydrology, meteorology, and the surface
energy balance [1–3]. Remote sensing is a unique way of obtaining the LST at regional and global
scales. Various LST products produced from different satellite data have been widely used in the urban
ecological environment, water management, and natural disasters [4–7].

Landsat 8 (formerly the Landsat Data Continuity Mission, LDCM) was launched in 2013.
Combined with other Landsat series, it provides continuity with the more than 40-year-long Landsat
land imaging data set [8]. The thermal infrared sensor (TIRS) with two thermal infrared channels
was added to the Landsat 8 payload to support the detection of the urban heat island, volcanoes,
and forest fires. Researchers have developed many algorithms to retrieve the LST from Landsat 8
data, for example, the single-channel algorithm [9–13], the split-window algorithm [12,14,15], and the
temperature and emissivity separation method [16]. Meanwhile, some verification work is also
underway. According to a study by Meng et al. [9], the average bias and root mean square error
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(RMSE) of the estimated LST derived by the radiative transfer equation (RTE) method are 0.09 K and
2.20 K for band 10, respectively. The study by Cook et al. [17] indicated that the RTE-estimated LST
under cloud-free conditions has a bias (standard deviation) of−0.56 K (0.76 K) for band 10 and−2.16 K
(1.64 K) for band 11. The study by Parastatidis et al. [18] indicated the bias and RMSE were 0.1 K and
1.31 K, respectively, for Landsat 8 LST retrieved using the single-channel algorithm (SCA) proposed by
Jiménez-Muñoz et al. [19]. Wang et al. [20] found that the RMSEs lie between 1.7 K and 4.7 K and 3.3 K
and 8.9 K for LST retrieved by the RTE and SCA from band 10, respectively.

Unfortunately, stray light from far out-of-field has affected the absolute calibration of the Landsat
8 TIRS since its launch. Barsi et al. [21] found a large error in two TIRS bands, −2.1 K (−4.4 K) at 300 K
in band 10 (band 11). Vicarious calibration of Landsat 8 TIRS bands by Sobrino et al. [22] indicated that
a bias (RMSE) of 0.01 (0.12) and −0.16 (0.25) W/

(
m2·sr·µm

)
existed in bands 10 and 11, respectively.

Li et al. [23] used the Infrared Atmospheric Sounding Interferometer (IASI) /Metop-B hyperspectral
channels to intercalibrate against two Landsat 8 TIRS bands, and the intercalibration biases of the
brightness temperature are −0.54 ± 1.21 K and −1.52 ± 1.35 K for bands 10 and 11, respectively.
Much effort has been taken to develop an algorithm to remove this stray light. For example,
Montanaro et al. [24] determined the cause of stray light artifacts in 2014, and Gerace et al. [25]
developed an algorithm that was implemented into the processing system in 2017. Through stray light
correction, errors were reduced from 2.1 K to 0.3 K at 300 K for band 10 and from 4.4 K to 0.19 K for
band 11 (https://landsat.usgs.gov/april-25-2017-tirs-stray-light-correction-implemented-collection-1-
processing). From then on, scholars have carried out some work on the verification of those developed
algorithms using corrected data. According to the validation of Duan et al. [26], the biases (RMSEs)
of RTE-derived LST are approximately −0.2 (1.2) and −0.5 K (1.0 K) at the 1 km pixel scale over
sand and grassland, respectively. García-Santos et al. [27] have compared the accuracy of RTE, SCA,
and the split-window algorithm proposed by Jiménez-Muñoz et al. [12] (JMS) and Du et al. [14] (Du).
The results indicated the biases (RMSEs) of LST are −1.4 (2.0) and 0.4 K (1.6 K) for Du and JMS,
respectively. The estimated LSTs have a bias and RMSE of −0.1 (2.0) and 2.3 K (3.6 K) when the RTE
method was applied to bands 10 and 11, respectively. When SCA applied to TIRS band 10 proposed by
Jiménez-Muñoz et al. [12] and Wang et al. [13], the biases and RMSEs are 0.8 (0.7) and 2.2 K (2.3 K).

Unlike the single-channel algorithm, the split-window algorithm does not require high-precision
atmospheric profiles [28], and it has been demonstrated that using the split-window algorithm for
atmospheric correction can minimize errors in LST retrieval [15,29]. Moreover, as pointed out by
Jiménez-Muñoz et al. [12], the split-window algorithm performs well over global conditions and with
better results than the single-channel algorithm in theory. Therefore, the split-window algorithm was
selected in this paper. Although some split-window algorithms have been proposed [12,14,15], which
algorithm is more suitable for Landsat 8 LST estimates remains unknown. Therefore, there are still two
problems that need to be resolved. First, the validations were almost always done though simulated
datasets, lacking validation with ground-measured data [12,14,15]. Second, the general accuracy of
split-window algorithms in real applications remains unclear. Therefore, comprehensive investigations
are needed to validate the accuracy of Landsat 8 LST derived from the split-window algorithm.

Recently, the National Oceanic and Atmospheric Administration (NOAA) Joint Polar Satellite
System (JPSS) Land Environmental Data Records (EDR) team is developing an enterprise LST algorithm
that will be used for both the JPSS and Geostationary Operational Environmental Satellite-R (GOES-R)
satellite missions [30,31]. This provides an alternative method to retrieve land surface temperature
from Landsat 8 TIRS data. Meanwhile, more field campaigns have been conducted to collect the flux
measurements, which makes the comprehensive validation of LST possible. This study aims to adapt
the enterprise algorithm to the estimate of Landsat 8 LST and evaluate its performance use in situ
measurements. The structure of this paper is organized as follows. We will describe the enterprise
algorithm, land surface emissivity estimation, and ground LST estimation in Section 2. The results and
analysis are presented in Section 3. The discussion and conclusions are presented in Sections 4 and 5.

https://landsat.usgs.gov/april-25-2017-tirs-stray-light-correction-implemented-collection-1-processing
https://landsat.usgs.gov/april-25-2017-tirs-stray-light-correction-implemented-collection-1-processing
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2. Methods

2.1. The NOAA JPSS Enterprise Algorithm

According to the split-window algorithm, two TIR channel measured radiance differences are
used to determine the radiance attenuation due to atmospheric absorption and further, land surface
temperatures. As described in the enterprise algorithm, the theoretical basis document for Visible
Infrared Imaging Radiometer Suite (VIIRS) land surface temperature production, the enterprise
algorithm can be expressed as [30,31]:

LST = C0 + C1T10 + C2(T10 − T11) + C3ε + C4ε(T10 − T11) + C5∆ε (1)

where T10 and T11 are the Landsat 8 brightness temperatures of the channels 10 and 11, respectively;
ε and ∆ε are the mean and difference of the channel emissivity, respectively. ε = (ε10 + ε11)/2,
∆ε = ε10 − ε11. Ci (i = 0~5) are the algorithm coefficients to be determined from simulated data.
Provided with land surface emissivity (LSE) and two brightness temperatures, the LST calculation is
straightforward. To evaluate the performance of the enterprise algorithm, the generalized split-window
algorithm (hereafter referred to as Wan) designed by Wan and Dozier [1] and the split-window designed
by Sobrino et al. [32] and developed by Jiménez-Muñoz et al. [12] (hereafter referred to as Sobrino),
were selected for comparison. Their expressions are list below,

LST = C0 + (C1 + C2
1− ε

ε
+ C3

∆ε

ε2 )
T10 + T11

2
+ (C4 + C5

1− ε

ε
+ C6

∆ε

ε2 )
T10 − T11

2
+ C7(T10 − T11)

2 (2)

LST = T10 + C0 + C1(T10 − T11) + C2(T10 − T11)
2 + (C3 + C4w)(1− ε) + (C5 + C6w)∆ε (3)

2.2. Simulation Dataset

To obtain the coefficients, the Global Atmospheric Profiles from Reanalysis Information
(GAPRI) [33] are used as the input to the moderate spectral resolution atmospheric transmittance
model version 5 (MODTRAN 5.0) to generate the brightness temperature of Landsat 8 TIR channels.
According to the research of Jiménez-Muñoz et al. [12], 4714 GAPRI atmospheric profiles over land
were choose for simulation. The distribution of the total water vapor content (TWV) and the air
temperature at the first layer of atmospheric profiles (T0) are shown in Figure 1. The water vapor
is evenly distributed in the range of 0–5 cm, which indicates that the atmospheric profiles used are
highly representative. For a realistic simulation using limited atmospheric profiles, we followed
Jiménez-Muñoz et al. [12,34] and set the LSTs as: T0 − 5, T0, T0 + 5, T0 + 10, T0 + 15, and T0 + 20.
Moreover, 110 emissivity spectra from the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) [35] and Moderate Resolution Imaging Spectroradiometer (MODIS) spectral
library [36] were also selected. Among them, there are 19 vegetation types, 39 soil types, 5 snow/water
types, 35 rock types, and 12 manmade material types. In total, 3, 111, and 240 different groups
of simulated data are obtained (4714 profiles × 110 emissivity spectra × 6 temperatures). Finally,
the coefficients Ci (I = 0–7) in Equations (1)–(3) were determined by a least squares regression.
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selected Global Atmospheric Profiles from Reanalysis Information (GAPRI) atmospheric profiles.
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2.3. Land Surface Emissivity Estimation

The empirical relationships between thermal infrared parameters and optical parameters were
established long before. For example, Menenti et al. [37] reported a linear relationship between
field-measured surface temperature and reflectance over nonhomogeneous surface types. Van De Griend
and Owe [38] found that emissivity has a good logarithmic relationship with the normalized difference
vegetation index (NDVI). Cheng et al. [39] proposed the method of predicting broadband emissivity of
non-vegetated surfaces with spectral albedos. Recently, the study of Cheng et al. [40] indicated that
there is a physical linkage between land surface emissive and reflective variables over non-vegetated
surfaces, which provides a theoretical perspective on estimating land surface emissivity for sensors
with only one or two thermal infrared channels. Thus, the improved NDVI-based threshold method
proposed by Tang et al. [41] was selected to estimate the Landsat 8 LSE of the non-vegetated area.
According to the research of Emami et al. [42], the performance of this linear relationship is better
than the constant assumption or a linear function fitting the red reflectance adopted by the NDVI
threshold. For vegetated area, the vegetation cover method of Valor and Caselles [43] was selected.
The expression for calculating LSE is provided as below:

εi =

 a1i +
7
∑

j=2
ajiρj NDVI < NDVIs

εviPv + εsi(1− Pv) + 4dεPv(1− Pv) NDVIs ≤ NDVI
(4)

where εi is the LSE in band 10 or band 11; εvi and εsi are the vegetation component emissivity and
background component emissivity, respectively; ρj is the surface reflectance of the Operational Land
Imager (OLI)band j; aji is coefficient (j = 1~7); and Pv is the fractional vegetation cover, which can be
expressed by [44]:

Pv =

[
NDVI − NDVIs

NDVIv − NDVIs

]2
(5)

where NDVIv and NDVIs are the NDVI for the bare soil pixels and fully vegetated pixels, respectively.
To maintain the spatial consistency, NDVIs = 0.2 and NDVIv = 0.86 are assigned [45,46]. Moreover,
dε represents the emissivity increment from the cavity effect caused by the multiple scattering in the
pixel, and can be expressed by [47]:

dε =

{
εvi(−0.435εsi+0.4343)

0.985 εvi 6= 0.985
−0.435εsi + 0.4343 εvi = 0.985

(6)

2.4. Ground LST Estimation

To test the accuracy of the enterprise algorithm, a total of twenty four in situ sites of Surface
Radiation Budget Monitoring (SURFRAD) [48,49] in the USA or Heihe Watershed Allied Telemetry
Experimental Research (HiWATER) [50,51] in China were chosen to validate the estimated LST.
Those sites contain seven SURFRAD sites, four sites in HiWATER downstream (hereafter refered
to as HiWATER_A), seven sites in HiWATER midstream, and one Da Sha Long (DSL) site (hereafter
refered to as HiWATER_B), four sites in HiWATER upstream (hereafter referred to as HiWATER_C).
Ground-measurements from SURFRAD and HiWATER have been widely used to validate LST
products [52–54]. In addition, one in situ site (BanGe) in the Third Tibetan Plateau Atmospheric
Scientific Experiment (TIPEX-III) [55] was selected for validation. TIPEX-III has eleven in situ sites,
we only obtained matched Landsat 8 data over the GanGe site. The geographic locations of the
twenty-four in situ sites are presented in Figure 2. Table 1 shows the in-situ sites’ information
(e.g., latitude, longitude, land cover type) and the corresponding path/row of Landsat 8.
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Table 1. In-situ sites’ information and the corresponding path/row of Landsat 8.

Site Name Latitude Longitude Land Cover Period Path/Row

SURFRAD

BND Bondville 40.0519 −88.3731 cropland 2013~2018 23/32
GWN Goodwin Creek 34.2547 −89.8729 grassland 2013~2018 23/36
PSU Penn. State 40.7201 −77.9309 cropland 2013~2018 16/32
SXF Sioux Falls 43.7343 −96.6233 grassland 2013~2018 29/30
FPK Fort Peck 48.3079 −105.1018 grassland 2013~2018 35/26
TBL Table Mountain 40.1256 −105.2378 sparse grassland 2013~2018 33/32
DRA Desert Rock 36.6232 −116.0196 arid shrubland 2013~2018 40/35

HiWATE_A

HYL Hu Yang Lin 41.9932 101.1239 populus forest 2013~2015

133/031
LD Luo Di 41.9993 101.1326 barren-land 2013~2015
NT Nong Tian 42.0048 101.1338 cropland 2013~2015

SDQ Si Dao Qiao 42.0012 101.1374 tamarix 2013~2017

HiWATER_B

GB Ge Bi 38.9150 100.3042 gobi desert 2013~2015

133/033

SSW Shen Sha Wo 38.7892 100.4933 sand dune 2013~2015
JCHM Ji Chang Huang Mo 38.7781 100.6967 desert steppe 2013~2015

SD Shi Di 38.9751 100.4464 reed wetland 2013~2017
CJZ Chao Ji Zhan 38.8555 100.3722 corn 2013~2017
HZZ HuaZhaiZi 38.7659 100.3201 desert steppe 2013~2017
YG YaoGan 38.8270 100.4756 artificial grass 2015~2017
DSL Da Sha Long 38.8399 98.9406 marsh 2013~2017 134/033

HiWATER_C

ArouCJZ Arou Chao Ji Zhan 38.0473 100.4643 alpine meadow 2013~2017

133/034
EB Er Bao 37.9492 100.9151 alpine meadow 2013~2016

HZS Huang Zang Si 38.2254 100.1918 wheat 2013~2015
HCG Huang Cao Gou 38.0033 100.7312 alpine meadow 2013~2015

TIPEX-III BG BanGe 31.4200 90.0300 alpine meadow 20140712~20140903 138/038
139/038

SURFRAD: Surface Radiation Budget Monitoring sites; HiWATER_A: Heihe Watershed Allied Telemetry
Experimental Research (HiWATER) downstream sites; HiWATER_B: HiWATER midstream sites and Da Sha Long
(DSL) site; HiWATER_C: HiWATER upstream sites; TIPEX-III: BanGe site in the Third Tibetan Plateau Atmospheric
Scientific Experiment.

For the Ji Chang Huang Mo (JCHM) site, the radiation temperatures measured by the SI-111
radiometer were used to calculate the in-situ LSTs, and the formula is given by Equation (6). The effects
of emissivity and the downward sky irradiance were corrected.

B(Ts) =
[

B(Tr)− (1− ε)Lsky

]
/ε (7)
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where Ts is the LST, Tr is the radiation temperature, B is the plank function, ε is the emissivity of SI-111
channel, Lsky is the downwelling atmospheric radiance.

For other sites, the LST was estimated from the upwelling and downwelling longwave radiation
using the following equation:

Ts =

[
F↑ − (1− εb)F↓

εbσ

]0.25

(8)

where Ts is the LST, F↑ is the measured surface upwelling longwave radiation, εb is the surface
broadband emissivity (BBE), σ is the Stefan–Boltzmann’s constant (5.67 × 10−8 Wm−2K−4), and F↓ is
the measured atmospheric downwelling longwave radiation. The BBE is estimated from the ASTER
GED product using the following linear equation according to Cheng et al. [56]:

εb = 0.197 + 0.025ε10 + 0.057ε11 + 0.237ε12 + 0.333ε13 + 0.146ε14 (9)

where εb is the surface broadband emissivity, and ε10–ε14 are the ASTER narrowband emissivities of
five channels.

3. Results and Analyses

3.1. Algorithm Coefficients

As described in Section 2.2, GAPRI atmospheric profiles were used to derive the coefficients of the
algorithms, whereas the Cloudless Land Atmosphere Radiosounding (CLAR) [57] with 382 profiles,
Thermodynamic Initial Guess Retrieval (TIGR) [58] with 946 profiles, and 2762 SeeBor V5.0 global
profiles (hereafter SeeBor) [59] were used for validation purposes. All the profiles are restricted to land
under clear sky conditions [60] based on the method of Galve et al. [57]. To improve the inversion
accuracy of the land surface temperature, the coefficients of the enterprise algorithm were fitted
based on the water vapor content, as shown in Table 2. The water vapor content was divided into five
subranges: 0.0–2.5, 2.0–3.5, 3.0–4.5, 4.0–5.5, and 5.0–7.0 cm, with an overlap of 0.5 cm. We derived the
coefficients using the samples in each subrange. In addition, the coefficients were also fitted for the entire
water vapor content. We also derived the coefficients of Wan and Sobrino with the same method and data.

Table 2. Coefficients and uncertainty of the Enterprise algorithm, Wan, and Sobrino under different
water vapor content subranges.

TWV(cm) Method C0 C1 C2 C3 C4 C5 C6 C7 RMSE(K)

0.0–2.5
Wan −1.56 1.007 0.162 −0.288 3.179 6.864 −11.209 0.165 0.44

Enterprise algorithm 54.95 1.01 1.557 −57.805 0.147 −103.52 - - 0.481
Sobrino −0.39 2.116 −0.045 64.386 −3.7 −147.522 21.065 - 0.431

2.0–3.5
Wan −0.099 0.998 0.148 −0.252 5.236 5.488 −5.455 0.02 0.57

Enterprise algorithm 50.035 1.006 5.377 −52.801 −3.16 −87.906 - - 0.589
Sobrino −1.631 2.681 -0.054 67.827 −3.213 -204.953 41.441 - 0.503

3.0–4.5
Wan 9.622 0.961 0.121 −0.175 6.611 5.747 −9.262 0 0.709

Enterprise algorithm 45.395 0.968 8.09 −37.955 −5.312 −70.798 - - 0.723
Sobrino −2.767 3.171 −0.05 51.397 −0.151 −210.415 37.574 - 0.691

4.0–5.5
Wan 15.209 0.937 0.092 −0.104 8.228 8.091 −13.697 −0.064 0.688

Enterprise algorithm 32.395 0.942 12.365 −17.99 −9.291 −58.571 - - 0.716
Sobrino −4.399 3.969 -0.113 34.649 2.335 −200.753 32.846 - 0.728

5.0–7.0
Wan 7.239 0.962 0.065 −0.054 7.942 8.838 −15.162 −0.001 0.71

Enterprise algorithm 17.191 0.968 11.816 −11.396 −8.402 −47.408 - - 0.722
Sobrino −5.096 3.932 −0.044 −4.701 8.634 −219.875 33.98 - 0.743

0.0–7.0
Wan −2.64 1.012 0.142 −0.201 2.844 −0.569 −7.6 0.263 0.844

Enterprise algorithm 67.297 0.985 −6.916 −63.855 9.548 −90.919 - - 1.075
Sobrino −0.717 1.988 0.121 70.148 −7.006 −143.246 19.247 - 0.72

The RMSE of the estimated LST derived from the Enterprise algorithm were all between 0.48 and
0.72 K under five water vapor subranges, whereas those values were between 0.44 (0.43) and 0.71 K
(0.74K) for Wan (Sobrino). Under full water vapor range, RMSEs were 1.08, 0.84, and 0.72 K for the
Enterprise algorithm, Wan, and Sobrino, respectively. The uncertainty of the algorithm of Sobrino is



Remote Sens. 2019, 11, 155 7 of 18

slightly lower than that of Wan and the enterprise algorithm in low water vapor content subrange.
For high water vapor content subrange, the uncertainty of the algorithm of Wan is slightly lower than
that of the enterprise algorithm and Sobrino.

The bias and RMSE of the Enterprise algorithm, Wan, and Sobrino tested by three independent
simulated datasets are shown in Table 3. When tested by the CLAR atmospheric profile, the biases
(RMSEs) of the Enterprise algorithm were between −0.08 (0.50) and 0.14 K (1.42 K). For Wan and
Sobrino, the biases (RMSEs) were between −0.31(0.43) and 0.19 K (1.01 K). When tested by TIGR
atmospheric profile, the biases (RMSEs) of the Enterprise algorithm were between −0.16 (0.42) and
0.08 K (1.20 K). For Wan and Sobrino, the biases (RMSEs) were between −0.26 (0.36) and 0.14 K
(1.21 K). Regarding the SeeBor atmospheric profile, the biases (RMSEs) of Enterprise algorithm were
between −0.01 (0.52) and 0.30 K (1.14 K), whereas the biases (RMSEs) were between −0.09 (0.43)
and 0.43 K (1.13 K) for Wan, and 0.01 (0.58) and 0.33 K (1.14 K) for Sobrino. According to the test
results, we are convinced that the coefficients are accurate and can be used to retrieve LSTs using the
split-window algorithms.

Table 3. The bias and RMSE of three split-window algorithms when tested by three independent
atmospheric profiles. W1–W6 is the atmospheric water vapor range (W1 = 0.0–2.5 cm; W2 = 2.0–3.5 cm;
W3 = 3.0–4.5 cm; W4 = 4.0–5.5 cm; W5 = 5.0–7.0 cm, and W6 = 0.0–7.0 cm).

Data Method W1 W2 W3 W4 W5 W6

bias(K)

CLAR
WAN 0.057 −0.008 −0.029 0.107 −0.307 −0.022

Enterprise algorithm 0.142 0.058 −0.017 −0.075 −0.051 −0.031
Sobrino 0.193 0.065 −0.040 −0.167 −0.249 −0.140

TIGR
WAN −0.121 −0.035 0.034 −0.04 −0.180 −0.085

Enterprise algorithm −0.055 0.028 0.049 −0.158 0.078 −0.155
Sobrino 0.138 0.032 0.013 −0.261 −0.106 0.058

SeeBor
WAN 0.129 0.164 0.284 0.430 −0.085 0.150

Enterprise algorithm 0.197 0.230 0.299 0.263 0.174 −0.005
Sobrino 0.228 0.283 0.330 0.236 0.006 0.177

RMSE(K)

CLAR
WAN 0.430 0.527 0.651 0.739 0.920 1.007

Enterprise algorithm 0.498 0.544 0.662 0.742 0.874 1.417
Sobrino 0.540 0.479 0.607 0.762 0.922 1.022

TIGR
WAN 0.357 0.608 0.735 0.945 1.205 0.724

Enterprise algorithm 0.420 0.619 0.757 0.930 1.202 0.923
Sobrino 0.594 0.513 0.762 0.997 1.175 0.810

SeeBor
WAN 0.429 0.621 0.753 0.925 1.132 0.750

Enterprise algorithm 0.523 0.659 0.765 0.866 1.143 1.038
Sobrino 0.578 0.628 0.762 0.863 1.139 0.779

CLAR: Cloudless Land Atmosphere Radiosounding; TIGR: Thermodynamic Initial Guess Retrieval; SeeBor: SeeBor
V5.0 global profiles.

3.2. Sensitivity Analysis

As noted by Wan and Dozier [1], the sensor noise, land surface emissivity, and water vapor
content are three primary uncertainties that cause errors in LST estimates using the split-window
algorithm. Therefore, we evaluated the algorithms’ sensitivity to the above three variables.

3.2.1. Sensor Noise

The effect of sensor noise on LST uncertainty δTS can be expressed by the following equation:

δTS−Yu =
√
((C1 + C2 + C4ε)δBT10)

2 + ((−C2 − C4ε)δBT11)
2

δTS−wan =

√
(0.5(C1 + C2

1−ε
ε + C3

4ε
ε2 )δBT)

2
+ ((0.5(C4 + C5

1−ε
ε + C6

4ε
ε2 ) + 2C74 BT)δ(4BT))

2

δTS−Sobrino =
√
((1 + C1 + 2C24 BT)δBT10)

2 + ((−C1 − 2C24 BT)δBT11)
2

(10)
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where δBT10 and δBT11 are the noise-equivalent-change-in-temperature (NE∆T). According to the
description of Irons et al. [61], the NE∆T of the TIRS instrument onboard the Landsat-8 satellite was
designed as 0.4 K at 300 K for band 10 and band 11; therefore, δBT10 and δBT11 are set as 0.4 in this study.

δBT = δ(4BT) =
√

δBT2
10
+ δBT2

11
[62]. ε is the mean emissivity of band 10 and band 11. The mean

emissivity was set from 0.9 to 0.99 with a step of 0.01. Ci are the algorithm coefficients in Table 2.
The LST uncertainty attributed to the sensor noise at six water vapor content subranges (W1–W6)

is shown in Figure 3. The results indicate that three split-window algorithms have similar LST
uncertainty under various water vapor content subranges. The LST uncertainty of the Enterprise
algorithm and Wan decreases with the increase of average emissivity under five water vapor content
subranges (W1–W5), but LST uncertainty of Sobrino remain unchanged. For example, LST uncertainty
incurred by 0.4K NE∆T changed from 1.74 K (1.70 K) to 1.58 K(1.55 K) for the Enterprise algorithm
(Wan) and 1.71 K for Sobrino when the water vapor content was 2.0–3.5 cm. However, under full water
vapor content, LST uncertainty increased with the increase of average emissivity, 0.4 K NE∆T can
cause LST uncertainty ranging from 1.26 K(1.34 K) to 1.74 K(1.36 K) for the Enterprise algorithm (Wan)
and 1.69 K for Sobrino.
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Figure 3. Land surface temperature (LST) uncertainty attributed to the sensor noise at six water vapor
content subranges. The mean emissivity was set from 0.9 to 0.99 with a step of 0.01. W1–W6 are the
atmospheric water vapor range (W1 = 0.0–2.5 cm; W2 = 2.0–3.5 cm; W3 = 3.0–4.5 cm; W4 = 4.0–5.5 cm;
W5 = 5.0–7.0 cm, and W6 = 0.0–7.0 cm).

3.2.2. Emissivity Uncertainty

The LST uncertainty attributed to the emissivity uncertainty δTε can be expressed by the following
equation:

δTε−yu =
√
((C3 + C4(T10 − T11))δε)2 + (C5δ(∆ε))2

δTε−wan =

√√√√ ((−(C2
T10+T11

2 + C5
T10−T11

2 )/ε2 − 2(C3
T10+T11

2 + C6
T10−T11

2 )∆ε/ε3)δε)
2

+((C3
T10+T11

2 + C6
T10−T11

2 )/ε2 δ(∆ε))
2

δTε−sobrino =
√
(−(C3 + C4w)δε)2 + ((C5 + C6w)δ(∆ε))2

(11)

where δε and δ(∆ε) are the mean emissivity uncertainty and the uncertainty of channel emissivity
difference, respectively. Assuming the emissivity uncertainties in each band are the same, i.e.,
∆ε = ∆ε10 = ∆ε11, the maximum emissivity difference uncertainty is δ(∆ε) = |δε10|+ |δε11| = 2δε.
Although the uncertainty of surface emissivity is often set to 0.01 [12,34], as indicated by
Sobrino et al. [63], it is worthwhile to analyze other reference uncertainties in surface emissivity.
In this case, δε was set from 0 to 0.03 with a step of 0.005. Ci are the algorithm coefficients in Table 2.

Figure 4 shows the LST uncertainty attributed to the emissivity uncertainty. The results indicate
that LST uncertainty of three split-window algorithms increases with the emissivity uncertainty, but
the increase ratio slows down as the water vapor content increases. The LST uncertainty of Sobrino is
slightly higher than that of the Wan and Enterprise algorithms when the water vapor content subrange



Remote Sens. 2019, 11, 155 9 of 18

was 0.0–2.5 cm, and LST uncertainty of the Enterprise algorithm was slightly higher than that of
Sobrino and Wan when water vapor content subrange was 4.0–5.5 cm, 5.0–10.0 cm, and 0.0–10.0 cm.
For example, an emissivity uncertainty of 0.01 can cause LST uncertainty of 2.5 K for Sobrino, 2.18 K
for Wan, and 2.15 K for the Enterprise algorithm when the water vapor range was 0.0–2.5 cm; the LST
uncertainty ranging from 0.99 to 1.22 K for the Enterprise algorithm, 0.72 to 1.02 K for Wan, and 0.92
to 1.01 K for Sobrino when water vapor content was larger than 4.0 cm, respectively. This result also
indicates that LST uncertainty of split-window algorithm is sensitive to the emissivity uncertainty
in dry atmospheric conditions. In other words, the change of the land surface in dry atmospheric
conditions could introduce a large error in the LST retrieval.
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Figure 4. LST uncertainty attributed to the emissivity uncertainty at six water vapor content subranges.
The mean emissivity was set as 0.96. The emissivity uncertainty was set from 0 to 0.03 with a
step of 0.005. W1–W6 are the atmospheric water vapor range (W1 = 0.0–2.5 cm; W2 = 2.0–3.5 cm;
W3 = 3.0–4.5 cm; W4 = 4.0–5.5 cm; W5 = 5.0–7.0 cm, and W6 = 0.0–7.0 cm).

3.2.3. Water Vapor Content

The LST uncertainty attributed to the water vapor content was primarily caused by incorrect
selection of the TWV subrange. Assuming the error of TWV is 0.5 cm [46,64], the LST at a certain
water vapor subrange can be retrieved using coefficients obtained from adjacent water subranges.
The RMSEs of LST retrieval due to using coefficients of the adjacent TWV subrange are shown in
Table 4. As shown in Table 4, the incorrect selection of the TWV subrange led to a significant increase
in LST retrieval. For example, if TWV is equal to 2.8 cm, which belongs to a subrange of 2.0–3.5 cm,
the RMSE of Wan, Sobrino, and the Enterprise algorithm are 0.570, 0.503, and 0.589 K. When coefficients
in a subrange of 0.0–2.5 cm are used, the RMSE increases to 0.891, 0.795, and 1.057 K; when using
coefficients in a subrange of 3.0–4.5 cm, the RMSE becomes 1.232, 0.851, and 1.207 K. It is worth noting
that mis-classification of TWV led to a larger LST uncertainty in dry atmospheric conditions than in
wet atmospheric conditions, e.g., in the previous example, the RMSE increased by 79.5% and 104.9%
for the Enterprise algorithm. When TWV belongs to a subrange of 0.0–2.5 cm and the coefficients of a
subrange of 2.0–3.5 cm were improperly used, the RMSE increased by 223.2%, 78.9%, and 186.3% for
Wan, Sobrino, and the Enterprise algorithm.
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Table 4. RMSEs of LST retrieval due to incorrectly using of coefficients of the adjacent total water vapor
content (TWV) subrange.

True TWV
Subrange (cm) Method

Used TWV Subrange (cm)
0.0–2.5 2.0–3.5 3.0–4.5 4.0–5.5 5.5–7.0

0.0–2.5
Wan 0.440 K 1.422 K - - -

Sobrino 0.431 K 0.771 K - - -
Enterprise algorithm 0.481 K 1.377 K - - -

2.0–3.5
Wan 0.891 K 0.570 K 1.232 K - -

Sobrino 0.795 K 0.503 K 0.851 K - -
Enterprise algorithm 1.057 K 0.589 K 1.207 K - -

3.0–4.5
Wan - 1.104 K 0.709 K 1.062 K -

Sobrino - 1.053 K 0.691 K 0.930 K -
Enterprise algorithm - 1.121 K 0.723 K 1.063 K -

4.0–5.5
Wan - - 0.938 K 0.688 K 1.033 K

Sobrino - - 0.900 K 0.728 K 0.987 K
Enterprise algorithm - - 0.944 K 0.716 K 0.980 K

5.5–7.0
Wan - - - 1.014 K 0.710 K

Sobrino - - - 1.017 K 0.743 K
Enterprise algorithm - - - 0.960 K 0.722 K

3.2.4. Total Error

According to the research of [34,62], the total LST uncertainty e(LST) can be calculated by:

e(LST) =
√

δT2
s + δT2

ε + δT2
w + δT2

alg (12)

where δTalg is the algorithm uncertainty, δTS, δTε and δTw are the LST uncertainty attributed to the
sensor noise, emissivity uncertainty, and water vapor content uncertainty, respectively. Assuming the
land surface temperature is 300 K, the mean emissivity is 0.96 and total water vapor equals to 1.5 cm.
Given an emissivity error equal to 0.01 and NE∆T equals to 0.4 K, the total LST uncertainty retrieval
using Equation (12) is 2.59, 2.62, and 2.93 K for the Enterprise algorithm, Wan, and Sobrino when
using the correct coefficients in a subrange of 0.0–2.5 cm. When the coefficients in subrange of 2.0–3.5
cm was used, the total LST uncertainties are 2.90, 2.95, and 3.00 K for the Enterprise algorithm, Wan,
and Sobrino. The results show that if the emissivity error and sensor noise are known, the TWV error
has little effect on the total LST uncertainty. In other words, sensor noise and emissivity error are the
main error sources in the split-window algorithm, which is consistent with the result of Chen et al. [28]
and Sobrino et al. [65].

3.3. Validate with the In Situ LST

The coefficients of the split-window algorithms are selected based on the water vapor content
calculated from the Modern-Era Retrospective Analysis for Research and Applications, Version 2
(MERRA-2) reanalysis product. The cloud mask is calculated from the quality assessment (QA)
band of Landsat 8 Level-2 surface reflectance data. Land surface emissivity is calculated using the
method described in Section 2.3. The retrieved Landsat LSTs are compared with the ground-measured
LSTs. Figure 5 shows the scatterplot of ground-measured LSTs and retrieved LSTs. The LSTs are
overestimated at SURFRAD and HiWATER sites. At the SURFRAD sites, the biases (RMSEs) of the
LSTs retrieved by the Enterprise algorithm, Wan, and Sobrino are 1.38 (3.22), 1.39 (3.20), and 1.45 K
(3.39 K), respectively. At the HiWATER_A sites, three split-window algorithms have similar accuracy
and uncertainty, the biases and RMSEs are about 1.0 K and 2.3 K. Regarding the HiWATER_B sites,
the Enterprise algorithm and Wan have similar performance, with a bias (RMSE) of 0.2 K lower than
that of Sobrino. For the HiWATER_C sites, Wan, the Enterprise algorithm and Sobrino have similar
bias and RMSE, the biases and RMSEs are 2.5 K and 3.4 K. The bias and RMSE of LST retrieved from
three split-window algorithms in BanGe site are shown in Table 5, which indicated that the accuracy
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and uncertainty of three split-window algorithms are similar in BanGe site. The biases are −0.15,
−0.35 and 0.02 K, whereas the RMSEs are 1.11, 1.16 and 1.12 K for the Enterprise algorithm, Wan and
Sobrino, respectively.
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Figure 5. Scatterplots between ground-measured and Landsat LST estimated by three split-window
algorithms. (a) the result of SURFRAD sites, (b) the result of HiWATER_A sites, (c) the result of
HiWATER_B sites, and (d) the result of HiWATER_C sites. Sob, Wan, and Yu denote the split-window
algorithm of Sobrino et al. [32], the general split-window algorithm, and the Enterprise algorithm.

Table 5. Biases and RMSEs of retrieved LST at the BanGe site.

Date In Situ (K) Enterprise Algorithm (K) Wan (K) Sobrino (K)

27 July 2014 300.29 300.30 300.10 300.38
12 August 2014 296.13 293.98 293.78 294.15
28 August 2014 295.73 296.05 295.83 296.26

18 July 2014 294.27 295.45 295.29 295.72
19 August 2014 298.8 298.70 298.47 298.82

BIAS(K) −0.15 −0.35 0.02
RMSE(K) 1.11 1.16 1.12

According to the validation results, we can conclude that the enterprise algorithm can achieve a
high precision in estimating LST, and have comparable accuracy with the generalized split-window
algorithm (Wan) and the algorithm of Sobrino (Sobrino).

For a more intuitive comparison, two days of Landsat-8 images containing less cloudiness
acquired on 2 May 2014 (path/row: 023/036) and 5 May 2014 (path/row: 133/031) were selected
to analyze the spatial distribution of retrieved LSTs. Images of LST differences, the corresponding
histograms of LST bias, and NDVI images are shown in Figure 6.
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In Figure 6a, 90.6% of the NDVI value are larger than 0.2. This area can be regarded as vegetated
area according to the research of references [45,46]. For the vegetation area, the average LSTs retrieved
from the Enterprise algorithm are slightly higher than those from Wan, and the average bias, RMSE,
and standard deviation (SD) are 0.09, 0.48, and 0.47 K, respectively. The average LSTs retrieved from
the Enterprise algorithm were slightly lower than those from Sobrino, and the average bias, RMSE,
and SD were −0.20, 0.33, and 0.26 K, respectively. For the non-vegetation area, 98.85% of the NDVI
values were between 0.019 and 0.117 (Figure 6e). The difference between the three split-window
algorithms were slightly lower than that in the vegetation area. The average bias was 0.05 K (−0.10 K)
and the RMSE was 0.15 K (0.18 K) for the Enterprise algorithm minus Wan (Sobrino). Although from
the legends in Figure 6f,g, there is a large deviation in the LST image, 99.77% of the biases ranged
from −0.63 K and 0.27 K. Moreover, the large biases were located in the pixels surrounded by clouds.
The result indicated that the enterprise algorithm could achieve a similar accuracy to the generalized
split-window algorithm (Wan) and the split-window algorithm of Sobrino et al. [32] over the vegetation
and non-vegetation areas.

4. Discussion

In this section, we compare the enterprise algorithm with the results of other studies. For example,
Zhang et al. [66] validated Landsat 8 LSTs retrieved from a single-channel algorithm proposed by
Jiménez-Muñoz et al. [12] (hereafter JMS) using SURFRAD sites. The bias, mean absolute error (MAE),
and RMSE of the JMS method are 1.49, 1.57, and 1.96 K, respectively. We selected the same 21 Landsat-8
images in SURFRAD as Zhang et al. [66], and the validation results indicated the Enterprise algorithm,
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Wan and Sobrino have similar performance. The biases (RMSEs) were 0.85 (2.34), 0.74 (2.28), and 0.94 K
(2.46 K) for the Enterprise algorithm, Wan, and Sobrino, respectively.

Yu et al. [67] compared three different approaches for LST inversion, including the radiative
transfer equation algorithm applied to band 10 (hereafter RTE10) and band 11 (hereafter RTE11),
the split-window algorithm proposed by Qin et al. [68] (hereafter Qin) and the single-channel method
proposed by Jiménez-Muñoz et al. [19] applied to band 10 (hereafter JMS10) and band 11 (hereafter
JMS11). The LST derived by RTE applied to band 10 in our result is called RTE_M, hereafter. In RTE_M,
the MERRA2-6 reanalysis product was used for atmospheric correction. We have selected 20 images, all
of which exist in our work and in the study of Yu et al. The biases (RMSEs) between the retrieved LSTs
using various methods and in-situ LSTs are shown in Table 6. The results show that the LSTs retrieved
from the RTE method (RTE10, RTE11, and RTE_M) and the single-channel algorithm (JMS10 and JMS11)
have the higher accuracy with a bias lower than 1K, while four split-window algorithms (Qin, Wan,
the Enterprise algorithm, and Sobrino) have low precision with bias (RMSE) that varies between
−1.28 K (2.93 K) and 2.08 K (3.09 K). The accuracy of the Enterprise algorithm, Wan, and Sobrino are
similar, and the biases (RMSEs) are 1.90 K (2.93 K), 1.85 K (2.95 K) and 2.08 K (3.09 K), respectively.

Table 6. Biases and RMSEs of LST retrieval with various methods.

RTE10 RTE11 Qin JMS10 JMS11 RTE_M Wan Enterprise Algorithm Sobrino

BIAS(K) −0.95 −0.96 −1.28 −0.92 −0.51 1.00 1.85 1.90 2.08
RMSE(K) 2.95 3.05 3.02 3.04 3.10 2.61 2.95 2.93 3.09

García-Santos et al. [27] also compared three methods for estimating the LST from Landsat-8
data, including RTE10, RTE11, the single-channel algorithm proposed by Jiménez-Muñoz et al. [19]
(hereafter JMS) and Wang et al. [13] (hereafter Wang) and the split-window algorithm proposed
by Jiménez-Muñoz et al. [12] (hereafter JM2014), and Du et al. [14] (hereafter Du). The result of
García-Santos and our result using 21 Landsat-8 scenes in Mallorca Island is shown in Table 7.
The accuracy of RTE_M was nearly the same as that of RTE10, and the bias and RMSE were 0.1
(−0.1) and 2.3 K (2.3 K). The method of Du had higher absolute bias (RMSE) than the Enterprise
algorithm, Wan, and Sobrino and the differences were 1.2 and 0.3 K for bias and RMSE. In this
validation, the Enterprise algorithm, Wan, and Sobrino achieved similar bias and equal RMSE. Three
split-window algorithms and JM2014 achieved a similar accuracy, with a bias and RMSE of 0.2 (0.4)
and 1.7 K (1.6 K), respectively. From existing verification results, we can conclude that the precision of
the Enterprise algorithm, Wan, and Sobrino had similar accuracy in most cases.

Table 7. Biases and RMSEs of LST retrieval with various methods.

RTE10 RTE11 JMS Wang Du JM2014 RTE_M Wan Enterprise Algorithm Sobrino

Bias(K) −0.1 2.0 0.8 0.7 −1.4 0.4 0.1 0.2 0.1 0.2
RMSE(K) 2.3 3.6 2.2 2.3 2.0 1.6 2.3 1.7 1.7 1.7

Although the validation accuracy was relatively high, some phenomena in Landsat-8 images are
worth mentioning. The striping and banding were still very noticeable, and the LST differences on two
sides of the strip were not negligible. In addition, as noted by Gerace and Montanaro [25], even the
implementation of the stray light algorithm has improved the performance of the TIRS instrument,
and the TIRS sensor will continue to be monitored to ensure the expected radiation accuracy for
all users.

In spite of single-channel algorithms having better performance in finite verification results, we
recommend split-window algorithms for LST retrieval. The reasons are as follows: As pointed out
by Jiménez-Muñoz et al. [12], the split-window algorithm has better results than the single-channel
algorithm in theory. Then, Sobrino and Jiménez-Muñoz [69], Jiménez-Muñoz and Sobrino [70],
and Li et al. [71] found that all of the single-channel algorithms provide poor results at high
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atmospheric water vapor contents, and the split-window algorithm performs well over global
conditions [12]. In addition, most of the in-situ sites have low water vapor contents, and more ground
data needs to be collected for comprehensive analysis, especially in high water vapor content areas.

5. Conclusions

The NOAA JPSS Enterprise algorithm is adapted to Landsat-8 data to obtain the estimate of LST
in this study. The improved normalized difference vegetation index-based threshold method was used
to estimate the LSE of non-vegetated areas, and the vegetation cover method was adopted to calculate
the LSE of vegetated areas. The coefficient of the enterprise algorithm was derived from the simulation
dataset using GAPRI atmospheric profiles. Both the simulation dataset and ground measurements
were used to test and validate the enterprise algorithm. In addition, the enterprise algorithm was
compared to the generalized split-window algorithm and the split-window algorithm of Sobrino.

Simulated datasets derived from three independent atmospheric profiles (CLAR, TIGR, and SeeBor)
were used to test the performance of the enterprise algorithm. The biases (RMSEs) of the Enterprise
algorithm were between −0.16 (0.42) and 0.30 K (1.42 K), and the biases (RMSEs) of the generalized
split-window algorithm were all between −0.31 (0.36) and 0.43 K (1.21 K). For the method of Sobrino,
the biases (RMSEs) range from −0.26 (0.48) to 0.33 K (1.18 K).

The in-situ LSTs derived from the flux measurements at SURFRAD, HiWATER sites, and BanGe
site were used to validate the Landsat-8 LSTs retrieved by the Enterprise algorithm and other
algorithms. The biases (RMSEs) of the Enterprise algorithm were 1.38 (3.22), 1.01 (2.32), 1.99 (3.49),
2.53 (3.46), and −0.15 K (1.11 K) at the SURFRAD, HiWATER_A, HiWATER_B, HiWATER_C sites,
and BanGe site, respectively. For the generalized split-window algorithm, the biases (RMSEs) were
1.39 (3.20), 1.0 (2.30), 1.93 (3.48), 2.53 (3.35), and −0.35 K (1.16 K), respectively, whereas those values
were 1.45 (3.39), 1.08 (2.41), 2.16 (3.67), 2.52 (3.58), and 0.02 K (1.12 K) for the split-window algorithm
of Sobrino.

Both the test and validation results show that the Enterprise algorithm have similar performance
with the other two split-window algorithms. Regarding the existing verification results, we can
conclude that the Enterprise algorithm can be used to retrieve Landsat-8 LSTs with a similar accuracy
to the generalized split-window algorithm and the split-window algorithm of Sobrino. This study
provides an alternative method to estimate LSTs from Landsat-8 data.
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