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Abstract: Understanding risk factors for the spread of infectious diseases over time and across the
landscape is critical for managing disease risk. While habitat connectivity and characteristics of local
and neighboring animal (i.e., host) assemblages are known to influence the spread of diseases, the
interactions among these factors remain poorly understood. In this study, we conducted a county-level
analysis to test the effects of forest connectivity, together with the suitability of local assemblage
(measured by the similarity of local host assemblage with neighboring assemblages) and the infection
intensity of neighboring counties on the spatial expansion of Lyme disease in the United States.
Our results suggested that both the similarity of local host assemblage and the infection intensity of
neighboring counties were positively correlated with the probability of disease spread. Moreover,
we found that increasing forest connectivity could facilitate the positive effect of neighbor infection
intensity. In contrast, the effect size of the host assemblage similarity decreased with increasing
connectivity, suggesting that host assemblage similarity was less effective in well-connected habitats.
Our results thus indicate that habitat connectivity can indirectly influence disease spread by mediating
the effects of other risk factors.

Keywords: disease spread; forest cover; assemblage similarity; host assemblage composition;
infection intensity

1. Introduction

Understanding the spatial expansion of infectious disease is important in predicting the new
geographic areas that would have disease presence and is of importance in disease management [1].
The spreading rate of disease is not the same over different directions in space, which indicates the
variation in spatial suitability for both host and vector [2]. This raises a question of what factor
influences the nonrandom spread of disease over space.

In general, landscape structure can potentially affect the range expansion of disease due to its
important role in determining host–pathogen interactions [3]. For example, it has been considered
that habitat connectivity is able to considerably influence the process of disease spread via its effect on
the dispersal and distributions of hosts and vectors [2,4,5] and host community compositions [6,7].
An increase in connectivity generally relates to an increase in the disease incidence or severity due to
increased host movements and contact rates between host populations [8]. When studying the spread of
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plague epizootics in Colorado, Stapp and co-workers [9] found that increasing landscape connectivity
promoted plague outbreaks in prairie dog colonies. However, high connectivity may sometimes reduce
disease risk by increasing host diversity, which can exert a dilution effect [7], or by generating large
epidemics that deplete susceptible individuals [10]. Thus, the role of habitat connectivity in disease
spread still needs more investigations in the context of increasing habitat fragmentation worldwide.

Based on land cover data, we here investigated the effect of forest connectivity on the spread of
Lyme disease in the United States. Lyme disease, caused by Borrelia burgdorferi and transmitted by Ixodes
ticks [11], is recognized as an important emerging infectious disease [12]. Lyme disease in the United
States undergoes rapid range expansions from its primary foci in the Upper Midwest and Northeast [13].
However, the rate of expansion varied within and among states. For example, some parts of states
(i.e., counties) are rapidly invaded, whereas others remain disease-free for years [14]. Not only the
distribution of Lyme disease, but also that of tick vector are expanding [15,16]. For example, Ixodes
scapularis has moved northward along the eastern shores of Lake Michigan [16] and has also spread
across the state from west to east in Wisconsin [17]. The large geographic range of Lyme disease and
I. scapularis combined with the nonrandom spatial patterns in colonization raise important questions
about the mechanisms driving expansion of this emerging infectious disease.

The dispersal and establishment of I. scapularis in new areas partly depend on the possibilities
of dispersal of the tick hosts (carrying ticks) which rely on both host movements and landscape
characteristics [14]. The former relates to the inherent capacities of host species to move (i.e., some
species can more easily move over larger distances than others); the latter relates to parameters that
help (e.g., corridors) or hinder (e.g., barriers) these movements. Because the dispersal probability of
species that host I. scapularis partly drives the spread of Lyme disease [18,19], we predicted a positive
relationship between forest connectivity and the probability of transition from disease-free to infected.

Besides landscape structure, the nonrandom expansion of disease via hosts or vectors can also be
explained by characteristics of both the local and the neighboring host assemblages (e.g., all host species
in a particular habitat/area), such as the suitability of local host assemblage (in disease-free areas) and the
intensities of infected neighbors [20]. Due to host specificity of pathogens or vectors [21], the suitability
of local disease-free assemblage could be partly explained by its similarity with neighboring infected
(and infectious) assemblages. Greater ecological similarity can translate to less resistance of local
disease-free assemblage to pathogen invasion, thus indicates high suitability to disease spread [20].
In addition, the infection intensity of infected neighbors might be positively related to the probability
of disease spread. This is because high intensities of infected neighbors indicate high prevalence rates
of the Lyme pathogen in ticks and hosts, which would enhance the chances that infected host or ticks
invade to the disease-free county. In this study, we also explored the effects of these two factors on
Lyme disease spread. We predict a positive relationship between the similarity of host assemblage in
local disease-free area with neighboring infected areas and the probability that the disease-free area
will become infected. We also predict that the infection intensity of neighboring infected areas relates
positively to the probability of transition from disease-free to infected.

In addition, it is likely that the three factors described above (suitability of the assemblage in a
disease-free area, the infection intensity of neighboring infected area, and the connectivity between
disease-free and infected areas) also interact. For example, the effect of the intensity of infection in
an area where the disease is present may depend on the connectivity level between disease-free and
infected areas, so interactions between these factors are also expected to influence the geographical
expansion of infectious disease. However, these interactions between connectivity and host assemblages
similarity or infection intensity have rarely been studied. Therefore, in addition to the effects of these
three factors, we also explicitly examined the importance of their two-way interactions to the transition
in disease status (from disease-free to infected). Our results suggested that forest connectivity can
indirectly influence disease spread by mediating the effects of assemblage suitability and neighbor
infection intensity.
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2. Materials and Methods

2.1. Lyme Disease Data

We first obtained the annual number of human Lyme disease cases in each county in the United
States during 2000–2016 from the Centers for Disease Control and Prevention (CDC, Figure 1). We then
limited our dataset to only those counties with established or reported I. scapularis populations,
according to [11]. As we aim to identify factors related to a county’s transition of Lyme disease status,
we targeted, per year, only those disease-free counties that shared a border with at least one infected
county (at least one case was reported) in the same year. We then determined, also on an annual basis,
whether a disease-free county remained disease-free or became infected in the next year. This binary
classification served as the dependent variable in our analyses.
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Figure 1. The distribution of Lyme disease cases at the county level in (a) 2000 and (b) 2016 in the 35
states of the United States with established or reported Ixodes scapularis populations.

2.2. Explanatory Variables

Remote sensing (RS) has been recognized as an important tool for studying the ecology and
epidemiology of infectious diseases [22]. It is often used to identify environmental (including
habitat-related) and climatic risk factors, especially at regional level [23,24]. Using the National Land
Cover Database (https://www.usgs.gov/centers/eros/science/national-land-cover-database) in United
States Geological Survey, we calculated forest habitat connectivity. This parameter was calculated
as the minimum percentage of forest over 1 km wide buffer zones on both sides of a shared border
between two counties. For each county, forest connectivity was weighted by the length of shared
borders (1):

Forest connectivity =

∑n
i=1 minimum foresti ∗ li∑n

i=1 li
(1)

where n is the number of infected neighbors that shared borders with disease-free county; li = length of
shared borders between focal disease-free county and the ith infected county.

Moreover, as Ixodes ticks are highly susceptible to desiccation, dry springs and summers may
reduce the abundance of nymphal ticks in subsequent seasons [25–27]. Therefore, we extracted several
climatic variables from the WorldClim database, version 2.0 [28], including Bio01 (mean annual
temperature), Bio05 (maximum temperature of warmest month), Bio10 (mean temperature of warmest
quarter), Bio12 (annual precipitation), Bio13 (precipitation of wettest month), Bio16 (precipitation of
wettest quarter), and Bio18 (precipitation of warmest quarter). These variables were evaluated for
possible inclusion as covariates in the model (Table 1). Habitat connectivity and climatic variables
were calculated in ArcGIS (Version 10.5)

Similarity of local host assemblage for disease-free counties with neighboring infected counties
(hereafter local assemblage similarity) was measured as β diversity using the Jaccard similarity
index [29], based on the list of mammal host species of Ixodes scapularis from [11] which contains 39
mammal species. The distributions of these host species were obtained from the IUCN (International
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Union for Conservation of Nature) [30]. Similar to forest connectivity, host assemblage similarity,
calculated in R 3.5.0 with vegan package [31], was weighted by the length of shared borders:

Local assemblage similarity =

∑n
i=1 Jaccard similarityi ∗ li∑n

i=1 li
, (2)

The intensities of disease in infected neighboring counties (hereafter neighbor infection intensity)
were calculated based on the numbers of reported Lyme disease cases and were weighted using the
following formula:

Neighbor infection intensity =

∑n
i=1 number of reported disease casesi ∗ Pi∑n

i=1 Pi
, (3)

where Pi is the length of shared border between a disease-free focal county and the ith infected neighbor
divided by the total border length of the focal disease-free county, thus, an infected neighboring county
with a larger percentage of shared border was given greater weight.

2.3. Statistical Analyses

To explore the factors related to the probability of Lyme infection at the county level (i.e.,
the transition from disease-free to infected), we constructed Generalized Linear Mixed Models
(GLMMs) with a binary response. State and year were included as random factors. Local assemblage
similarity, neighbor infection intensity, forest connectivity, their two-way interactions, and climatic
variables were included as fixed factors. We also included human population size of focal counties as
an offset.

With GLMMs, we first performed univariate analyses to identify the potential risk factors.
Variables with a p-value of less than 0.05 were identified as potential risk factors and were used
to construct multiple regression models. Before constructing multiple models, we checked for
multicollinearity by examining the correlation coefficients (r) between predictor variables. For those
highly correlated (r > 0.7), only the variable with the smaller p-value was used to construct multiple
regression models [32]. We performed backward selection to build a multiple model with only main
effects, and then the interaction terms were included into the model. Main terms were maintained in
the model if they were included in a significant interaction term. Before fitting models, all predictors
were scaled. We reported the ROC (receiver operating characteristic) curve and AUC (Area under
ROC curve) value to estimate the performance of the final model. All analyses were conducted using
R 3.5.0 with lme4 package.

Table 1. Hypotheses and explanatory variables used in the analyses modelling the spatial spread of
Lyme cases in the United States.

Abbreviation Variable Hypotheses

Local assemblage similarity The similarity of local host assemblage
with neighboring counties

Counties with high similarity of host assemblage with infected
neighbors would have a higher risk of disease spread

Forest connectivity Forest habitat connectivity between local
county and neighboring county

Counties with high connectivity with infected neighbors
would have a higher risk.

Neighbor infection intensity Number of Lyme cases reported in
neighboring counties in the previous year

Counties close to heavily infected neighbors would have a
higher risk.

Bio01, Bio05, Bio10 1 Temperature-related variables [28] Higher temperature and precipitation support tick
establishment, tick survival, and contribute to the expansion of
the distribution range of ticks [33,34]; however, a higher
temperature can also decrease tick density by dehydrating
ticks [26,27].

Bio12, Bio13, Bio14, Bio16,
Bio18 1

Precipitation-related variables [28]

Human population Human population size Counties with high population density may have a high
disease risk.

1 Bio01: mean annual temperature; Bio05: maximum temperature of warmest month; Bio10: mean temperature of
warmest quarter; Bio12: annual precipitation; Bio13: precipitation of wettest month; Bio16: precipitation of wettest
quarter and Bio18: precipitation of warmest quarter
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3. Results

For each year from 2000 to 2015, about 484 ± 65 counties were disease-free, and about 25% of these
disease-free counties got infected in the next year (Table 2).

Table 2. Summary of numbers and ratio of transition from disease-free to infected county from
2000~2016.

Time Period No. of Counties that
Remained Disease-Free

No. of Counties that
Transitioned from a

Disease-Free to Infected State

% of the Total Number
of Counties that
Became Infected

2000–2001 616 156 20%
2001–2002 495 169 28%
2002–2003 576 155 21%
2003–2004 555 137 20%
2004–2005 553 156 22%
2005–2006 514 126 20%
2006–2007 450 186 29%
2007–2008 510 171 25%
2008–2009 490 165 25%
2009–2010 484 134 22%
2010–2011 441 137 24%
2011–2012 443 198 31%
2012–2013 403 167 31%
2013–2014 425 158 27%
2014–2015 395 171 30%
2015–2016 398 171 30%

Mean ± S.D. 484 ± 64.9 160 ± 18.7 25% ± 4%

Based on the results of univariate analyses (Table S1) and the correlations between predictors (Table
S2), seven variables were included in the final model (Table S1). The results from the final regression
model (Table 3) suggested that both neighbor infection intensity and local assemblage similarity were
positively correlated with transition in disease status from disease-free to infected. Although forest
connectivity did not have a significant effect on its own, its interaction with neighbor infection intensity
had a positive effect: increasing forest connectivity boosted the positive effect of neighbor infection
intensity on disease status transition (Table 3; Figure 2a). In addition, the interaction between forest
connectivity and local assemblage similarity related negatively to disease status transition: local
assemblage similarity was more important when counties were poorly connected (Table 3; Figure 2b).

Table 3. Summary of results (Adjusted Odds Ratio, AOR, with their 95% confidence intervals (CI) and
P values) of the final regression model, correlated with the probability of county-level disease status
transition from Lyme disease free to Lyme disease present.

Variables AOR 95% CI P

Neighbor infection intensity 1.49 [1.40, 1.61] <0.001
Forest connectivity 1.08 [1, 1.15] 0.05

Local assemblage similarity 1.15 [1.08, 1.22] <0.001
Neighbor infection intensity * Habitat connectivity 1.10 [1.02, 1.17] 0.01
Local assemblage similarity * Habitat connectivity 0.90 [0.85, 0.96] 0.01

Mean temperature 0.43 [0.40, 0.46] <0.001
Precipitation of warmest quarter 1.27 [1.20, 1.38] <0.001
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In the case of the climatic factors, disease status transition was negatively correlated with annual
mean temperature (Bio01) and positively correlated with precipitation in the warmest quarter (Bio18;
Table 3). The AUC value for the final multiple regression model was 0.751 (Figure 3), indicating a
moderate predictive power.
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4. Discussion

Previous studies have demonstrated that landscape configuration, such as habitat connectivity,
can potentially influence the risk of infectious diseases [35,36]. However, these studies sometimes
showed contradictory results about the role of habitat connectivity. In this study, we examined the
effects of forest connectivity, as well as the effects of the host assemblage characteristics of local and
neighboring counties, on the spatial spread of Lyme disease in the United States. We found that both
the infection intensity of neighbors and local assemblage similarity had positive effects on the risk
of disease spread. These two effects also depended on the level of forest connectivity, though forest
connectivity itself did not play a significant role.

The spread of Lyme disease involves two processes: the dispersal potential of infected hosts/vectors
and the establishment of infection [37]. Generally, the dispersal potential of infected hosts/vectors
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largely depends on the abundance of infected hosts/vectors [38]. Also, the probability of disease
establishment seems to be positively correlated with the abundance of infected hosts [39]. Consistent
with these statements, we found a strong positive relationship between the infection intensity of
neighbors and disease spread. In heavily infected counties, the number of both infected ticks and
hosts are expected to be high, which is able to enhance the chances that infected hosts or ticks move to
disease-free counties or facilitate disease establishment. In addition, we found the effect of neighbor
infection intensity depended on forest connectivity. With increasing connectivity, the effect of neighbor
infection intensity became greater, increasing the risk of disease spread from neighboring counties.

Disease invasion and establishment may also depend on the suitability of new areas [38]. We found
that the risk of disease spread positively correlated with the similarity between local and neighboring
host assemblages. Due to host specificity of vectors and pathogens, these organisms are more likely
to infect hosts that are ecologically or phylogenetically similar [21]. Therefore, disease is more likely
to spread between assemblages that are similar and share common host species [40]. Additionally,
similar host assemblages might indicate high similarity in habitat and resource availability, which
can facilitate the adaptation of hosts and vectors to the new environments [38,41], thereby promoting
disease establishment. Moreover, we found that the relationship between host assemblage similarity
and disease spread also depends on forest connectivity. The effect size of the host assemblage similarity
decreased with increasing forest connectivity Thus, host assemblage similarity is apparently less
important when host species can move easily across county borders in well-connected habitats, and
the transition in disease status can occur even when the host assemblage similarity is not very high.

For climatic factors, we found a negative correlation between annual mean temperature and the
risk of Lyme spread, which is consistent with many previous studies [26,27]. However, as the mean
temperature was highly correlated with other temperature-related variables (such as the maximum
temperature of warmest month and the mean temperature in the warmest quarter), we cannot determine
which variable is mechanistically most important. A general mechanism underlying this relationship
may be desiccation, to which ticks, especially larvae and nymphs, are susceptible [42]. As temperature
increases, the tick density may decrease due to desiccation, leading to a reduced risk of Lyme disease.
The annual precipitation did not show a significant correlation with the risk of Lyme spread, while
the precipitation in the warmest quarter (generally summer in the Northern Hemisphere) showed a
positive relationship. Thus, summer precipitation might be a better predictor then annual precipitation.
Indeed, summer precipitation is positively related to the abundance of blacklegged ticks in northwest
Illinois [43]. In this case, the proposed mechanism is through a negative effect of summer drought
on understory plants and leaf litter layer: more exposed and drier soils are expected to reduce tick
survival and reproduction [43].

It is important to acknowledge some limitations associated with our study. For example, we used
the data of reported human cases of Lyme disease, which might be underreported [26]. Additionally,
the data we used offered only a “global” snapshot per county. Consequently, it was impossible for us
to analyze if new cases in a previously uninfected county occurred along a border with an infected
county. It was similarly impossible to take into account the mobility of infected people due to the
lack of these data. Finally, the host distributions were obtained from the IUCN and did not take into
account any possible changes (e.g., range shifts, expansions, or contractions) that occurred during the
study period. Even though these data limitations may partly restrict our conclusions, our study still
offers important new insights into the factors driving the spread of such a zoonotic disease. We are
among the first to explore the interactions between habitat connectivity and characteristics of local
and neighboring assemblages on disease expansion, and the results of our analyses demonstrate how
important these interactions can be.

5. Conclusions

In this study, we explored the role of host assemblage characteristics and forest connectivity of
local and neighboring counties in shaping Lyme disease expansion in the United States. Our results
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showed that the similarity between local and neighboring host assemblages and the infection intensity
of neighbors had positive effects on the risk of disease expansion. Moreover, higher forest connectivity
promoted the role of neighbor infection intensity and negated the role of host assemblage similarity.
Our results, therefore, provide valuable new insights into the underlying interacting mechanisms
that influence the spread of disease. Since factors related to disease spread do not function in
isolation, future studies in this area should continue analyzing these interactions between ecologically
relevant parameters.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/20/2354/s1.
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