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Abstract: Sensor-based phenotyping technologies may offer a non-destructive, high-throughput
and efficient assessment of herbage yield (HY) to replace current inefficient phenotyping methods.
This paper assesses the feasibility of combining normalised difference vegetative index (NDVI) from
multispectral imaging and ultrasonic sonar estimates of plant height to estimate HY of single plants
in a large perennial ryegrass breeding program. For sensor calibration, fresh HY (FHY) and dry
HY (DHY) were acquired destructively, and plant height was measured at four dates each in 2017
and 2018 from a selected subset of 480 plants. Global multiple linear regression models based on
K-fold and random split cross-validation methods were used to evaluate the relationship between
observed vs. predicted HY. The coefficient of determination (R2) = 0.67–0.68 and a root mean square
error (RMSE) between 5.43–7.60 g was obtained for the validation of predicted vs. observed DHY.
The mean absolute error (MAE) and mean percentage error (MPE) ranged between 3.59–5.44 g and
22–28%, respectively. For the FHY, R2 values ranged from 0.63 to 0.70, with an RMSE between 23.50
and 33 g, MAE between 15.11 and 24.34 g and MPE between ~22% and 31%. Combining NDVI and
plant height is a robust method to enable high-throughput phenotyping of herbage yield in perennial
ryegrass breeding programs.

Keywords: multispectral imaging; herbage yield; high-throughput phenotyping; NDVI; plant height;
ultrasonic sonar

1. Introduction

Perennial ryegrass (Lolium perenne L.) is one of the most important temperate forage crops in
Australia for dairy, meat and wool production and it makes a significant contribution to Australia’s
grazing industries valued at $8 billion/annum [1]. Herbage yield (HY) improvement is one of the
primary ryegrass breeding targets, yet it is not easy to improve because phenotyping herbage yield is
laborious, costly and must be performed multiple times within a year and across multiple years [2–4].
The development of new cultivars may take up to 15 years, where repeated phenotyping of herbage
yield and related traits is required at every harvest. However, performing measurements using
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current methods on large numbers plants or plots is slow and expensive, making it difficult to include
large numbers of individual plants or plots [5]. This makes it challenging to capture an accurate
representation of the population and estimate the correct values for individual genotypes. Therefore,
HY estimation requires rapid, non-destructive phenotyping methods that can also facilitate genomic
tools (e.g., genomic selection, GS) to shorten the breeding time and accelerate genetic gain. However,
the number of plants for GS is likely higher than the number of plants traditionally used by breeders
to perform selection breeding (e.g., The DairyBio initiative has 48,000 individual plants for genomic
sub-selection breeding) where phenotyping of individual plants require accurate evaluation [5]. In
recent years, high-throughput phenotyping (HTP) technologies have brought new insights to evaluate
phenotypic traits efficiently in large breeding programs [6–9].

Previous studies have used sensor-based data sources from aerial and ground-based platforms
to estimate biophysical characteristics of various vegetations, including herbage yield of forage
crops [5,10,11]. The aerial-based phenotyping platforms are suitable for lightweight red-green-blue
(RGB), multispectral, and hyperspectral imaging systems and have used vegetative indices to build
models for herbage yield [10,12] and biomass [13–15] estimation of pasture and cereal crops respectively.
Normalised difference vegetative index (NDVI) is a widely used vegetative index for estimates of
biomass [16–18] with limitations at high-biomass and density of crop cover [19]. Small, low-cost
unmanned aerial systems (UAS) and satellite technologies (mainly equipped with multispectral sensors)
are mainly deployed to execute the phenotyping task. The UAS system allows proximal sensing of
plant phenotypes at a small experimental unit level with high spatial and spectral resolution [20–22].

Another alternative extensively used to estimate herbage yield is plant height [23–25]. Plant
structural information metrics may be accessed from terrestrial and aerial sensors. The usefulness
of this information depends on the spatial and temporal resolution of the data [13]. Different sensor
types have been used to evaluate plant height, such us ultrasonic sonar and LiDAR on the ground
and UAS [26–28] as well as structure from motion from digital cameras on UAS [13,29]. Among
the mentioned sensors, ultrasonic sonar is inexpensive and user-friendly with broader application
for sward pasture measurements [26,30,31]. However, the accuracy of plant height measurement
from ultrasonic sonar may be limited by the distance between the sensor and target plant, plant
growth habit and the size (density) of the leaves [26,30]. To overcome some of these limitations, fitting
ultrasonic sonar to ground-based phenotyping platforms may provide accurate measurements. Indeed,
the advantage of a ground-based platform is the suitability capturing data at high resolution with
minimal errors [32].

Generally, the performance of vegetative indices from UAS can be limited by saturation at higher
levels of crop canopy cover [19]. Combining vegetative indices from photogrammetric imagery and
plant height information may improve herbage yield [5]. The combination of NDVI and plant height
from terrestrial LiDAR may improve the herbage yield estimation by up to 20% [12]. A similar result
has been observed in studies of herbage yield estimation of tall fescue (Festuca arundinacea), perennial
ryegrass and phalaris (Phalaris aquatica) sward plots [33]. In these studies, forage crops were evaluated
as swards or under conditions similar to those in commercial paddocks. However, assessment of
ryegrass herbage yield at early stages of a breeding program requires an evaluation of large numbers
of individual plants, grown under spaced conditions. Non-destructive estimations of plant height and
NDVI may provide the structural and spectral information for forage breeders to select elite genotypes
from large breeding populations to explore the full potential of GS.

Some biomass and herbage yield estimation methods use advanced multivariate regression
techniques for the establishment of a direct relationship between proximally sensed and manually
collected parameters. Previous studies have demonstrated the use of linear and non-linear regression
models to predict plot biomass from sensor measured plant height in barley experimental plots, NDVI in
cover crops and combined plant height, and NDVI in tall fescue [12], winter wheat and barley [15,34].
The performance of the models varies with the experiment and crop types used. However, most of the
previous studies focus on plot-level field evaluations for grass and crop management, and no previous
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studies have been performed that apply sensors in combination to determine the HY estimations of
single plants. In this study, we develop various cross-validation models using NDVI from UAS-based
multispectral imaging and plant height from the ground-based vehicle to predict fresh herbage yield
(FHY) and dry herbage yield (DHY) in large perennial ryegrass breeding program.

The overall objective of the study was to establish herbage yield estimation models for individual
perennial ryegrass plants by using data derived from non-destructive methods including plant height,
NDVI and a fusion of plant height and NDVI for eight harvests during the 2017 and 2018 growing
seasons. The model predictions were compared with manual measurements to validate them as
predictors of HY for individual plants.

2. Materials and Methods

2.1. Experimental Setup

The experiment was carried out on a field at Agriculture Victoria Research’s (AVR)-Hamilton
Centre (37.8462◦S, 142.07375◦E, elevation 209 m) located in South West Victoria, Australia. The research
site, approximately 0.78 ha, planted with 48,000 perennial ryegrass plants, was established in June
2016 as part of the DairyBio project. The field trial was established to perform genomic sub-selection
(GSS, field hereafter) through applications of advanced phenomics and genomics tools. It contains
500 perennial ryegrass plots of fifty cultivars and advanced breeding lines planted as randomised
complete block design. Each plot consists of 96 genotypes in a layout of three parallel rows, each with
32 spaced plants per row, 0.60 m spacing between rows, and 0.25 m spacing between individual plants
within a row (Figure 1). The size of each plot is ~14.4 m2 (1.8 m × 8 m dimension) representing one
cultivar/advanced breeding line per plot. Fertiliser application and weed management practices were
performed regularly throughout the experiment period.

For this experiment, eight total harvests in the years 2017 and 2018 were performed. At each
harvest, a subset of 475 (2017) and 426 (2018) plants from five breeding lines were harvested. Details of
the manually collected data, data from the UAS and PhenoRover phenotyping platforms are listed
in Table 1.

Two phenotyping systems, ground and UAS-based platforms were used for data collection.
A ground-based phenotyping system was used to collect plant height measurements from single plants
whereas the UAV used a multispectral imaging system to extract individual plant’s NDVI values.
The selected plants were assessed for height and cut for fresh and dry weight on the following day.

2.2. Data Collection Platforms

2.2.1. Unmanned Aerial Systems (UAS)

During 2017, aerial images were collected via a Parrot Sequoia (Parrot Drones S.A.S, Paris, France)
multispectral camera abroad a 3DR Solo (3D Robotics, Berkeley, CA, USA) UAS at 20 m elevation
(Figure 2a). Tower Beta software was used to conduct each flight. Airinov calibration plates (MicaSense
Inc., Seattle, WA, USA) with known reflectance values were used to correct the reflectance values of
the images.

During 2018, aerial images were collected via a RedEdge-M (RedEdge-M, MicaSense Inc., Seattle,
WA, USA) multispectral camera aboard a DJI M100 (DJI Technology Co., Shenzhen, China) UAS to
collect images at 20 m flight elevation. New UAS and camera system was used in this season due to
the reason AVR decided to upgrade the carrying capacity of the UAS system at Hamilton Centre in
the year 2018. Flights were conducted using the Pix4D capture software. Reflectance values from
calibration tarps (Tetracam INC. Chatsworth, CA, USA) were used to correct the reflectance values of
the images. The multispectral imagery was collected with 1.2 megapixels. The details of UAS data
acquisition methods and processing accuracies are listed in Table 2.
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Figure 1. Study site: the perennial ryegrass experiment was conducted at the Hamilton Centre Research
Station in Victoria State of Australia in 2017 and 2018. NDVI tiff file is used to display the field trial site
sampled plants and non-sampled plants throughout the experiment time.

Table 1. Overview of the data collected from individual plants, data collection date, sensors applied
and equipment used for measurements.

Date Season of the Year Number of Plants
Sampled Data Acquisition Sensors/Equipment

9 May 2017 Autumn

475
UAS flight, manual

height and fresh and
dry HY

Parrot Sequoia, ruler
and manual cut

4 July 2017 Winter

11 September 2017 Early spring

20 November 2017 Late spring

19 June 2018 Winter

426

UAS flight, manual
height, fresh and dry

HY and ultrasonic
sonar height

Parrot Sequoia, ruler,
manual cut and
ultrasonic sonar

20 August 2018 Late winter *

23 October 2018 spring

20 November 2018 Late spring

* No ultrasonic sonar data.
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Table 2. Details of UAS data acquisition and processing quality.

Date Season Overlap
(Forward/Side) Flight (m/s) Flight Time

(Minutes)
Georeferencing

RMSE (m)
GSD

(m/pixel)

2017 Autumn 80%/75% 6 4 0.02 0.02
Winter 80%/75% 6 4 0.01 0.02

Early spring 80%/75% 6 4 0.01 0.02
Late spring 80%/75% 6 4 0.01 0.022

2018 Early winter 75%/75% 6 4 0.01 0.02
Late winter 75%/75% 6 4 0.03 0.02
Early spring 75%/75% 6 4 0.04 0.02
Late spring 75%/75% 6 4 0.03 0.02

2.2.2. Image Processing and NDVI Data Extraction

PiX4D Mapper Pro (version 4.3.31 Pix4D, Lausanne, Switzerland) (https://pix4d.com) was used
to perform geolocation of captured images by generating orthomosaics. The initial main steps in
this process included importing ground control points (GCPs), aligning and reoptimizing of images.
The next step included building dense point clouds, building orthomosaic, performing radiometric
calibration (2017 data) and calculating NDVI [21]. Nine GCPs were distributed across the field trial site
for increasing accuracy and noise reduction (Figure 1). Accurate geographical locations of GCPs were
obtained using a Trimble RTK GNSS receiver (Navcom SF-3040, Nav Com Technology Inc., Torrance,
CA, USA), with a horizontal/vertical accuracy of 0.01 m + 0.5 ppm/0.02 m + 1 ppm respectively. The
values of the geometric root mean square errors of the GCPs and ground sample distances (GSD) of the
processed data are indicated in Table 2 were used to evaluate the accuracy of the orthomosaic images.

For the 2017 data, single plants NDVI value was calculated from the orthophotos using
zonal statistics in the QGIS 2.18.2 (QGIS Development Team, 2017, Raleigh, NC, USA)
(https://www.qgis.org/en) software environment. This was performed by manually projecting polygons
on to each sampled single plant in the coordinate reference system of the trial.

For the 2018 data TIFF files of index values from individual bands were loaded to eCognition
software (eCognition Developer 9, Trimble, Munich, Germany). In the eCognition workflow, calibration

https://pix4d.com
https://www.qgis.org/en
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of TIFF index values was performed based on the extrapolation of digital numbers from the calibration
tarps of known reflectance. Next, the calculation of VI, manual segmentation, and classification of VIs
were performed, followed by NDVI value extractions.

2.2.3. PhenoRover System Field Deployments

The PhenoRover system is a ground-based platform consisting of a Polaris Ranger 6× 6 side-by-side
vehicle system (Polaris Industries Inc., Medina, MN, USA) and a range of integrated sensors (Figure 2b).
The PhenoRover phenotyping platform was designed for collecting pasture height data, and the
development was completed at Hamilton in 2016. The PhenoRover was deployed at the beginning of
2018 and proceeded to collect data at each three-leaf stage harvest at an average speed of 1.4 ms−1.
Six ultrasonic sonar sensors (UNDK 30U6103/S14, Baumer group, Frauenfeld, Switzerland) were
installed onto a sensor boom, which was 1.45 m wide custom-made steel rigidly welded to the
PhenoRover front. The six ultrasonic sonar sensors in total collected height data in three rows and two
columns of plants on each pass of the PhenoRover over the field trial. All ultrasonic sonar sensors
were mounted at 0.6 m above the ground and arranged in three rows of 0.6 m apart in a nadir view.
The ultrasonic sonars have a high repeatability accuracy of 0.0005 m. The ultrasonic sonar sensors
have a measuring range from 0.1 to 1.0 m, with a sonic frequency of 240 KHz taking measurements at
10 Hz. This allows for height measurement to be captured every 0.05–0.10 m when driving at 1.4 ms−1.
In addition to the ultrasonic sensors, one Global Navigation Satellite System (GNSS) antennae (AG25,
Trimble, Westminster, CO, USA) was installed at the rooftop of the PhenoRover system and connected
to a real-time kinematics GNSS (RTK-GNSS) receiver (FMX Integrated Display, Trimble, Westminster,
CA, USA) for generating georeferenced and geolocated sensor data. Moreover, to record the ultrasonic
sonar measurements a Campbell Scientific CR3000 datalogger (Campbell Scientific, Inc., Logan, UT,
USA) was fitted on the back of the PhenoRover system.

2.2.4. Plant Height Data Extraction from the Ultrasonic Sonar

Ultrasonic sonar sensors measurements were processed using the methodology of
Thompson et al. [35] and Wang et al. [36] (Figure 3). Two main steps are followed for analysing
the data: (1) georeferencing of sensor and RTK-GNSS data through projecting to the Universal
Transverse Mercator (UTM) coordinate system. The UTM position of each sensor’s measurement was
calculated. The field site is in the UTM zone 54S; and (2) matching ultrasonic sensor data to individual
plant information using QGIS to annotate sensor data to each plant’s boundaries. Geo-referenced
individual plants data were overlayed on pre-defined polygon shapefiles of the selected individual
plants in QGIS. Polygons with ID numbers were manually drawn around the individual plants. The
data processing and extraction were performed through the processing steps of the HTP geo-processer
plug-in. This completes the processing of plant height, displaying an attribute table as a final output of
individual plant height along with the ID numbers of the plants.
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2.2.5. HY Data Collection

Individual plants’ HY data from manual harvests were collected in the years 2017 and 2018
under four harvesting dates of different seasons of each year (Table 1). The timing was determined
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by the growth stage of the single plants, in which the 2–3 leaf stage was considered as a standard
simulated grazing stage [37]. Thirty-two plants from the third row of the sampled plot were selected
for plant height and herbage yield measurement. The destructive measurements of FHY and DHY of
single plants were obtained by cutting plants at the 0.05 m above-ground level. FHY was measured
from individual plants, and all samples were subsequently dried in an oven for 48 h at 60 ◦C for the
determination of DHY. Additionally, individual plant height was measured using a standard ruler
from the base of each plant to the highest upright standing leaf.

2.3. Estimation Models of HY through Sensors Data Combination

Data from the ground and aerial-based platforms were combined to obtain the most suitable
model for individual plants’ herbage yield estimation. Firstly, UAS-based NDVI data extracted
from each plant through the process in Figure 3 were modelled to estimate HY at every seasonal
harvest. Secondly, manually measured plant height and PhenoRover-based plant height data extracted
from individual plants through the process in Figure 3 were compared. Thirdly, the manually
measured and PhenoRover-based plant height data were modelled to estimate HY. To improve the
estimation of accuracy of FHY and DHY, combining the spectral and structural information may be
necessary [12,15,31]. In this study, different multiplicative combination methods of NDVI and plant
height were assessed, including NDVI × plant height, NDVI × plant height × plant height and, NDVIsq
× plant height (NDVIsq_PH). NDVIsq_PH showed the best combination to estimate FHY and DHY
with higher accuracy.

2.4. Statistical Analysis

The relationship of herbage yields with plant height and NDVI were analysed using general
linear regression models (Figure 3). The measurement taken at the individual plant level was the
unit of analyses. Residuals versus fitted values plots were examined to determine the need for data
transformation to ensure the normality of residuals with constant variance. When deemed necessary,
data were logarithmically transformed before the final analyses. All analyses were performed in R
version 3.5.2 (R Core Team 2018, Vienna, Austria).

On some data collection dates (all of 2017 and one day in 2018), plant heights from ultrasonic
sonar was not available due to technical issues with the GPS of the PhenoRover system. For these
dates, manually measured plant height with a standard ruler was used. For the testing, the estimation
of plant height using ultrasonic sonar, a linear regression relationship with the manually measured
plant height was performed on three collection dates of 2018.

A parsimonious model for FHY/DHY was developed by using variables such as NDVI values,
manually measured plant height (PH)/ plant height from ultrasonic sonar sensors, the product of NDVI
square and plant height (NDVIsq_PH) and seasons. The parsimonious model selected was:

FHY/DHY ∼ intercept + NDVIsq_PH + Season + NDVIsq_PH.Season (1)

The predictive accuracy of the model was determined by splitting data into calibrations/training
and validation/test sets, which is often referred to as cross-validation. Cross-validation can be carried
out in many ways, but we focused on two methods (1) k-fold cross-validation and (2) random split of
the dataset. In K-fold cross-validation, we randomly split the data into k-folds (k = 2, 5, 10 and 20) and
K-1 folds (sets) of data used as calibration/training set and model parameters were estimated using
this data. Using these model parameters, we predicted the FHY/DHY for the remaining one-fold (set)
of the data. The cross-validation process is then repeated k times, with each of the k-fold (sets) used
exactly once as the validation/test data.

In random split approach, we randomly split data into 60%/40%, 70%/30% and 80%/20%, where 60%,
70% and 80% of the data were used as calibration/training and 40%, 30% and 20% of the data were used
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as validation/test set, respectively. Each of the random split strategies was carried out 10,000 times,
and results averaged.

The model accuracy was measured using coefficient of determination (R2), root mean squared
error (RMSE), mean absolute error (MAE), and mean percentage error (MPE) [21]. The R2 is the
correlation coefficient between measured and predicted herbage yield. RMSE is the square root of
the mean squared difference between observed herbage yield and predicted herbage yield. MAE is
the mean of the absolute difference between observed herbage yield and predicted herbage yield and
mean percentage error is the mean of the error percentage ((|observed herbage yield–predicted herbage
yield|/observed herbage yield) × 100).

3. Results

3.1. Seasonal Herbage Yield Variation

Figure 4 shows a box mean of measured FHY and DHY of individual plants across four seasons
of 2017 and 2018. The FHY value per plant (82.48–127.18 g) varied across seasons in 2017 and
(32.80–96.50 g) in 2018. Similarly, the DHY value per plant varies (20.04–36.24 g) in 2017 and (9–22.29 g)
in 2018. Moreover, measured seasonal FHY and DHY of the years 2017 and 2018 indicated a wide
variability of biomass values (~1.41–428 g) for each measurement season for the individual plants. This
suggests that herbage yield had enough variation to use to correlate the NDVI and plant height from
ultrasonic sonar sensors.
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yield (b,d); A: autumn; W: winter; MS: mid-spring; LW: late winter; EW: early winter; ES: early spring;
LS: late spring.
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3.2. Correlation between Manual and Sonar Plant Height

A strong correlation (R2 = 0.76) was observed between manual and ultrasonic sonar plant height
(Figure 5). Plant height measurement using ultrasonic sonar slightly overestimated height, mainly
when plants are small, which may result from the uneven surface of the measured field trial. The slope
of the regression line was close to one, and the RMSE was 2.98 cm, and this implies that the use of
ultrasonic sonar is useful to estimate plant heights of space-planted perennial ryegrass single plants.
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using a standard ruler for the selected measurement date of 19 June 2018.

3.3. Individual Plant Herbage Yield Model Evaluation

The R2 for linear regression models of log-transformed DHY estimation from NDVI ranges
between 0.35 and 0.73 (Figure 6a,c). The variation in accuracy of seasonal HY estimation indicates that
NDVI as an estimator can be limited by saturation at high seasonal HY accumulation. A linear relation
between DHY and plant height showed variable R2, which was between 0.15 and 0.65 (Figure 6b,d).
Lower estimation accuracy of the mid and late-spring of 2018 (R2 = 0.12–0.15).

Figure 7a,b showed seasonal linear regression models of DHY estimation from NDVIsq_PH that
improved the R2 averagely with up to 10% in 2017 and 24% in 2018 compared to plant height and NDVI
alone. Looking at the combined seasonal estimation models, yearly estimation values of DHY from
NDVIsq_PH were consistent with the individual season models (R2 = 0.67) (Figure 8a,b), indicating
the possibility of applying the global model of HY estimation instead of specific (seasonal) models.
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Figure 6. Scatterplots of (a) NDVI extracted from UAS-based multispectral imaging vs. log-transformed
dry herbage yield measurements of single plants in four seasons of the 2017 dataset; (b) plant height
measured versus log-transformed dry herbage yield measurements of single plants in four seasons
of the 2017 dataset; (c) NDVI extracted from UAS-based multispectral imaging vs. log-transformed
dry herbage yield measurements of single plants in four seasons of the 2018 dataset; (d) plant height
measured versus log-transformed dry herbage yield measurements of single plants in four seasons of
the 2018 dataset. p-value < 0.001 for all regression equations.



Remote Sens. 2019, 11, 2494 12 of 19
Remote Sens. 2019, 11, x FOR PEER REVIEW  12  of  19 

 

 

Figure 7. Scatterplots of (a) squared NDVI‐value extracted from UAS‐based multispectral  imaging 

and plant height (NDVIsq_PH) vs. dry herbage yield measurements of single plants in four seasons 

of 2017; (b) NDVIsq_PH vs. dry herbage yield measurements of single plants in four seasons of 2018. 

p‐value < 0.001 for all regression equations. 

 

Figure 8. Scatterplots of (a) combined regression of NDVIsq_PH vs. dry herbage yield measurements 

of single plants in four seasons of 2017; (b) combined regression of NDVIsq_PH vs. dry herbage yield 

measurements of single plants in four seasons of 2018. p‐value< 0.001 for all regression equations. 

3.4. Herbage Yield Prediction 

Tables 3 and 4 show the details of cross‐validations (CVs) of multiple linear regression models 

to estimate FHY and DHY yield, respectively. Looking at Table 3, K‐fold CV at K = 2, 5, 10 and 20 

indicated a similar  level of estimation accuracies across the 2017 and 2018 datasets. The R² values 

from  the K‐fold CV  of  the  2017  dataset  remain  similar  to  that  of  2018  (0.63–0.64  vs.  0.69–0.70). 

However, the RMSE and MAE values from the K‐fold CV of the 2017 dataset were higher than those 

of 2018. The MPE% of 2018 K‐fold CV was higher than that of 2017. Similarly, random splits of the 

yearly dataset into 10,000 simulated repetitions of 60%/40%, 70%/30%, and 80%/20% indicated similar 

Figure 7. Scatterplots of (a) squared NDVI-value extracted from UAS-based multispectral imaging
and plant height (NDVIsq_PH) vs. dry herbage yield measurements of single plants in four seasons of
2017; (b) NDVIsq_PH vs. dry herbage yield measurements of single plants in four seasons of 2018.
p-value < 0.001 for all regression equations.
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Figure 8. Scatterplots of (a) combined regression of NDVIsq_PH vs. dry herbage yield measurements
of single plants in four seasons of 2017; (b) combined regression of NDVIsq_PH vs. dry herbage yield
measurements of single plants in four seasons of 2018. p-value< 0.001 for all regression equations.

3.4. Herbage Yield Prediction

Tables 3 and 4 show the details of cross-validations (CVs) of multiple linear regression models
to estimate FHY and DHY yield, respectively. Looking at Table 3, K-fold CV at K = 2, 5, 10 and 20
indicated a similar level of estimation accuracies across the 2017 and 2018 datasets. The R2 values from
the K-fold CV of the 2017 dataset remain similar to that of 2018 (0.63–0.64 vs. 0.69–0.70). However,
the RMSE and MAE values from the K-fold CV of the 2017 dataset were higher than those of 2018.
The MPE% of 2018 K-fold CV was higher than that of 2017. Similarly, random splits of the yearly
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dataset into 10,000 simulated repetitions of 60%/40%, 70%/30%, and 80%/20% indicated similar R2

values (0.64–0.69) like the K-fold CV in both experimental years. The RMSE and MAE values of
the 10,000 random splits were similar to the K-fold within the year but significantly higher in 2017
than 2018.

Table 3. Summary of cross-validation results for predicted fresh herbage yield (g/p). CV method:
cross-validation method; R2: coefficient of determination; RMSE: root mean square error; MAE: mean
absolute error; MPE: mean percentage error.

2017 2018

CV Method Partition R2 RMSE (g) MAE MPE% R2 RMSE (g) MAE MPE%

2-folds 2 0.63 32.81 24.31 22 0.69 23.80 15.21 30
5-folds 5 0.64 32.66 24.30 22 0.69 23.67 15.11 30.63

10-folds 10 0.64 32.60 24.29 22 0.69 23.71 15.16 30
20-folds 20 0.64 32.59 24.30 22 0.70 23.50 15.15 30

Random split * 60%/40% 0.64 32.77 24.34 22 0.69 23.96 15.50 30.70
Random split * 70%/30% 0.64 32.77 24.33 22 0.69 23.92 15.49 30.68
Random split * 80%/20% 0.64 32.71 24.31 22 0.69 23.91 15.49 30.66

* = Random split results based on 10,000 simulations.

In the DHY estimation, K-fold and random split CV showed relatively similar accuracy for the R2

values (0.66–0.67) of the 2017 and 2018. The RMSE, MAE, and MPE values from the K-fold and random
split CV were in the range of 7.53–7.60 g, ~5.44 g and ~22%, respectively, for the 2017 dataset (Table 4).
This indicated K-fold CV (at different values of K) and the and 10,000 simulated random splits of
60%/40%, 70%/30% and 80%/20% showed no sign of variation in these values irrespective of the sample
size. Similarly, RMSE, MAE, and MPE values of the 2018 dataset were 5.44–5.52 g, 3.59–3.67 g and
~28%, respectively. The RMSE and MAE of the CV values were generally smaller in 2018 than the 2017
dataset, whereas the MPE was reverse.

The scatterplot in Figure 9 shows an example of the graphic representation of observed vs. the
predicted DHY. The DHY validation shows the data points generally closer and slightly deviated from
the 1:1 line, indicating DHY prediction methods may be used to accurately estimate HY of individual
ryegrass plants.

Table 4. Summary of cross-validation results for dry herbage yield (g/p). CV method: cross-validation
method; RMSE: root mean square error; R2: coefficient of determination; MAE: mean absolute error;
MPE: mean percentage error.

2017 2018

CV Method Partition R2 RMSE (g) MAE MPE% R2 RMSE (g) MAE MPE%

2-folds 2 0.66 7.57 5.43 22 0.67 5.50 3.60 27.76
5-folds 5 0.67 7.56 5.44 22 0.67 5.46 3.60 27.62

10-folds 10 0.67 7.57 5.43 22 0.67 5.50 3.59 28
20-folds 20 0.67 7.53 5.43 22 0.68 5.43 3.59 27.65

Random split * 60%/40% 0.67 7.59 5.44 22 0.67 5.52 3.67 28.34
Random split * 70%/30% 0.67 7.60 5.44 22 0.67 5.52 3.66 28.31
Random split * 80%/20% 0.67 7.58 5.44 22 0.67 5.51 3.66 28.29

* = Random split results based on 10,000 simulations.
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Figure 9. Scatterplots of observed and predicted dry herbage yield (grams/plant) in perennial ryegrass
with linear regressions of various K-folds and random splits of cross-validation. The data points
displayed in each plot represent the K-fold validation sets of (a) two-fold, (b) five-fold, (c) 10-fold, (d) 20-
and (e) 60/40%, (f) 70/30% and (g) 80/20% random split from the 2017 harvest. The solid diagonals
represent 1:1 line, and the dashed lines represent the fitted linear functions. p-value < 0.0001 for all
regression functions.

4. Discussion

Current, HY phenotyping is time-consuming and relies mainly on visual scoring. HTP platforms
that would improve the speed and accuracy of HY phenotyping have, so far, only been applied at the plot
level [20,29], and no one has conducted phenotyping at the individual plant level except on trees [38–40].
Various sensor-based assessments of phenotyping at the individual plant level is required to implement
molecular breeding techniques, like GS. However, the implementation of GS implies cross-validation
on the evaluation of the genetic and phenotypic breeding values of individuals for accurate selection of
superior genotypes [41,42]. GS, in perennial ryegrass, has currently followed the trend of evaluating the
HY of sward plots of cultivars and breeding lines [43,44]. The phenotypic selection at individual plants
level is required to explore the full potential of GS programs. Sensor-based phenotyping technologies
offer a non-destructive, high-throughput and efficient assessment of HY replacing current inefficient
phenotyping methods [5]. In this study, we explained the potentials of sensor-based HTP technologies
to estimate FHY and DHY through the development and cross-validation of various prediction models.

The seasonal HY distribution in the 2017 and 2018 showed that HY from the 2017 harvest dates
was higher compared to 2018 in all seasons. The notable decline in dry matter yield as the year
progressed may result from the drought stress and repetitive cutting [45].

Plant height can be obtained using manual and ultrasonic sonar-based measurements [26–28,46].
Automation of plant height measurements using sensors offers an excellent advantage for assessing
large breeding populations rapidly and objectively [5]. A high correlation was observed between
plant height from a standard ruler and an ultrasonic sonar sensor. Similar results of R2 (0.56–0.7) from
UAS-derived grassland height and RMSE of 3.50 cm from LiDAR-derived wheat height were reported.
However, other reports achieved higher R2 (0.90–0.98) applying ground-based LiDAR on wheat and
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cotton, aerial based-RGB (R2 = 0.87–0.98) on barley [23,24] and ground-based sonar sensors (R2 = 0.86)
on cotton [47]. Most of these studies conducted at the plot level were of the canopy structure of plants
growing as a sward plot and may be different from space-planted single plants.

The correlation between log-transformed seasonal DHY vs. NDVI of individual ryegrass plants
was moderate, with R2 ranging between 0.36 and 0.73 across seasons. The significant variations of R2

(up to 37%) of estimation accuracies occur among the seasons; mainly, it could result from the effect of
saturation at the late growth stage [19]. In previous sward studies, similar R2 values (0.38–0.56) of
NDVI vs. DHY were reported in alfalfa, Bermuda grass and tall fescue [12,28,48]. However, R2 values
in these studies were slightly lower compared to studies on grain crops, including wheat, barley, and
maize [49–51]. This could be related to the vigour of canopy growth habit difference between forage
and grain crops, where NDVI could be influenced [52].

Plant height is another widely used structural and physical parameter used to estimate the
biomass of various crops [20,23,53,54]. Previous studies on grasslands indicated moderate to high
correlation (R2 = 0.59–0.81) on predicting dry herbage yield from plant height measurements [45].
In the current study, the R2 of plant height vs. log-transformed DHY was more variable (R2 = 0.12–0.65)
than NDVI across seasons. Moreover, correlations were slightly lower compared to previous results in
the literature [13,55]. Specifically, lower accuracies were obtained from the spring 2018 experiments
due to early flower initiation from drought stresses. In this study, we believe the surface of these small
plants may have reflected weak sound echoes, which made it difficult for the ultrasonic sonar to detect
accurate distance from the top canopy of the plant. Furthermore, when the plant canopy is a mixture
of leaves and sparse reproductive tillers there is a greater variability in height and the surface that
interacts with the sensor. Similar results of low accuracies were reported to detect thin spikes of wheat
at the time of maturity compared to clustered young leaves [26].

The NDVI values explain the spectral properties of the plant canopy, whereas plant height is
related to the vertical structure and growth rate of a plant [53,56]. Combining the physical and
spectral parameters was successful in grasping spectral and structural information and improved the
regression estimation of aboveground biomass [20]. The results show combining NDVI and plant
height (NDVIsq_PH) data exhibited up to 10–24% improvement in prediction accuracy of DHY than
using either NDVI or plant height alone. Schaefer and Lamb [12] investigated the combination of NDVI
and LiDAR plant height to improve the estimation accuracy of tall fescue HY by up to 20%. However,
this study made on single measurement experiment without looking at combined information of
changes in plant performance for multiple growing seasons.

The validation of the model performance of observed vs. predicted values of FHY and DHY
showed similar accuracies across all the K-fold (k = 2, 5, 10, and 20) and random split (60/40%, 70/30%
and 80/20%) with R2 = 0.63–0.70 across the two seasons dataset. We excluded FHY results in some
of our results since data points deviated similarly from the 1:1 line, indicating that either FHY or
DHY prediction methods will be enough to estimate HY of individual ryegrass plants. However,
FHY results were included in the cross-validation results to match up with some of the results of the
whole GSS result with only FHY datasets. Our cross-validation results were consistent with the results
of [15], who applied random split CV to estimate fresh and dry biomass of barley from the fusion of
NDVI and plant height. The authors obtained (R2 = 0.67–0.79) from linear regression. The R2, RMSE,
MAE and MPE of yearly regression models performed similarly irrespective of the CV type used,
suggesting that models developed are stable and reliable across all K-fold and 10,000 repetitive random
splits. However, regression models from previous studies showed variability in model performance at
different random split [15,23,24]. The reason for this was, a small number of samples (n = 48–194) were
used in these studies, and experiments were performed with not more than three harvests compared
to the current study (n = 1626–1900) with a total of eight seasonal harvests in two years. Several other
studies indicated combined VIs (other than NDVI) and plant height performed better for biomass
estimation than VIs alone [13,15,20,57].
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In the current study, year-for-year RMSE, MAE and MPE values of the CV showed variations in
values. For instance, the RMSE and MAE values of the 2017 dataset were more significantly higher
than the 2018 dataset, suggesting the plants from the 2017 harvest dates were larger with larger FHY
and DHY values. It was impossible to compare the RMSE and MAE values from our results with the
literature as there is no work done on single plants in the previous research where works focused on
measurements of kg per plot or in a given area (square metre/hectare). Contrary to the RMSE and
MAE, the MPE values from the 2017 dataset were slightly smaller compared to the 2018 dataset.

We found a high correlation by combining NDVI and plant height to predict DHY of individual
ryegrass plants at the 2–3 leaf growth stage. This was proved by cross-validation using multiple linear
regression model, and we still need to apply more non-linear regression methods that include machine
learning techniques with more datasets from larger study samples may improve the prediction models
further and be able to rank genotypes non-destructively and objectively.

5. Conclusions

This study is the first to integrate various sensors on aerial and ground-based phenotyping
platforms that implement combining spectral and structural information to estimate HY of space-planted
perennial ryegrass in the context of the large-scale breeding program. The results of this study
demonstrate that the best prediction of DHY of space-planted perennial ryegrass single plants come
from the multiplicative combination of NDVI and Plant height (NDVIsq_PH). The K-fold and random
split CV findings imply that the combination of NDVI and plant height improved prediction accuracy
over the use of NDVI and plant height alone. This yielded an accuracy of the coefficient determinations
of HY estimation more than 0.63 and RMSE for FHY, and DHY was less than 33 g/plant and 8 g/plant,
respectively. The application of various K-fold and random split methods do not change the prediction
accuracy. We propose this non-destructive and rapid HY phenotyping technique to replace the current
slow and time-consuming HY yield phenotyping methods. Therefore, this method can be assessed for
effective estimation of thousands of individual plants and develop prediction equations that can be
used for phenotypic ranking of genotypes for HY.
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