Detecting Patterns of Vegetation Gradual Changes (2001–2017) in Shiyang River Basin, Based on a Novel Framework
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Resources
3. Methods
3.1. The Overview of Our Framework
3.2. The Procedures of Our Framework
3.2.1. Noise Smooth by Using Moving Average
3.2.2. Modeling All Non-Linear Patterns Using a Logistic Function
3.2.3. Identifying Linear Pattern of Vegetation Gradual Change
3.3. Method for Validation
4. Results
4.1. Patterns of Vegetation Gradual Changes in the Shiyang River Basin
4.2. Transition Years and Durations of Vegetation Change
4.3. Forecasting Vegetation Condition in the Shiyang River Basin
4.4. Results of Validation
5. Discussion
5.1. Strengths and Limitations of the Framework
5.2. Factors that Influence the Detected Patterns by Our Framework
5.3. Validation Method
5.4. Potential Driving Factors of Vegetation Gradual Changes
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jensen, J.R. Introductory Digital Image Processing; Prentice-Hall: Englewood Cliffs, NJ, USA; New York, NY, USA, 1996. [Google Scholar]
- De Beurs, K.M.; Henebry, G.M. A statistical framework for the analysis of long image time series. Int. J. Remote Sens. 2005, 26, 1551–1573. [Google Scholar] [CrossRef]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Review ArticleDigital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Hobbs, R.J. Remote sensing of spatial and temporal dynamics of vegetation. In Remote Sensing of Biosphere Functioning; Hobbs, R.J., Mooney, H.A., Eds.; Springer: New York, NY, USA, 1990; pp. 203–219. [Google Scholar]
- Fang, X.; Zhu, Q.; Ren, L.; Chen, H.; Wang, K.; Peng, C. Large-scale detection of vegetation dynamics and their potential drivers using MODIS images and BFAST: A case study in Quebec, Canada. Remote Sens. Environ. 2018, 206, 391–402. [Google Scholar] [CrossRef]
- Watts, L.M.; Laffan, S.W. Effectiveness of the BFAST algorithm for detecting vegetation response patterns in a semi-arid region. Remote Sens. Environ. 2014, 154, 234–245. [Google Scholar] [CrossRef]
- Chen, L.; Michishita, R.; Xu, B. Abrupt spatiotemporal land and water changes and their potential drivers in Poyang Lake, 2000–2012. ISPRS J. Photogramm. Remote Sen. 2014, 98, 85–93. [Google Scholar] [CrossRef]
- De Jong, R.; Verbesselt, J.; Schaepman, M.E.; De Bruin, S. Trend changes in global greening and browning: Contribution of short-term trends to longer-term change. Glob. Chang. Biol. 2012, 18, 642–655. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walkerk, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Fuller, D.O. Trends in NDVI time series and their relation to rangeland and crop production in Senegal, 1987–1993. Int. J. Remote Sens. 1998, 19, 2013–2018. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- De Jong, R.; De Bruin, S.; De Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 2011, 115, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Jamali, S.; Seaquist, J.; Eklundh, L.; Ardö, J. Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel. Remote Sens. Environ. 2014, 141, 79–89. [Google Scholar] [CrossRef]
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.E.; VanZyl, D. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 2007, 68, 271–297. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Kennedy, R.E.; Yang, Z.; Braaten, J.; Krankina, O.N.; Friedl, M.A. Detecting forest disturbance in the Pacific Northwest from MODIS time series using temporal segmentation. Remote Sens. Environ. 2014, 151, 114–123. [Google Scholar] [CrossRef]
- Jamali, S.; Jönsson, P.; Eklundh, L.; Ardö, J.; Seaquist, J. Detecting changes in vegetation trends using time series segmentation. Remote Sens. Environ. 2015, 156, 182–195. [Google Scholar] [CrossRef]
- Jacquin, A.; Sheeren, D.; Lacombe, J.-P. Vegetation cover degradation assessment in Madagascar savanna based on trend analysis of MODIS NDVI time series. Int. J. Appl. Earth Obs. Geoinf. 2010, 12S, S3–S10. [Google Scholar] [CrossRef]
- Percival, D.B.; Wang, M.; Overland, J.E. An introduction to wavelet analysis with application to vgetation monitoring. Commun. Ecol. 2004, 5, 19–30. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Cohen, W.B.; Schroeder, T.A. Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens. Environ. 2007, 110, 370–386. [Google Scholar] [CrossRef]
- Lambin, E.F.; Strahler, A.H. Change-vector analysis in multitemporal space: A tool to detect and categorize land-cover change processes using high temporal resolution satellite data. Remote Sens. Environ. 1994, 48, 231–444. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, G.; Tang, Z.; Lu, D.; Wang, Z.; Chen, C. Assessing the Three-North Shelter Forest Program in China by a novel framework for characterizing vegetation changes. ISPRS J. Photogramm. Remote Sen. 2017, 133, 75–88. [Google Scholar] [CrossRef]
- China Meteorological Administration. National Meteorological Information Center of China. Available online: http://data.cma.cn/ (accessed on 12 May 2019).
- Li, Z.; Feng, Q.; Wang, Q.J.; Song, Y.; Chen, A.; Li, J. Contribution from frozen soil meltwater to runoff in an in-land river basin under water scarcity by isotopic tracing in northwestern China. Glob. Planet. Chang. 2016, 136, 41–51. [Google Scholar] [CrossRef]
- Che, K.; Fu, H.; Wang, J. The structure and function of the water conservation forest ecosystem in Qilian Mountains. Sci. Silvae Sin. 1998, 34, 29–37. (In Chinese) [Google Scholar]
- Kang, S.; Su, X.; Tong, L.; Shi, P.; Yang, X.; Abe, Y.; Du, T.; Shen, Q.; Zhang, J. The impacts of human activities on the water—Land environment of the Shiyang River basin, an arid region in northwest China. Hydrol. Sci. J. 2004, 49, 427. [Google Scholar] [CrossRef]
- Xie, Y.; Bie, Q.; He, C. Human settlement and changes in the distribution of river systems in the Minqin Basin over the past 2000 years in Northwest China. Ecosyst. Heal. Sustain. 2017, 3, 1401011. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, J.; Chen, G.; Xue, L. Environmental effects induced by human activities in arid Shiyang River basin, Gansu province, northwest China. Environ. Geol. 2002, 43, 219–227. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Qiu, G.-Y. Water and energy consumption by agriculture in the Minqin oasis region. J. Integr. Agric. 2013, 12, 1330–1340. [Google Scholar] [CrossRef]
- People’s Daily. Changes in Minqin County due to Desertification Control. Available online: http://baijiahao.baidu.com/s?id=1602349007136022805&wfr=spider&for=pc (accessed on 20 May 2019). (In Chinese).
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series) Version 3.00 (Collection 6). Available online: https://vip.arizona.edu/ (accessed on 20 April 2018).
- LPDAAC. NASA Land Data Products and Services. Available online: http://LPDAAC.usgs.gov (accessed on 20 April 2018).
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Lambin, E.F.; Strahler, A.H. Indicators of land-cover change for change-vector analysis in multitemporal space at coarse spatial scales. Int. J. Remote Sens. 1994, 15, 2099–2119. [Google Scholar] [CrossRef]
- Hayes, D.J.; Cohen, W.B. Spatial, spectral and temporal patterns of tropical forest cover change as observed with multiple scales of optical satellite data. Remote Sens. Environ. 2007, 106, 1–16. [Google Scholar] [CrossRef]
- Xie, Y.; Bie, Q.; Lu, H.; He, L. Spatio-temporal changes of oases in the Hexi Corridor over the past 30 years. Sustainability 2018, 10, 4489. [Google Scholar] [CrossRef]
- Qi, D.; Zhao, Y.; An, W. Current situations of Returning Farmlands to Forest Project in Gulang County. J. Gansu For. Sci. Technol. 2006, 31, 70–72. (In Chinese) [Google Scholar]
- Wuwei Daily. Ecological Treatments in the Upstream Areas of Shiyang River Basin. Available online: http://wwrb.gansudaily.com.cn/system/2011/05/31/012013603.shtml (accessed on 20 May 2019).
- Wuwei Daily. The Seventh Report on the Comprehensive Treatment Project of Shiyang River Basin. Available online: http://ww.gansudaily.com.cn/system/2007/05/29/010363124.shtml (accessed on 20 May 2019). (In Chinese).
- Zhang, Z.; Shang, H. Experience on Forest Restoration in Naopi Gully, Haxi Town, Tianzhu County. Available online: http://ww.gansudaily.com.cn/system/2016/08/31/016355767.shtml (accessed on 20 May 2019). (In Chinese).
- Wang, G.; Ding, Y.; Shen, Y.; Lai, Y. Environmental degradation in the Hexi Corridor region of China over the last 50 years and comprehensive mitigation and rehabilitation strategies. Environ. Geol. 2002, 44, 68–77. [Google Scholar] [CrossRef]
- Zhang, Z.; A, B.; Yang, J. Practice of returning grazingland to nature grass project in Gansu Province. Agri. Technol. Inf. 2011, 21, 53–54. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, Q.; Li, Y. Environmental restoration in the Shiyang River Basin, China: Conservation, reallocation and more efficient use of water. Aquat. Procedia 2014, 2, 24–34. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114. [Google Scholar] [CrossRef]
- Carmona, A.; Nahuelhual, L. Combining land transitions and trajectories in assessing forest cover change. App. Geogr. 2012, 32, 904–915. [Google Scholar] [CrossRef]
- Lambin, E.F.; Ehrlich, D. Land-cover changes in Sub-Saharan Africa (1982–1991): Application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale. Remote Sens. Environ. 1997, 61, 181–200. [Google Scholar] [CrossRef]
- Lu, D.; Hetrick, S.; Moran, E.; Li, G. Application of time series Landsat images to examining land-use/land-cover dynamic change. Photogramm. Eng. Remote Sens. 2012, 78, 747–755. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liu, H.; Peng, S. Detection of cropland change using multi-harmonic based phenological trajectory similarity. Remote Sens. 2018, 10, 1020. [Google Scholar] [CrossRef]
- Potter, C.; Tan, P.; Steinbach, M.; Klooster, S.; Kumar, V.; Myneni, R.B.; Genovese, V. Major disturbance events in terrestrial ecosystems detected using global satellite data sets. Glob. Chang. Biol. 2003, 9, 1005–1021. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Fensholt, R.; Verbesselt, J.; Grogan, K.; Horion, S.; Wang, Y. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 2015, 163, 326–340. [Google Scholar] [CrossRef]
- Wessels, K.J.; van den Bergh, F.; Scholes, R.J. Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens. Environ. 2012, 125, 10–22. [Google Scholar] [CrossRef]
- Breman, H.; Cisse, A.; Djiteye, M.; Elberse, W. Pasture dynamics and forage availability in the Sahe. Isr. J. Bot. 1979, 28. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Guan, Q.; Yang, L.; Pan, N.; Lin, J.; Xu, C.; Wang, F.; Liu, Z. Greening and browning of the Hexi Corridor in northwest China: Spatial patterns and responses to climatic variability and anthropogenic drivers. Remote Sens. 2018, 10, 1270. [Google Scholar] [CrossRef]
- Hao, Y.; Xie, Y.; Ma, J.; Zhang, W. The critical role of local policy effects in arid watershed groundwater resources sustainability: A case study in the Minqin oasis, China. Sci. Total Environ. 2017, 601, 1084–1096. [Google Scholar] [CrossRef]
- Gansu Daily. The Effects of Key Treatment Project in Shiyang River Basin. Available online: http://gsrb.gansudaily.com.cn/system/2014/07/30/015116222.shtml (accessed on 20 May 2019). (In Chinese).
- Wang, Z. Migration of poverty alleviation in Tianzhu County and Gulang County, Gansu Province. Gansu Agric. 2018, 17–23. (In Chinese) [Google Scholar] [CrossRef]
- Forestry and Grassland Bureau of Wuwei. Persisting Sand-Control Projects and Improving Vegetation Conditions. Available online: http://61.178.185.68:8888/pub/lyj/gkml/zdjchzyzczqyjjfkqk/16201.htm (accessed on 20 May 2019). (In Chinese).
- Hua, Y.; Li, Z.; Gao, Z. Variation of vegetation coverage in Minqin County since 2001. Arid Zone Res. 2017, 34, 337–343. (In Chinese) [Google Scholar] [CrossRef]
- Xue, X.; Liao, J.; Hsing, Y.; Huang, C.; Liu, F. Policies, land use, and water resource management in an arid oasis ecosystem. Environ. Manag. 2015, 55, 1036–1051. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Miao, Z.; Li, Z.; Li, J.; Si, J.; Yonghong, S.; Chang, Z. Public perception of an ecological rehabilitation project in inland river basins in northern China: Success or failure. Environ. Res. 2015, 139, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Linderman, M. Time series of remote sensing data for land change science. IEEE Tran. Geosci. Remote Sens. 2006, 44, 1926–1928. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Davenport, M.L.; Malo, A.R. A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Clim. Chang. 1999, 17, 209–241. [Google Scholar] [CrossRef]
- Li, B.; Chen, Y.; Chen, Z.; Xiong, H.; Lian, L. Why does precipitation in northwest China show a significant increasing trend from 1960 to 2010? Atmos. Res. 2016, 167, 275–284. [Google Scholar] [CrossRef]
- Tang, Z.; Ma, J.; Peng, H.; Wang, S.; Wei, J. Spatiotemporal changes of vegetation and their responses to temperature and precipitation in upper Shiyang river basin. Adv. Space Res. 2017, 60, 969–979. [Google Scholar] [CrossRef]
- Pang, G.; Wang, X.; Yang, M. Using the NDVI to identify variations in, and responses of, vegetation to climate change on the Tibetan Plateau from 1982 to 2012. Quat. Int. 2017, 444, 87–96. [Google Scholar] [CrossRef]
- Neigh, C.S.R.; Tucker, C.J.; Townshend, J.R.G. North American vegetation dynamics observed with multi-resolution satellite data. Remote Sens. Environ. 2008, 112, 1749–1772. [Google Scholar] [CrossRef] [Green Version]
Patterns | Trends (b Value in Equation (4) and Slope Value in Equation (6)) | Number of the Transition Years (num) | Duration of Vegetation Changes | Forecast | ||
---|---|---|---|---|---|---|
No-trend | IX | ◊ | ◊ | ◊ | ◊ | ◊ |
Linear | I | Slope > 0 | 0 | ◊ | Keep increasing | |
V | Slope < 0 | 0 | ◊ | Keep decreasing | ||
Exponential | II | b > 0 | 1 | ◊ | Keep increasing | |
VI | b < 0 | 1 | ◊ | Keep decreasing | ||
Logarithmic | III | b > 0 | 1 | ◊ | High stable level | |
VII | b < 0 | 1 | ◊ | Low stable level | ||
Logistic | IV | b > 0 | 2 | √ | High stable level | |
VIII | b < 0 | 2 | √ | Low stable level |
Patterns of Significant Change in Vegetation | No-trend | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Linear | Linear | Exponential | Exponential | Logarithmic | Logarithmic | Logistic | Logistic | |||
Type | (+) | (−) | (+) | (−) | (+) | (−) | (+) | (−) | ||
Coverage (%) | 18.43 | 1.73 | 13.53 | 1.88 | 14.49 | 0.79 | 30.07 | 6.46 | 12.61 | 100 |
Site | Land Cover (2001) | Land Cover (2017) | Change Time | The Known Facts | Evidence |
---|---|---|---|---|---|
a | Forest | Forest | The growth of trees | Report in newspaper [40] | |
b | Grasslands | Bare lands | The surface reflectivity gradually brightened from dark | Landsat images on Google Earth Pro | |
c | Desert lands | Forest | 2011 | Road greening | High resolution images on Google Earth Pro |
d | Farmlands | Greenhouse | 2013 | Greenhouses kept increasing from 2013 to 2017 | High resolution images on Google Earth Pro |
e | Desert lands | Farmlands | 2007 | The surface reflectivity gradually transformed from bright to dark | Landsat images on Google Earth Pro |
f | Farmlands | Urban areas | 2003 | Urbanization | High resolution images on Google Earth Pro |
g | Grasslands | Grasslands | 2010 | The implementation of the grassland protection projects | Report in newspaper [41] |
h | Farmlands | Urban areas | 2010 | Urbanization | High resolution images on Google earth |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Xie, Y.; Wang, X.; Dong, J.; Bie, Q. Detecting Patterns of Vegetation Gradual Changes (2001–2017) in Shiyang River Basin, Based on a Novel Framework. Remote Sens. 2019, 11, 2475. https://doi.org/10.3390/rs11212475
Wang J, Xie Y, Wang X, Dong J, Bie Q. Detecting Patterns of Vegetation Gradual Changes (2001–2017) in Shiyang River Basin, Based on a Novel Framework. Remote Sensing. 2019; 11(21):2475. https://doi.org/10.3390/rs11212475
Chicago/Turabian StyleWang, Ju, Yaowen Xie, Xiaoyun Wang, Jingru Dong, and Qiang Bie. 2019. "Detecting Patterns of Vegetation Gradual Changes (2001–2017) in Shiyang River Basin, Based on a Novel Framework" Remote Sensing 11, no. 21: 2475. https://doi.org/10.3390/rs11212475
APA StyleWang, J., Xie, Y., Wang, X., Dong, J., & Bie, Q. (2019). Detecting Patterns of Vegetation Gradual Changes (2001–2017) in Shiyang River Basin, Based on a Novel Framework. Remote Sensing, 11(21), 2475. https://doi.org/10.3390/rs11212475