Thermo-Physical and Geo-Mechanical Characterization of Faulted Carbonate Rock Masses (Valdieri, Italy)
Abstract
:1. Introduction
- Geo-mechanical and a photogrammetric survey of the faults and the surroundings to characterize the rock mass;
- time-lapse sequences of IRT thermal images in order to detect thermal transient within both the fault zone and the low fractured mass rock sectors;
- thermal conductivity measurements to characterize thermal properties of rocks.
2. Study Site
3. Procedure and Methods
3.1. Geo-Mechanical Surveys
3.2. Infrared Thermography
3.2.1. Principles
3.2.2. Surveys Methodology
3.3. Thermal Conductivity Analysis
3.3.1. Transient Line Source (TLS)
3.3.2. Transient Divided Bar (TDB)
4. Results
4.1. Geo-Mechanical Surveys
4.2. IRT Winter Field Acquisition
4.3. IRT Summer Field Acquisition
4.4. Thermal Properties
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dochez, S.; Laouafa, F.; Franck, C.; Guedon, S.; Martineau, F.; Bost, M.; D’Amato, J. Influence of Water on Rock Discontinuities and Stability of Rock Mass. Procedia Earth Planet. Sci. 2013, 7, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Iverson, R.M. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef] [Green Version]
- Price, J. Implications of groundwater behaviour on the geomechanics of rock slope stability. In Proceedings of the APSSIM 2016, Brisbane, Australia, 6–8 September 2016. [Google Scholar]
- Covington, M.D.; Luhmann, A.J.; Gabrovšek, F.; Saar, M.O.; Wicks, C.M. Mechanisms of heat exchange between water and rock in karst conduits: HEAT TRANSPORT IN KARST. Water Resour. Res. 2011, 47, 1897–1910. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, H.; Lu, L.; Fang, Z. Investigation on the heat transfer of energy piles with two-dimensional groundwater flow. Int. J. Low-Carbon Technol. 2015, 12, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Sheets, R.A.; Burns, E.R. Geothermal Heating and Cooling—The Role of Groundwater. Available online: http://wmao.org/wmao/wp-content/uploads/2014/04/Water-Table-Spring-2014-Issue.pdf (accessed on 18 January 2019).
- Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses 1978. Available online: https://www.researchgate.net/publication/313659691_Suggested_methods_for_the_quantitative_description_of_discontinuities_in_rock_masses_International_Society_for_Rock_Mechanics (accessed on 18 January 2019).
- Balaras, C.A.; Argiriou, A.A. Infrared thermography for building diagnostics. Energy Build. 2002, 34, 171–183. [Google Scholar] [CrossRef]
- Nolesini, T.; Frodella, W.; Bianchini, S.; Casagli, N. Detecting Slope and Urban Potential Unstable Areas by Means of Multi-Platform Remote Sensing Techniques: The Volterra (Italy) Case Study. Remote Sens. 2016, 8, 746. [Google Scholar] [CrossRef]
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Boschi, E. Volcano surveillance using infrared cameras. Earth-Sci. Rev. 2011, 106, 63–91. [Google Scholar] [CrossRef]
- Coppola, D.; Staudacher, T.; Cigolini, C. Field thermal monitoring during the August 2003 eruption at Piton de la Fournaise (La Réunion). J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, Y. Infrared thermography of the fumarole area in the active crater of the Aso volcano, Japan, using a consumer digital camera. J. Asian Earth Sci. 2010, 38, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, J.A.; Nick, V. Fumarole monitoring with a handheld infrared camera: Volcán de Colima, Mexico, 2006–2007. J. Volcanol. Geotherm. Res. 2008, 177, 911–924. [Google Scholar] [CrossRef]
- Tonelli, A. Some operative applications of remote sensing. Ann. Geophys. 2000, 43, 1177–1196. [Google Scholar]
- Pappalardo, G.; Mineo, S.; Zampelli, S.P.; Cubito, A.; Calcaterra, D. InfraRed Thermography proposed for the estimation of the Cooling Rate Index in the remote survey of rock masses. Int. J. Rock Mech. Min. Sci. 2016, 83, 182–196. [Google Scholar] [CrossRef]
- Fiorucci, M.; Marmoni, G.M.; Martino, S.; Mazzanti, P. Thermal Response of Jointed Rock Masses Inferred from Infrared Thermographic Surveying (Acuto Test-Site, Italy). Sensors 2018, 18, 2221. [Google Scholar] [CrossRef] [PubMed]
- Baroň, I.; Bečkovský, D.; Míča, L. Application of infrared thermography for mapping open fractures in deep-seated rockslides and unstable cliffs. Landslides 2014, 11, 15–27. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G.; Rapisarda, F.; Cubito, A.; Di Maria, G. Integrated geostructural, seismic and infrared thermography surveys for the study of an unstable rock slope in the Peloritani Chain (NE Sicily). Eng. Geol. 2015, 195, 225–235. [Google Scholar] [CrossRef]
- Gigli, G.; Frodella, W.; Garfagnoli, F.; Morelli, S.; Mugnai, F.; Menna, F.; Casagli, N. 3-D geomechanical rock mass characterization for the evaluation of rockslide susceptibility scenarios. Landslides 2014, 11, 131–140. [Google Scholar] [CrossRef]
- Frodella, W.; Gigli, G.; Morelli, S.; Lombardi, L.; Casagli, N. Landslide Mapping and Characterization through Infrared Thermography (IRT): Suggestions for a Methodological Approach from Some Case Studies. Remote Sens. 2017, 9, 1281. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S.; Angrisani, A.C.; Di Martire, D.; Calcaterra, D. Combining field data with infrared thermography and DInSAR surveys to evaluate the activity of landslides: the case study of Randazzo Landslide (NE Sicily). Landslides 2018, 11, 2173–2193. [Google Scholar] [CrossRef]
- Brooks, A.L.; Zhou, H.; Hanna, D. Comparative study of the mechanical and thermal properties of lightweight cementitious composites. Constr. Build. Mater. 2018, 159, 316–328. [Google Scholar] [CrossRef]
- Balandin, A.A. The Heat Is On: Graphene Applications. IEEE Nanotechnol. Mag. 2011, 5, 15–19. [Google Scholar] [CrossRef]
- Jafari, N.S.J. A review on modeling of the thermal conductivity of polymeric nanocomposites. E-Polym. 2012, 12. [Google Scholar] [CrossRef]
- Gomez-Mares, M.; Tugnoli, A.; Landucci, G.; Cozzani, V. Performance Assessment of Passive Fire Protection Materials. Ind. Eng. Chem. Res. 2012, 51, 7679–7689. [Google Scholar] [CrossRef]
- Albert, K.; Schulze, M.; Franz, C.; Koenigsdorff, R.; Zosseder, K. Thermal conductivity estimation model considering the effect of water saturation explaining the heterogeneity of rock thermal conductivity. Geothermics 2017, 66, 1–12. [Google Scholar] [CrossRef]
- Feng, J.; Gao, Z.; Zhu, R.; Luo, Z.; Zhang, L. The application of thermal conductivity measurements to the Kuqa River profile, China, and implications for petrochemical generation. SpringerPlus 2013, 2. [Google Scholar] [CrossRef]
- Hartmann, A.; Pechnig, R.; Clauser, C. Petrophysical analysis of regional-scale thermal properties for improved simulations of geothermal installations and basin-scale heat and fluid flow. Int. J. Earth Sci. 2008, 97, 421–433. [Google Scholar] [CrossRef]
- Jorand, R.; Fehr, A.; Koch, A.; Clauser, C. Study of the variation of thermal conductivity with water saturation using nuclear magnetic resonance. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Ramstad, R.K.; Midttømme, K.; Liebel, H.T.; Frengstad, B.S.; Willemoes-Wissing, B. Thermal conductivity map of the Oslo region based on thermal diffusivity measurements of rock core samples. Bull. Eng. Geol. Environ. 2015, 74, 1275–1286. [Google Scholar] [CrossRef]
- Fuchs, S.; Förster, A. Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin. Chem. Erde-Geochem. 2010, 70, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Norden, B.; Förster, A.; Balling, N. Heat flow and lithospheric thermal regime in the Northeast German Basin. Tectonophysics 2008, 460, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Barale, L.; Bertok, C.; d’Atri, A.; Martire, L.; Piana, F.; Domini, G. Geology of the Entracque—Colle di Tenda area (Maritime Alps, NW Italy). J. Maps 2016, 12, 359–370. [Google Scholar] [CrossRef]
- Thiele, S.T.; Grose, L.; Samsu, A.; Micklethwaite, S.; Vollgger, S.A.; Cruden, A.R. Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data. Solid Earth 2017, 8, 1241–1253. [Google Scholar] [CrossRef] [Green Version]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 5th ed.; Wiley: New York, NY, USA, 2004. [Google Scholar]
- Maldague, X.P.V. Nondestructive Evaluation of Materials by Infrared Thermography; Springer London: London, UK, 1993. [Google Scholar]
- Boltzmann, L. Ableitung des Stefan’schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie. Ann. Phys. 1884, 258, 291–294. [Google Scholar] [CrossRef]
- Stefan, J. Über die Beziehung zwischen der Wärmestrahlung und der Temperatur. Sitzungsberichte Math.-Naturwissenschaftlichen Cl. Kais. Akad. Wiss. Ger. 1879, 79, 391–428. [Google Scholar]
- Teza, G.; Marcato, G.; Castelli, E.; Galgaro, A. IRTROCK: A MATLAB toolbox for contactless recognition of surface and shallow weakness of a rock cliff by infrared thermography. Comput. Geosci. 2012, 45, 109–118. [Google Scholar] [CrossRef]
- FLIR Systems, Thermography Product Catalog. Publ. No. T559480. Available online: https://www.ien.eu/uploads/tx_etim/43591_flir.pdf 2013 (accessed on 18 January 2019).
- ISO 18434-1:2008 Condition Monitoring and Diagnostics of Machines -- Thermography -- Part 1: General procedures. Available online: https://www.iso.org/standard/41648.html (accessed on 18 January 2019).
- ASTM E1862-97e1. Standard Test Methods for Measuring and Compensating for Reflected Apparent Temperature Using Infrared Imaging Radiometers; ASTM: West Conshohocken, PA, USA, 1997. [Google Scholar]
- Pasquale, V.; Verdoya, M.; Chiozzi, P. Measurements of rock thermal conductivity with a Transient Divided Bar. Geothermics 2015, 53, 183–189. [Google Scholar] [CrossRef]
- Transient Plane and Line Source Methods for Soil Thermal Conductivity. Transient Plane Line Source Methods Soil Therm. Available online: https://www.researchgate.net/publication/319337593_Transient_Plane_and_Line_Source_Methods_for_Soil_Thermal_Conductivity (accessed on 18 January 2019).
- Fuchs, S.; Schütz, F.; Förster, H.-J.; Förster, A. Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks: Correction charts and new conversion equations. Geothermics 2013, 47, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Franklin, J.A.; Vogler, U.W.; Szlavin, J.; Edmond, J.M.; Bieniawski, Z.T. ISRM—Suggested methods for determining water-content, porosity, density, absorption and related properties and swelling and slake-durability index properties. In The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring:1974-2006 ISRM Turkish National Group; E ISRM: Ankara, Turkey, 2007. [Google Scholar]
- ASTM D5334—Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure; ASTM: West Conshohocken, PA, USA, 2014.
- IEEE 442-1981—IEEE Guide for Soil Thermal Resistivity Measurements. C25W/P442_WG—Working Group for Guide for Soil Thermal Resistivity Measurements—IEEE 442 1981. Available online: https://global.ihs.com/doc_detail.cfm?document_name=IEEE%20442&item_s_key=00036135&csf=TIA (accessed on 18 January 2019).
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Oxford Science Publications: Oxford, UK, 1959. [Google Scholar]
- Kluitenberg, G.J.; Ham, J.M.; Bristow, K.L. Error Analysis of the Heat Pulse Method for Measuring Soil Volumetric Heat Capacity. Soil Sci. Soc. Am. J. 1993, 57, 1444–1451. [Google Scholar] [CrossRef]
- Yaşar, E.; Erdoğan, Y.; Güneyli, H. Determination of the thermal conductivity from physico-mechanical properties. Bull. Eng. Geol. Environ. 2008, 67, 219–225. [Google Scholar] [CrossRef]
- Pribnow, D.; Umsonst, T. Estimation of thermal conductivity from the mineral composition: Influence of fabric and anisotropy. Geophys. Res. Lett. 1993. [Google Scholar] [CrossRef]
- Joffé, A.F. Heat transfer in semiconductors. Can. J. Phys. 1956, 34, 1342–1355. [Google Scholar] [CrossRef]
- Deere, D.U.; Hendron, A.J.; Patton, F.D.; Cording, E.J. Design of Surface and Near-Surface Construction in Rock; American Rock Mechanics Association: Alexandria, VA, USA, 1966; Available online: https://www.onepetro.org/conference-paper/ARMA-66-0237 (accessed on 18 January 2019).
- Hoek, E.; Carranza-Torres, C.; Corkum, B. HOEK-BROWN FAILURE CRITERION—2002 EDITION. In Proceedings of the Fifth North American Rock Mechanics Symposium, Toronto, ON, Canada, 7–10 July 2002; pp. 267–273. [Google Scholar]
- Bieniawski, Z.T. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Popov, Y.; Tertychnyi, V.; Romushkevich, R.; Korobkov, D.; Pohl, J. Interrelations Between Thermal Conductivity and Other Physical Properties of Rocks: Experimental Data. Pure Appl Geophys 2003, 160, 1137–1161. [Google Scholar] [CrossRef]
- Moh’d, B.K. Compressive Strength of Vuggy Oolitic Limestones as a Function of Their Porosity and Sound Propagation. Jordan J. Earth Environ. Sci. 2009, 2, 18–25. [Google Scholar]
- Bagrintseva, K.I. Carbonate Reservoir Rocks; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Horai, K.; Simmons, G. Thermal conductivity of rock-forming minerals. Earth Planet. Sci. Lett. 1969, 6, 359–368. [Google Scholar]
- Surma, F.; Geraud, Y. Porosity and Thermal Conductivity of the Soultz-sous-Forêts Granite. Pure Appl. Geophys. 2003, 160, 1125–1136. [Google Scholar] [CrossRef]
Winter Session | Summer Session | |
---|---|---|
Data | 23 January 2018 | 18 June 2018 |
Start–End Time | 11:40 ÷ 18:07 | 19:00 ÷ 23:00 |
Sunrise–Sunset | 7:58 ÷ 17:27 | 5:46 ÷ 21:17 |
Direct Insolation (start ÷ end) | 10:30 ÷ 16:30 | -- ÷ 18:50 |
Air Temperature | −1 °C ÷ +11 °C | +14 °C ÷ +24 °C |
H2O Temperature | no water | ~ 16 °C |
Air Humidity | not measured | 55% ÷ 60% |
Shooting Length | 80 m | 80 m |
Emissivity | 0.95 | 0.95 |
Reflected Temperature | not measured | 18°C ÷ 22 °C |
Set | Spacing (mm) | Persistence (m) | Roughness | Aperture | Infilling | Weathering | Groundwater |
---|---|---|---|---|---|---|---|
S | 200 ÷ 600 | 3 ÷ 10 | rough | closed | none | slight | dry to damp |
K1 | 40 ÷ 200 | 3 ÷ 10 | rough | closed to partly open | none-soft | none to slight | dry to damp |
K2 | 60 ÷ 600 | 3 ÷ 10 | rough | closed to tight | none-soft | none to slight | dry to damp |
K3 | 40 ÷ 200 | 3 ÷ 10 | rough | closed to tight | none-soft | none to slight | dry to damp |
Test | Field | Lab Dry | Lab Wet | Other Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TLSEM2 | TLSEM1 | % EM2vsEM1 | TDBEM1 | TLEM1 | % TDBvsTLS | TDBEM1 | TLSEM1 | % TDBvsTLS | φ | ρ | TEM1 | TEM2 | |
1 | 1.69 | 2.53 | 33.20 | 2.67 | 2.06 | 22.85 | 2.70 | 2.10 | 22.22 | 0.33 | 2.62 | 26.97 | 25.73 |
2 | 1.68 | 2.38 | 29.41 | 2.71 | 2.15 | 20.66 | 2.77 | 2.22 | 19.86 | 0.44 | 2.74 | 26.53 | 24.30 |
3 | 1.63 | 2.67 | 39.95 | 2.72 | 2.20 | 19.12 | 2.77 | 2.30 | 17.56 | 0.47 | 2.72 | 26.02 | 23.41 |
4 | 1.58 | 2.6 | 39.23 | 2.68 | 2.07 | 22.76 | 2.72 | 2.25 | 17.88 | 0.48 | 2.54 | 25.92 | 23.56 |
5 | 1.58 | 2.6 | 39.23 | 2.69 | 2.13 | 20.82 | 2.72 | 2.18 | 19.85 | 0.30 | 2.60 | 26.29 | 24.20 |
λb | 1.632 | 2.556 | 2.694 | 2.122 | 2.744 | 2.210 | |||||||
St. dev. | 0.053 | 0.110 | 0.021 | 0.058 | 0.036 | 0.075 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chicco, J.M.; Vacha, D.; Mandrone, G. Thermo-Physical and Geo-Mechanical Characterization of Faulted Carbonate Rock Masses (Valdieri, Italy). Remote Sens. 2019, 11, 179. https://doi.org/10.3390/rs11020179
Chicco JM, Vacha D, Mandrone G. Thermo-Physical and Geo-Mechanical Characterization of Faulted Carbonate Rock Masses (Valdieri, Italy). Remote Sensing. 2019; 11(2):179. https://doi.org/10.3390/rs11020179
Chicago/Turabian StyleChicco, Jessica Maria, Damiano Vacha, and Giuseppe Mandrone. 2019. "Thermo-Physical and Geo-Mechanical Characterization of Faulted Carbonate Rock Masses (Valdieri, Italy)" Remote Sensing 11, no. 2: 179. https://doi.org/10.3390/rs11020179
APA StyleChicco, J. M., Vacha, D., & Mandrone, G. (2019). Thermo-Physical and Geo-Mechanical Characterization of Faulted Carbonate Rock Masses (Valdieri, Italy). Remote Sensing, 11(2), 179. https://doi.org/10.3390/rs11020179