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Abstract: We present detection performance of ten change detection algorithms with and without
the use of Extended Multi-Attribute Profiles (EMAPs). Heterogeneous image pairs (also known as
multimodal image pairs), which are acquired by different imagers, are used as the pre-event and
post-event images in the investigations. The objective of this work is to examine if the use of EMAP,
which generates synthetic bands, can improve the detection performances of these change detection
algorithms. Extensive experiments using five heterogeneous image pairs and ten change detection
algorithms were carried out. It was observed that in 34 out of 50 cases, change detection performance
was improved with EMAP. A consistent detection performance boost in all five datasets was observed
with EMAP for Homogeneous Pixel Transformation (HPT), Chronochrome (CC), and Covariance
Equalization (CE) change detection algorithms.

Keywords: change detection; heterogeneous data; EMAP; multi-modal images

1. Introduction

Change detection has a wide range of applications such as fire damage assessment, deforestation
monitoring, urban change detection, etc. It is challenging to carry out change detection for
several reasons. First, there are changes due to illumination, seasonal variations, view angles,
etc. Second, there are also mis-alignment errors due to registration. Third, changes are also related to
what one is looking for. For example, in vegetation monitoring, one needs to focus on changes due
to vegetation growth; whereas in urban change detection, one will focus on man-made changes and
ignore vegetation changes. In the past decades, there are many papers discussing change detection,
some of which include deep learning-based architectures [1-3]. For survey papers about change
detection, one can see [4,5].

Change detection can be done using electro-optical/infra-red (EO/IR) [6], multispectral [7-9],
radar [10,11], and hyperspectral imagers [12-14]. Recently, new papers utilizing multimodal imagers
also emerged [15-19]. Here, multimodal sensors mean that the two images at two different times may
have different characteristics such as visible vs. radar, visible vs. infrared, etc.

In some applications such as flooding and fire damage assessment, it is difficult to have the same
type of images at two different times. For example, optical images are affected by the presence of
clouds, and therefore cannot be used on cloudy and rainy dates. Instead, one may only have radar
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image at an earlier time and an optical image at a later time, or vice versa. In some cases, such as fire
events, smoke may prohibit optical sensors from collecting any meaningful data, in which case only
radar or infrared images may be available. Due to different sensor characteristics, it will be impossible
to directly perform image differencing to obtain the change map. Another practical concern is that
some images such as radar or infrared may have only one band. The limited number of bands may
seriously affect the change detection performance.

In recent research papers [20-22], it was discovered that the use of synthetic bands can help object
detection when the original data have only a few bands. In particular, the Extended Multi-Attribute
Profile (EMAP) has shown some promising potential for target detection applications [20-22].
The EMAP technique provides an array of images resulting from filtering the input image with
a sequence of morphological attribute filters on different threshold levels. These images are stacked
together and form the EMAP-synthetic bands.

Since some practical applications may only have single band images such as synthetic aperture
radar (SAR) and infrared, it will be important to explore the potential of using EMAP to generate some
synthetic bands and investigate its impact for change detection enhancement.

In this paper, we focus on performance evaluations of several change detection algorithms using
multimodal image pairs with and without EMAPs. These algorithms are unsupervised pixel-based
algorithms with the exception of one, which is semi-supervised. Deep learning-based change detection
algorithms are not included in this paper and they are beyond the scope of this paper. Among the
investigated change detection algorithms, one of them is recently developed by us. It is an unsupervised
pixel-based change detection algorithm and it utilizes pixel pair statistics in the pre-event and post-event
images, and uses the distance information to infer changes between images. We also enhanced a
recent semi-supervised change detection algorithm in [18] by adopting a weighted fusion to improve
its consistency. We present experimental results using five benchmark data sets and ten change
detection algorithms. The performance of algorithms with and without EMAPs have been thoroughly
investigated. Receiver operating characteristics (ROC) curves, area under the curves (AUC), and visual
inspections of the change detections score images were used in the comparisons. It was observed that
several algorithms can consistently benefit from the use of EMAP for change detection.

Our paper is organized as follows. Section 2 summarizes the applied change detection algorithms.
Section 3 briefly introduces EMAP and the parameters used with EMAP. Section 4 includes comparative
studies using heterogeneous image pairs. Section 5 includes some observations on performance
and computational speeds of the applied change detection algorithms. Finally, remarks and future
directions are mentioned in Section 6.

2. Heterogeneous Change Detection Approaches

In this section, we first introduce the Pixel Pair (PP) unsupervised change detection algorithm,
which was recently developed by us [11]. We then briefly review several other algorithms used in this
paper, including the Structural Similarity (SSIM) based algorithm, Image Ratioing (IR), Chronochrome
(CC), Covariance Equalization (CE), Anomalous Change Detection (ACD), Multi-Dimension Scaling
(MDS), Homogeneous Pixel Transformation (HPT), and Markov Model for Multimodal Change
Detection (M3CD). The above list is definitely not exhaustive.

2.1. Pixel Pair (PP) Algorithm

The key idea in the Pixel Pair (PP) algorithm is to compute differences between pixels in each
image separately. The difference scores are then compared between images in the pair to generate the
change map. Most importantly, our approach does not require the image pair to come from the same
imager. The idea assumes that the mapping between the pixel values of the images in the image pair
are monotonic.
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2.1.1. Algorithm for Single Band Case

Suppose I(T1) and I(T;) are M X N size grayscale images, which are looked at for changes. Suppose
D (s) is the vector containing the pixel value differences from pixel (s), where s =1, ..., MN, to all other
pixels, t; wherei =1, ..., MN, in I(T7). That is,

Di(s) = [ (p(s) =pr(t)) .. (pr(s)—prltan) | M

where p; (t;) is the pixel value at location t; of I(T1).

Suppose D;(s) is the vector containing the pixel value differences from pixel (s) to all other pixels,
(t), where t; = 1, ..., MN, in I(T3). Suppose D]"*(s) is the maximum value in D1 (s) and D11nin (s) is the
minimum value in D1 (s). Similarly, suppose D}'*(s) is the maximum value in D (s) and DJ""(s) is
the minimum value in Dy (s).

The normalized difference vector for pixel (s) in I(T;), D]"™ (s), is found as:

D™ (s)= Di(s)./(DF*(s) D" (s)) €

where ./ denotes element-wise division.
Similarly, the normalized difference vector for pixel (s) in I(T5) is found as:

D™ (5)= Dy (s)./(DF™(s) ~Dy™"(s)) )
The change map contribution from pixel (s) is then computed as:
D(s) = [D{7"(s) = D" (s)l 4)

It is hypothesized that the pixel locations in D(s) which yield high values are linked to changes.
The final change map consists of the sum of the contributions from all the pixels in the image,
s=1,.., MN. That is, the final change map, Dﬁnal/ is found by summing the contributions from all
pixels, s =1, ..., MN where:

MN
Dfinal = Z D(S) ®)
s=1
The estimated change map plots related to PP in this paper correspond to Dj;,, values.

2.1.2. Algorithm for the Multi-Band Case

In the multi-band case, each pixel contains a vector of values. That is, each pixel at location ¢; is a
vector denoted as p; (t;). Now, we have two ways to compute D1 (s). One is to use the Euclidean norm
as shown in (6):

D (s) :[ lIp1(s) =P (B -+ 1Ip1(s) =y (Eaan)l ]T (6)

where ||o|| denotes the Euclidean distance between two vectors.
Another way is to compute the angle between the vectors. We can use similarity angle mapper
(SAM) between two vectors p; (s) and p; (#;), which is defined as:

SAM(py(s), i (1)) = cos™((py(s), 1 (1)) / (Ilpy (5)llipy (£:)11)) @)

L
where <p1 (s),pq (ti)> = 1§1 p! (s)p! (t;) and ||e|| denotes the Euclidean norm of a vector.

The rest of the stepg will be similar as the single band case.
In the past, we have applied the PP algorithm to some change detection applications [6,10,11] and
observed reasonable performance.
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2.2. Structural Similarity (SSIM)

There are a number of image quality metrics such as mean-squared error (MSE) and peak
signal-to-noise ratio (PSNR). The structural similarity index measure (SSIM) is one of them and has
been a well-known metric for image quality assessment. This image quality metric [23] reflects the
structural similarity between two images. The SSIM index is computed on various blocks of an image.
The measure between two blocks x and y from two images can be defined as:

(2pxpty + 1) (200y + c2)
(uz + i +c1) (0 + 0% +c2)

SSIM(x,y) = 8

where yi, and pu, are the means of blocks x and v, respectively; 02 and o2, are the variances of blocks x and
y, respectively; oy is the covariance of blocks x and y; and ¢1 and ¢, are small values (0.01, for instance)
to avoid numerical instability. The ideal value of SSIM is 1 for perfect matching.

The SSIM index and its variant Advanced SSIM (ASSIM) were used for change detection in [24].
Here, we use a similar adaption of the SSIM for change detection. The key idea is to use the SSIM
to compare two image patches and the SSIM score will indicate the similarity between two patches.
The signal flow is shown in Figure 1. It is self-explanatory. The last step is a complement of the
SSIM scores from all patches. This is simply because the SSIM measures the similarity between two
patches and higher means high similarity. Taking the complement of the SSIM scores will yield the
normal change map where high values mean more changes. The patch size used with SSIM is a design
parameter. A large patch size tends to give blurry change maps and vice versa. The SSIM may be
more suitable for change detection using mono-modal images in comparison to multimodal image
pairs because the image characteristics are similar in mono-modal image pairs. In any event, we have
included SSIM in our change detection studies in this paper.

Pre-event image (Before) Post-event image (After)

v v

For each pixel in the Before and After images retrieve a

»| square image patch where the pixel of interest is in the

center of the image patch

v

Compute SSIM measure using the two

image patches for each pixel

v

The complement of the SSIM scores from

all patches are then summed to yield the
change map.

Figure 1. Block diagram for the SSIM-based change detection approach.

2.3. Image Rationing (IR)

IR has been used for anomaly detection and change detection [13] before. It has been used for
change detection with SAR imagery [25] as well. The Normalized Difference Vegetation Index (NDVI)
and the Normalized Difference Soil Index (NDSI) and other indices have been developed for vegetation
detection and soil detection [7], etc. The calculation of IR is very simple and efficient, which is simply
the ratio between two corresponding pixels in the pre- and post-event images.
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2.4. Markov Model for Multimodal Change Detection (M3CD)

This is an unsupervised statistical approach for multimodal change detection [26]. A pixel pairwise
modeling is utilized and its distribution mixture is estimated. After this, the maximum a posteriori
(MAP) solution of the change detection map is computed with a stochastic optimization process [26].

2.5. Multi-Dimension Scaling (MDS)

This method aims to create a new mapping such that in this new mapping, two pixels that
are distant from each other but with the same local texture have the same grayscale intensity [27].
Histograms are created at each pixel location in each direction. The resulting gradients are stacked to
form an 80-element textural feature vector for each pixel. There are two variants. The direct approach
(D-MDS) uses FastMap [27] to detect change using the pre-event and post-event images one band at
a time. The change maps from all of the 80 bands are then summed to yield the final change map.
The single band approach (T-MDS) developed by us is a variant of D-MDS. T-MDS uses a single band
image made up from the magnitude of each pixel location of the textural feature vectors and applies
FastMap to detect the changes.

2.6. Covariance Equalization (CE)

Suppose I(T1) is the reference (R) and I(T5) is the test image (T). The algorithm is as follows [28]:

1.  Compute the mean and covariance of R and T as mg, Cg, mt, Ct
Do eigen-decomposition (or SVD). Cr = VrDrVE, Cr = VTDTV¥
3. Do transformation.

PR(i) = VgDR*VE(R(i) - mg), PT(i) = VyD{/2VI(T(i) - mr).

The residuals between PR and PT will reflect changes.

2.7. Chronochrome (CC)

Suppose I(T1) is the reference (R) and a later image I(T>) the test image (T), the algorithm is as
follows [29]:

1.  Compute the mean and covariance of R and T as mg, Cg, mt, Cr
2. Compute cross-covariance between R and T as Crr
3. CDo transformation.
PR(i) = CrrCg' (R(i) —mg) + mr, PT =T

Normally, there is an additional step to compute the change detection results between PR and PT.
One can use simple differencing or Mahalanobis distance to generate the change maps.

2.8. Anomalous Change Detection (ACD)

ACD is based on an anomalous change detection framework that is applied to the Gaussian
model [30]. Suppose x and y are mean subtracted pixel vectors in two images (R and T) for the same
pixel location. We denote the covariance of R and T as Cg and Cr, and the cross covariance between
R and T as Crr. The change value at pixel location (where x and y are) is then computed using:

e=[xT yT]Q[;] ©
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The change map is computed by applying (9) for all pixels in R and T. In (9),
R corresponds to the reference image, T corresponds to the test image and Q is computed as:
:[ Cr  Cly ]‘1_[ Cr 0 ]‘1
Different from Chronochrome (CC) and Covariance Equalization (CE) techniques, in ACD, the lines
that separate normal from abnormal ones are hyperbolic.

2.9. Improved HPT

In a recent work [18], the authors developed a method known as Homogeneous Pixel
Transformation (HPT), which focuses on heterogeneous change detection. In summary, HPT transforms
one image type from its original feature space to another space in pixel-level. This way, both the
pre-event and post-event images can be represented in the same space and change detection can
be applied. HPT consists of forward transformation and backward transformation. In forward
transformation, a set of unchanged pixels that are identified in advance are used to estimate the
mapping of the pre-event image pixels to the post-event image pixel space. For mapping, the unchanged
pixels are used with the k-nearest neighbors (k-NN) method and a weighted sum fusion is incorporated
to the identified nearest pixels among the unchanged pixels. After the pre-event image pixels are
transformed to the post-event image space, the difference values between the transformed pre-event
image and the post-event image is found. The same process is then repeated backwards which forms
the backward transformation which associates the post-event image with the first feature space. The
two difference values coming from forward and backward estimations are combined to improve the
robustness of detection [18]. In [18], after HPT, the authors also apply a fusion-based filtering which
utilizes the neighbor pixels” decisions to reduce false alarm rates.

When we applied HPT for the before-flood SAR and the after-flood optical Systeme Probatoire
d’Observation dela Terre (SPOT) image pair, we noticed that if the gamma parameter value of HPT is
not selected properly, the amplitude scale of the transformed pre-event image may not be close to the
scale of the post-event image. This inconsistency can then result in unreliable results since there is
a difference operation involved which computes the difference between the transformed pre-event
image and original post-event image. In order to eliminate the scaling inconsistencies, we incorporated
weight normalization when the transformed image pixels are computed utilizing k-nearest pixels
among the unchanged pixels library. Each weight value is normalized with the sum of the k weights.

3. EMAP

In this section, we briefly introduce EMAP. Mathematically, given an input grayscale image f and
a sequence of threshold levels {Thy, Thy, ... Thy}, the attribute profile (AP) of f is obtained by applying
a sequence of thinning and thickening attribute transformations to every pixel in f as follows:

AP(f) ={1(f), &2(F), - u(F) fo y1(F), v2(F) - yu(F)) (10)

where ¢; and y; (i = 1, 2, ...n) are the thickening and thinning operators at threshold Th;, respectively.
The EMAP of f is then acquired by stacking two or more APs using any feature reduction technique
on multispectral/hyperspectral images, such as purely geometric attributes (e.g., area, length of the
perimeter, image moments, shape factors), or textural attributes (e.g., range, standard deviation,
entropy) [31-33].

EMAP(f) = {AP1(f), APy(f) ... APu(f)} (11)

More technical details about EMAP can be found in [31-33].

In this paper, the “area (a)” and “length of the diagonal of the bounding box (d)” attributes of
EMAP [22] were used. The lambda parameters for the area attribute of EMAP, which is a sequence of
thresholds used by the morphological attribute filters, were set to 10 and 15, respectively. The lambda
parameters for the Length attribute of EMAP were set to 50, 100, and 500. With this parameter
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setting, EMAP creates 11 synthetic bands for a given single band image. One of the bands comes
from the original image. For change detection methods that can only handle single band images,
each of the 11 EMAP-synthetic bands is processed individually to get a change map and the resulting
11 change maps from each band are averaged to get the final change detection map. Similarly, for the
reference case where the original single band images are used for change detection without EMAP,
if a change detection method can only handle single band images, each of the original band images is
processed individually to get a change map. The resulting change maps from these original bands are
averaged to get the final change detection map where this final change detection map corresponds to
the reference case.

4. Results

In this paper, we used receiver operating characteristics (ROC) curves to evaluate the different
change detection algorithms. Each ROC curve is a plot of correct detection rates versus false alarm
rates. A high performing algorithm should be close to a step function. We extracted AUC values from
the ROC curves to compare different methods. An AUC value of one means perfect detection. We also
generated change detection maps for visual inspection. Each detection map can be visually compared
to the ground truth change map for performance evaluation.

We used the four image pairs mentioned in [26] and the Institute of Electrical and Electronics
Engineers (IEEE) contest dataset flood multimodal image pair [34] for extensive change detection
performance comparisons. In these investigations, when applying HPT, the gamma parameter was set
to 100 and the k parameter was set to 500. All methods, except HPT, are unsupervised algorithms.
For the SSIM algorithm, we used an image patch size of 30. For other algorithms such as IR, CC, CE,
ACD, PP, D-MDS, and T-MDS, we do not need to set any specific parameters. For M3CD, we used the
default settings in the original source codes [26]. For the PP algorithm, we applied the basic version
(Equations (4) and (5)) because the Euclidean and SAM versions show some improvement in some
cases but not so good results in other cases.

Table 1 summarizes the five datasets used in our experiments. The first dataset corresponds to the
IEEE SAR/SPOT image pair [34]. The pre-event image from the SAR instrument is a single band and
the post-event SPOT optical image is made up of 3 bands. For the single band case, the third band in
the SPOT image is used since this band is the most sensitive one to water detection. The other four
image pairs were taken from the Montreal M3CD dataset, which is publicly available in [26]. The four
Montreal image pairs in [26] are greyscale single band images. These five datasets have diverse image
characteristics with different resolutions, image sizes, events, and sensing modalities. Some of them
are quite challenging in terms of detecting the changes.

Table 1. Details of the five datasets in our experiments.

Dataset Date Location Size (pixels) Event Res:lll);:i;{ (m) Sensor
1 9/1999-11/2000 Gloucester, UK 472 x 264 Flooding 10/20 ERS SAR/SPOT (NIR)
2 9/1995-7/1996  Sardinia, Italy 412 x 300 Lake overflow 30 Landsat-5 (NIR)/Optical
3 7/2006-7/2007  Gloucester, UK 2325 x 4135 Flooding 0.65 TerraSAR-X/Quickbird-02
4 2/2009-7/2013 Toulouse, Fr 4404 x 2604 Construction 2 TerraSAR-X/Pleiades
5 5/2012-7/2013 Toulouse, Fr 2000 x 2000 Construction 0.52 Pleiades/Worldview 2

In the following, brief information about the instruments used for capturing the images are briefly
mentioned for each image pair. The five image pairs are then displayed followed by the ROC curves
for all the change detection techniques applied, the ground truth change map, and the change detection
score images.
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4.1. Image Pair 1: SAR-SPOT (Near Infrared)

This data set was the IEEE Contest data set [34]. The image size is 472 X 264 pixels. The event is
flooding near Gloucester, UK. Figure 2 shows the pre- and post-event images. The pre-event image is a
single band SAR (Figure 2a) and the post-event image is a near infrared (NIR) band of the SPOT image
(Figure 2b). Figure 2c shows the ground truth (GT) change map.

(a) Pre-event (SAR) (b) Post-event (NIR) (c) Ground truth (GT)

Figure 2. Image pair-1: IEEE Flood image pair (SAR-SPOT (NIR)). SAR: Synthetic aperture radar;
NIR: Near infrared.

Speckle filtering is a critical step before processing any SAR images especially when using them
for change detection purposes. In this multimodal image pair, which the pre-event image is acquired
by a SAR, we applied a Wiener filter for speckle filtering before applying the ten change detection
algorithms. Figures 3 and 4 show the ROC curves of ten algorithms without and with using EMAP,
respectively. It can be seen that the performance variation is huge. We observe that IR, M3CD, CC,
and HPT performed better than others. SSIM is the worst. We also observe that some methods have
improved after using EMAP. For instance, HPT with EMAP was improved even further.

UK Flood

SAR/SPOT

Detection Probability

L i I L
0.1 0.2 0.3 04 0.5 06 07 0.8 09 1
False Alarm Rate

Figure 3. ROC curves for Image Pair-1 (SAR/SPOT) without EMAP. ROC: Receiver operating
characteristics; EMAP: Extended Multi-Attribute Profiles.
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Figure 4. ROC curves for Image Pair-1 (SAR/SPOT) with EMAP.

Table 2 summarizes the AUC metrics. The last column of Table 2 shows the difference between the
AUCs with EMAP and without EMAP. Positive numbers indicate improvements when using EMAP
and negative numbers otherwise. It can be seen that six out of ten methods have benefitted from the
use of EMAP.

Table 2. Area under curve (AUC) values and differences between single band and EMAP cases for
dataset-1. Bold numbers indicate the best performing method in each column. M3CD: Markov Model
for Multimodal Change Detection; HPT: Homogeneous Pixel Transformation; D-MDS: Direct approach;
T-MDS: Single band approach; CC: Chronochrome; CE: Covariance Equalization; ACD: Anomalous
Change Detection; IR: Image Ratioing; PP: Pixel Pair; SSIM Structural Similarity.

Method Single Band EMAP Difference
M3CD 0.927 0.9196 —-0.0074
HPT 0.9801 0.9924 0.0123

D-MDS 0.6808 0.949 0.2682
T-MDS 0.8158 0.6119 —-0.2039
CcC 0.9154 0.9486 0.0332
ACD 0.7652 0.7897 0.0245
CE 0.419 0.4717 0.0527
IR 0.9921 0.9564 —-0.0357
PP 0.7042 0.481 —-0.2232
SSIM 0.2009 0.6482 0.4473

Figure 5 compares the change maps produced by the various algorithms with and without using
EMAP. Some change maps such as M3CD, HPT, CC, ACD, and IR look decent. However, CE, PP,
and SSIM maps do not look that good. Moreover, change maps of T-MDS and PP appear to look worse
with EMAP.

4.2. Image Pair 2: NIR-Optical

The image pair as shown in Figure 6 is between near infrared and optical where the pre-event image
(Figure 6a) was captured with Landsat-5 Thermic (NIR band) and the post-event image (Figure 6b) was
captured with optical imager. Figure 6c shows the ground truth. The image size is 412 x 300 pixels.
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The two images captured lake overfill after some rains. This pair was obtained from [26]. Only the
greyscale images are available.

(i) CcC (j) CC-EMAP (k) ACD (1) ACD-EMAP

Figure 5. Cont.
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(p) IR-EMAP

(n) CE-EMAP
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5
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(q) PP (r) PP-EMAP (s) SSIM (t) SSIM-EMA

Figure 5. Change detection images using different methods with and without EMAP (Image Pair-1).

(a) Pre-event (Landsat 5 NIR) 7
Figure 6. Image pair-2: Landsat5 NIR band/Optical.

(c) GT

(b) Post-event (optical)

Figures 7 and 8 show 20 ROC curves generated by ten algorithms without and with EMAP,
respectively. It can be seen that HPT, IR, CC, and M3CD have good performance. SSIM and D-MDS
are the worst. Since there are many curves, it is difficult to judge which methods have benefitted from

the use of EMAP.
Table 3 summarizes the AUC of all methods.
improved results and negative numbers correspond to worsening results. It can be observed that

five methods have improved when EMAP was used. D-MDS improved the most from 0.53 to 0.93.
SSIM suffered the most after using EMAP.

Positive numbers in the last column indicate
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Table 3. AUC values and differences between single band and EMAP cases for dataset-2. Bold numbers
indicate the best performing method in each column.

Method Single Band EMAP Difference
M3CD 0.9363 0.9146 -0.0217
HPT 0.8798 0.9296 0.0498
D-MDS 0.5298 0.9312 0.4014
T-MDS 0.8851 0.8486 —-0.0365

CcC 0.9018 0.9164 0.0146
ACD 0.7531 0.7956 0.0425
CE 0.8309 0.848 0.0171

IR 0.9487 0.9292 —-0.0195
PP 0.851 0.7993 -0.0517
SSIM 0.5753 0.2794 -0.2959

Montreal Image 1
Thermic/Landsat-5

Detection Probability

0 L L i L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Alarm Rate

Figure 7. ROC curves for Image Pair-2 without EMAP.
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Figure 9 shows the change maps from all methods. M3CD and HPT have the cleanest change
detection maps, followed by CC, ACD, IR, and CE. SSIM has the worst change map visually.

HPT

(d) HPT-EMAP
lj&!{ "‘(.c;;{,‘ ;,;»*__
£3 AN TR P A

(f) D-MDS-EMAP

(j) CC-EMAP (k) ACD

(n) CE-EMAP

(q) PP () PP-EMAP ©SSIM () SSIMLEMAP |
Figure 9. Change detection images using different methods with and without EMAP (Image Pair-2).

4.3. Image Pair 3: Optical-SAR

Here, the pre-event image (Figure 10a) is a QuickBird image and the post-event image (Figure 10b)
is a TerraSAR-X image. The image size is 2325 X 4135. The ground truth change map is shown in
Figure 10c. The event is flooding. This pair was obtained from [26]. Although Quickbird has four
bands, only the grayscale image is available.

From the ROC curves shown in Figures 11 and 12, one can observe that HPT and IR performed
the best. D-MDS, T-MDS, ACD, CE, and SSIM did not perform well. In this dataset, it can be seen that
quite a few methods with EMAP have improved significantly over those without EMAP.

To quantify the performance gain of using EMAP, one can look at Table 4. We can see that eight
out of ten methods have benefitted from the use of EMAP. The HPT method increased from 0.847 to
0.9427, which is quite significant.
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(a) Pre-event (Optical)

(b) Post-event (SAR)
Figure 10. Image pair-3: Quickbird/TerraSAR-x.
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Figure 11. ROC curves for Image Pair-3 without EMAP.
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Figure 12. ROC curves for Image Pair-3 with EMAP.
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Table 4. AUC values and differences between single band and EMAP cases for dataset-3. Bold numbers
indicate the best performing method in each column.

Method Single Band EMAP Difference

M3CD 0.9042 0.9098 0.0056
HPT 0.847 0.9427 0.0957
D-MDS 0.5052 0.539 0.0338
T-MDS 0.5383 0.6157 0.0774
CcC 0.8394 0.8812 0.0418

ACD 0.5135 0.4901 -0.0234
CE 0.6631 0.7416 0.0785
IR 0.8624 0.9395 0.0771
PP 0.7209 0.7472 0.0263

SSIM 0.6023 0.5822 -0.0201

Figure 13 compares the change maps of all methods. It can be seen that HPT looks cleaner and
has fewer false alarms. The IR and M3CD results also look decent. The change map of CC with EMAP

has improved over that without EMAP. Other methods do not seem to yield good results.

(e) D-MDS

(b) M3CD-EMAP

(f) D-MDS-EMAP

Figure 13. Cont.

) T-MDS

(d) HPT-EMAP
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(k) ACD (I) ACD-EMAP

(n) CE-EMAP (0) IR (p) IR-EMAP

F.

»
P -

¢ T
% S8}

(q) PP (r) PP-EMAP (s) SSIM (1) SSIM-EMAP

Figure 13. Ground truth and change detection score image for the best performing methods (Image
Pair-3).

4.4. Image Pair 4: SAR-Optical

This pair was obtained from [26]. As shown in Figure 14, the pre-event image is a TerraSAR-X
image (Figure 14a) and the post-event image (Figure 14b) is an optical image from Pleiades. The ground
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truth change map is shown in Figure 14c. The image size is 4404 x 2604. The objective is to detect
changes due to construction. Only the grayscale image (Pleiades) was available.

Y SO

‘ (b) Post-event optical) () GT

Figure 14. Image pair-4: TerraSAR-X/Pleiades.

From the ROC curves shown in Figures 15 and 16, we can see that M3CD and CC performed
better than others. Others did not perform well. It appears that the pre-event SAR image is quite noisy.
However, some filtering operations such as median filtering did not enhance the performance any
further. The methods with EMAP have seen dramatic improvements. For instance, HPT with EMAP
(dotted red) improved quite a lot over the case of without EMAP (red). The D-MDS method suffered
some drawback when EMAP was used.

Montreal Image 6
TemaSar-X /Pleiades

Detection Probability
e

I L . | |
0 01 02 03 0.4 05 0.6 07 08 0.9 1
False Alarm Rate

Figure 15. ROC curves for Image Pair-4 (SAR-Optical) without EMAP.
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Figure 16. ROC curves for Image Pair-4 (SAR-Optical) with EMAP.

Table 5 summarizes the AUC values of all the methods. One can see that seven out of ten methods
have seen improvements when EMAP was used. HPT received the most performance boost.
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Table 5. AUC values and differences between single band and EMAP cases for dataset-4. Bold numbers
indicate the best performing method in each column.

Method Single Band EMAP Difference

M3CD 0.8328 0.841 0.0082
HPT 0.6373 0.8637 0.2264

D-MDS 0.4995 0.171 —-0.3285

T-MDS 0.5327 0.4309 —-0.1018
CcC 0.7243 0.7761 0.0518
ACD 0.4491 0.5026 0.0535
CE 0.66 0.6917 0.0317
IR 0.7093 0.7289 0.0196
PP 0.6569 0.6851 0.0282

SSIM 0.5437 0.4826 —0.0611

Figure 17 compares the change maps of all the methods with and without EMAP. We can see
that M3CD, HPT, CC, IR, CE, and PP have relatively clean change maps. However, D-MDS, T-MDS,
and SSIM methods do not have clean change maps.

(b) M3CD-EMAP

(f) D-MDS-EMAP

(q) PP " (r) PP-EMAP (s) SSIM ' (t) SSIM-EMAP

Figure 17. Ground truth and change detection score image for the best performing method

(Image Pair-4).
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4.5. Image Pair 5: Optical-Optical

This is an optical pair with only grayscale images. This pair was obtained from [26]. As shown
in Figure 18, the pre-event image (Figure 18a) was captured with Pleiades and the post-event image
(Figure 18b) was captured with Worldview 2. Figure 18c shows the ground truth change map.
The image size is 2000 x 2000. The grey images are formed by taking the average of several bands.
The band compositions are different in the pre- and post-event images. Since the spectral bands in the
two images are different, the appearance of the two images are quite different, making this pair very
difficult for change detection. The objective of the change detection is to capture construction activities.

&

(a) re ' o (b) ost () GT

Figure 18. Image pair-5: Pleiades/Worldview?2.

From the ROC curves in Figures 19 and 20, M3CD was the best. SSIM also performed well perhaps
due to the fact this pair is an optical-optical image pair. SSIM is likely to work better for homogeneous
images. D-MDS, T-MDS, ACD, CE, IR, and PP did not work well. We can also see that some methods
with EMAP such as HPT have seen performance improvements.
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Figure 19. ROC curves for Image Pair-5 without EMAP.
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Figure 20. ROC curves for Image Pair-5 with EMAP.

Table 6 summarizes all the AUC values of the methods with and without EMAP. It is very clear to
see that eight out of ten methods have seen improved performance. The HPT method improved from
0.52 to 0.69. It is also observed that SSIM suffered some setback when EMAP was used.

Figure 21 compares the change maps of all methods with and without EMAP. M3CD has the best
visual performance. HPT with EMAP also has good change detection map. Others do not have distinct
change detection. It can be seen that SSIM map is somewhat fuzzy, but nevertheless captures most of
the changes.

Table 6. AUC values and differences between single band and EMAP cases for dataset-5. Bold numbers
indicate the best performing method in each column.

Method Single Band EMAP Difference
M3CD 0.804 0.8128 0.0088
HPT 0.5163 0.6926 0.1763
D-MDS 0.2807 0.2316 -0.0491
T-MDS 0.3796 0.5688 0.1892
CC 0.5631 0.5837 0.0206
ACD 0.5115 0.5135 0.002
CE 0.5588 0.5797 0.0209
IR 0.488 0.5016 0.0136
PP 0.5598 0.5925 0.0327
SSIM 0.7961 0.6404 —0.1557
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(d) HPT-EMAP
“{,‘\‘

(I) ACD-EMAP

(n) CE-EMAP (p) IR-EMAP

.

(q) PP (r) PP-EMAP ()SSIM (t) SSIM-EMAP

Figure 21. Ground truth and change detection score image for the best performing method (Image
Pair-5).

5. Observations

To quantify the performance gain, the AUC measure was applied to the resultant ROC curves of all
methods for the two change detection cases (using the original single band and using EMAP-synthetic
bands) to assess the impact of using EMAP synthetic bands for change detection. The EMAP results
for a change detection method are then compared with the corresponding reference case (that uses
original single band) of the same change detection method. The AUC differences for the reference
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and EMAP cases are used as a measure to assess how EMAP affects the performance of a change
detection method. Table 7 shows the AUC differences between using original single band case and
using EMAP-synthetic bands for change detection. The positive-valued cells in Table 7 indicate that
using EMAP-synthetic bands improved the detection performance and negative-valued cells indicate
that it degraded the detection performance for that method. Overall, it is observed that the change
detection performances of many of the applied change detection methods are improved by using the
EMAP synthetic bands. A very consistent detection performance boost in all five datasets was observed
for HPT, CC, and CE methods. Especially, HPT tends to be significantly improved by using EMAP
bands except in the dataset-1 where it already performs well. Similarly, detection performance was
improved for the ACD method in four of the five datasets. The only dataset where ACD’s performance
slightly decreased is the third dataset. M3CD is affected slightly by using the EMAP bands since in
most datasets the ROC curves are very close to each other for original single band case and EMAP case.
Image Ratio, Pixel Pair, D-MDS and T-MDS results with EMAP are found to be inconsistent. In some
datasets, these methods perform better and in some worse using EMAP showing no clear pattern.
SSIM tends to perform worse with the EMAP synthetic bands with the exception of the first dataset.

Table 7. AUC Differences between using single band case and using EMAP-synthetic bands for
change detection.

Method Dataset-1 Dataset-2 Dataset-3 Dataset-4 Dataset-5
(SAR-SPOT) (Montreal-1)  (Montreal-5)  (Montreal-6)  (Montreal-7)

M3CD —-0.0074 -0.0217 0.0056 0.0082 0.0088
HPT 0.0123 0.0498 0.0957 0.2264 0.1763
D-MDS 0.2682 0.4014 0.0338 —-0.3285 —-0.0491
T-MDS —-0.2039 —-0.0365 0.0774 -0.1018 0.1892
CcC 0.0332 0.0146 0.0418 0.0518 0.0206
ACD 0.0245 0.0425 —0.0234 0.0535 0.002
CE 0.0527 0.0171 0.0785 0.0317 0.0209
IR —-0.0357 —-0.0195 0.0771 0.0196 0.0136
PP —-0.2232 —-0.0517 0.0263 0.0282 0.0327
SSIM 0.4473 —-0.2959 —-0.0201 —-0.0611 —-0.1557

The computational complexity of the ten algorithms varies quite a lot. Table 8 summarizes the
processing times of different algorithms with and without using EMAP for Dataset-1. The algorithms,
excluding M3CD, were run using a computer (Windows 7) with an Intel Pentium CPU with 2.90 GHz,
2 Cores, and 4 GB of RAM. The M3CD algorithm was executed in a Linux computer with Intel i7-4790
CPU at 3.60 GHz and 24 GB of RAM.

Table 8. Comparison of computational times of the ten algorithms for Dataset-1.

Time (s) with Single Band  Time (s) with EMAP

M3CD 2024 22504
HPT 4989 5497
CcC 34 53
ACD 8 9
CE 27 44
D-MDS 6 45
T-MDS 123 125
IR 3 27
PP 486 6742

SSIM 185 1731
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It can be seen that HPT is the most time-consuming algorithm, followed by M3CD and PP. CC,
ACD, CE, IR, and D-MDS are all low complexity algorithms.

6. Conclusions

In this paper, we investigated the use of EMAP to generate synthetic bands and examined the
impact of EMAP use in change detection performance using heterogeneous images. We presented
extensive comparative studies with ten change detection algorithms (nine of them from the literature
and one of our own) using five multimodal datasets. From the investigations, we observed that,
in 34 out of 50 cases, change detection performance was improved, which shows a strong indication
about the positive impact of using EMAP for change detection, especially when the number of original
bands in the image pair is not that many. A consistent change detection performance boost in all five
datasets was observed with the use of EMAP for HPT, CC, and CE.
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