Spatial Patterns of Chemical Weathering at the Basal Tertiary Nonconformity in California from Multispectral and Hyperspectral Optical Remote Sensing
Abstract
:1. Introduction
2. Geologic Context
2.1. Regional Basal Tertiary Nonconformity
2.2. Study Sites
2.2.1. Maniobra
2.2.2. Ione
2.2.3. Goler
3. Material and Methods
3.1. Data–AVIRIS
3.2. Data – Sentinel-2
3.3. General Approach to Analysis
3.3.1. False Color Composite Images
3.3.2. Linear Spectral Mixture Analysis
4. Results
4.1. Maniobra
4.1.1. Remote Sensing Analysis
4.1.2. Geologic Interpretation of Endmember Spectra and Fraction Image
4.2. Ione
4.2.1. Remote Sensing Analysis
4.2.2. Geologic Interpretation of Endmember Fraction Image and Matrix
4.3. Goler
4.3.1. Remote Sensing Analysis
4.3.2. Geologic Interpretation of Endmember Fraction Image
5. Discussion
5.1. Impact of Sensor Spectral Resolution
5.2. Sentinel-2 at the Goler Site
5.3. Using Reflectance to Map Geologic Contacts
5.4. Mapping Geologic Units across A Gradational Contact
5.5. Global Implications for Geologic Mapping
6. Conclusions
- (1)
- the information available about the location and depth and individual absorptions present in the hyperspectral AVIRIS data provides novel information which can be incorporated in geologic map descriptions with substantial greater specificity than field observations alone;
- (2)
- the information present in the spectral continuum captured by Sentinel-2 and Landsat 8 allows for general discrimination of geologic map units across the unconformity of interest, but results in the loss of important spatial variations in strength of the ~2200 nm absorption;
- (3)
- in contrast, the ~2200 nm absorption is successfully captured by the WorldView 3 SWIR bands, with unambiguous feature space clustering, statistical separability, and ultimately geologic mapping utility;
- (4)
- linear spectral unmixing using both local and distal spectral endmembers can greatly assist in both delineating boundaries between geologic units and visualizing continuous field gradients;
- (5)
- a comprehensive field campaign ultimately benefits most from using decameter spectral information in concert with both the detailed spatial information present in sub-meter resolution air photos or satellite imagery.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Saleeby, J.; Saleeby, Z.; Sousa, F. From deep to modern time along the western Sierra Nevada foothills of California, San Joaquin to Kern River drainages. Geol. Soc. Am. Field Guides 2013, 32, 37–62. [Google Scholar]
- Sousa, F.J.; Saleeby, J.; Farley, K.A.; Unruh, J.R.; Lloyd, M.K. The southern Sierra Nevada pediment, central California. Geosphere 2017, 13, 82–101. [Google Scholar] [CrossRef]
- Van Buer, N.J.; Miller, E.L.; Dumitru, T.A. Early Tertiary paleogeologic map of the northern Sierra Nevada batholith and the northwestern basin and range. Geology 2009, 37, 371–374. [Google Scholar] [CrossRef]
- Sousa, F.; Saleeby, J.; Farley, K.A. Chronology of tectonic and landscape evolution of the southern Sierra Nevada foothills-eastern San Joaquin basin transition, CA. In Pacific Section AAPG, SPE and SEPM Joint Technical Conference; American Association of Petroleum Geologists: Bakersfield, CA, USA, 2014. [Google Scholar]
- Sousa, F.J. Eocene origin of Owens Valley, California. Geosciences 2019, 9, 194. [Google Scholar] [CrossRef]
- Sousa, F.; Saleeby, J.; Farley, K.A.; Unruh, J. The southern Sierra Nevada foothills bedrock pediment. In 2013 GSA Cordilleran Section Meeting; GSA Abstracts with Programs: Fresno, CA, USA, 2013; Volume 45, p. 53. [Google Scholar]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Markham, B.L.; Helder, D.L. Forty-year calibrated record of earth-reflected radiance from Landsat: A review. Remote Sens. Environ. 2012, 122, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Storey, J.; Choate, M.; Lee, K. Landsat 8 Operational Land Imager on-orbit geometric calibration and performance. Remote Sens. 2014, 6, 11127–11152. [Google Scholar] [CrossRef]
- Masek, J.G. Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS); NASA: Washington, DC, USA, 2006; p. 1.
- Vermote, E.; Roger, J.C.; Franch, B.; Skakun, S. LaSRC (Land Surface Reflectance Code): Overview, application and validation using MODIS, VIIRS, Landsat and Sentinel 2 data. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8173–8176. [Google Scholar]
- Mueller-Wilm, U.; Devignot, O.; Pessiot, L. S2 MPC Sen2Cor Configuration and User Manual; European Space Agency: Paris, France, 2017; Available online: https://step.esa.int/thirdparties/sen2cor/2.4.0/Sen2Cor_240_Documenation_PDF/S2-PDGS-MPC-L2A-SUM-V2.4.0.pdf (accessed on 26 October 2019).
- Kruse, F.A. The Effects of Spatial Resolution, Spectral Resolution, and SNR on Geologic Mapping Using Hyperspectral Data, Northern Grapevine Mountains, Nevada. In Proceedings of the AVIRIS Airborne Geoscience Workshop; Northern Grapevine Mountains: Pasadena, CA, USA, 2000. Available online: https://aviris.jpl.nasa.gov/proceedings/ (accessed on 26 October 2019).
- Calvin, W.M.; Pace, E.L. Utilizing HyspIRI prototype data for geological exploration applications: A southern California case study. Geosciences 2016, 6, 11. [Google Scholar] [CrossRef]
- Witkosky, R.D.; Adams, P.; Akciz, S.; Buckland, K.; Harvey, J.; Johnson, P.; Lynch, D.K.; Sousa, F.; Stock, J.; Tratt, D. Geologic swath map of the Lavic Lake fault from airborne thermal hyperspectral imagery. In Proceedings of the 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Los Angeles, CA, USA, 21–24 August 2016; pp. 1–5. [Google Scholar]
- Kruse, F.A.; Boardman, J.W.; Huntington, J.F. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1388–1400. [Google Scholar] [CrossRef]
- Lewis, M.D.; Gould, R.W.; Arnone, R.A.; Lyon, P.E.; Martinolich, P.M.; Vaughan, R.; Lawson, A.; Scardino, T.; Hou, W.; Snyder, W.; et al. The Hyperspectral Imager for the Coastal Ocean (HICO): Sensor and Data Processing Overview; OCEANS 2009; IEEE: Biloxi, MS, USA, 2009; pp. 1–9. [Google Scholar]
- Lindgren, W. The Tertiary Gravels of the Sierra Nevada of California; U.S. Geological Survey Professional Paper 73; United States Government Printing Office: Washington, DC, USA, 1911.
- Saleeby, J.; Farley, K.A.; Kistler, R.W.; Fleck, R.J. Thermal evolution and exhumation of deep-level batholithic exposures, southernmost Sierra Nevada, California. Spec. Pap. Geol. Soc. Am. 2007, 419, 39–66. [Google Scholar]
- Chapman, A.D.; Saleeby, J.; Wood, D.J.; Piasecki, A.; Kidder, S.; Ducea, M.N.; Farley, K.A. Late Cretaceous gravitational collapse of the southern Sierra Nevada batholith, California. Geosphere 2012, 8, 314–341. [Google Scholar] [CrossRef]
- Wood, D.J.; Saleeby, J.B. Late Cretaceous-Paleocene extensional collapse and disaggregation of the southernmost Sierra Nevada batholith. Int. Geol. Rev. 1997, 39, 973–1009. [Google Scholar] [CrossRef]
- Allen, V.T. The Ione Formation of California. Univ. Calif. Publ. Geol. Sci. 1929, 18, 347–448. [Google Scholar]
- Bates, T.F. Origin of the Edwin clay, Ione, California. Geol. Soc. Am. Bull. 1945, 56, 1–38. [Google Scholar] [CrossRef]
- Wood, J.L. A Re-Evaluation of the Origin of Kaolinite in the Ione Depositional System (Eocene), Sierra Foothills, California; UCLA: Los Angeles, CA, USA, 1994. [Google Scholar]
- Saleeby, J.; Saleeby, Z.; Robbins, J.; Gillespie, J. Sediment provenance and dispersal of nNogene–Quaternary strata of the southeastern San Joaquin basin and its transition into the southern Sierra Nevada, California. Geosphere 2016, 12, 1744–1773. [Google Scholar] [CrossRef]
- Cox, B. Stratigraphy, Sedimentology, and Structure of the Goler Formation (Paleocene), El Paso Mountains, California: Implications for Paleogene Tectonism on the Garlock Fault Zone; University of California: Riverside, CA, USA, 1982. [Google Scholar]
- Cox, B.F.; Diggles, M. Geologic Map of the El Paso Mountains Wilderness Study Area, Kern County, California; United States Geological Survey Miscellaneous Field Studies Map 1827; 1986. Available online: https://pubs.er.usgs.gov/publication/mf1827 (accessed on 26 October 2019).
- Cox, B. Stratigraphy, depositional environments, and paleotectonics of the Paleocene and Eocene Goler Formation, El Paso Mountains, California: Geologic summary and roadlog. In Basin Analysis and Paleontology of the Paleocene and Eocene Goler Formation, El Paso Mountains, California; Society of Economic Paleontologists and Mineralogists: Los Angeles, CA, USA, 1987; Volume 57, pp. 1–29. [Google Scholar]
- Lechler, A.R.; Niemi, N.A. Sedimentologic and isotopic constraints on the paleogene paleogeography and paleotopography of the southern Sierra Nevada, California. Geology 2011, 39, 379–382. [Google Scholar] [CrossRef]
- Sousa, F.J. Tectonics of Central and Eastern California, Late Cretaceous to Modern; California Institute of Technology: Pasadena, CA, USA, 2016. [Google Scholar]
- Crowell, J.C.; Susuki, T. Eocene stratigraphy and paleontology, Orocopia Mountains, southeastern California. Geol. Soc. Am. Bull. 1959, 70, 581–592. [Google Scholar] [CrossRef]
- Advocate, D.M.; Link, M.H.; Squires, R.L. Anatomy and history of an Eocene submarine canyon: The Maniobra Formation, Southern California. In Paleogene Stratigraphy, West Coast of North America; Filewicz, M.V., Squires, R.L., Eds.; Pacific Section, Society of Economic Paleontologists and Mineralogists: Tulsa, OK, USA, 1988; pp. 45–58. [Google Scholar]
- Caracciolo, L.; Arribas, J.; Ingersoll, R.V.; Critelli, S. The diagenetic destruction of porosity in plutoniclastic petrofacies: The Miocene Diligencia and Eocene Maniobra Formations, Orocopia Mountains, southern California, USA. Geol. Soc. Lond. Spec. Publ. 2014, 386, 49–62. [Google Scholar] [CrossRef]
- Pask, J.A.; Turner, M.D. Geology and ceramic properties of the Ione Formation, Buena Vista area, Amador County, California. Spec. Rep. Calif. Div. Mines Geol. 1952, 19, 1–39. [Google Scholar]
- Palmer, C. Stratigraphy, Petrology, and Depositional Environments of the Ione Formation in Madera County; CSU Fresno: Fresno, CA, USA, 1978. [Google Scholar]
- Creely, S.; Force, E.R. Type Region of the Ione Formation (Eocene), Central California; Stratigraphy, Paleogeography, and Relation to Auriferous Gravels; U.S. Geological Survey: Reston, VA, USA, 2007; p. 65.
- Sousa, F.; Saleeby, J.; Farley, K.A. (U-Th)/He chronometry of multiple secondary minerals, Sierra Nevada, California. In Goldschmidt Abstracts; Geochemical Society: Sacramento, CA, USA, 2014; p. 2358. [Google Scholar]
- Chapman, A.D.; Wood, D.J.; Saleeby, J.B.; Saleeby, Z. Late Cretaceous to early Neogene tectonic development of the southern Sierra Nevada region, California. In Field Excursions in Southern California: Field Guides to the 2016 GSA Cordilleran Section Meeting; Geological Society of America: Boulder, CO, USA, 2017; Volume 45, pp. 187–228. [Google Scholar]
- Cox, B. Early Paleogene Laterite and Debris-Flow Deposits, El Paso Mountains, California; Geological Society of America Abstracts with Programs; Geological Society of America: Boulder, CO, USA, 1979; Volume 11, pp. 73–74. [Google Scholar]
- Yapp, C.J. Fe (CO3) OH in goethite from a mid-latitude North American oxisol: Estimate of atmospheric CO2 concentration in the early Eocene Climatic optimum. Geochim. Cosmochim. Acta 2004, 68, 935–947. [Google Scholar] [CrossRef]
- McKenna, M.C.; Hutchison, J.H.; Hartman, J.H. Paleocene Vertebrates and Nonmarine Mollusca from the Goler Formation, California. In Basin analysis and paleontology of the Paleocene and Eocene Goler Formation, El Paso Mountains, California; Pacific Section of the Society of Economic Paleontologist; Cox, B.F., Ed.; AAPG: Los Angeles, CA, USA, 1987. [Google Scholar]
- Lofgren, D.; Silver, B.; Hinkle, T.; Ali-Khan, F.; Reynolds, R.; Miller, D. New marine sites from member 4d of the Goler Formation of California. Overboard Mojave 2010, 20, 232–240. [Google Scholar]
- Lofgren, D.; Mckenna, M.; Honey, J.; Nydam, R.; Wheaton, C.; Yokote, B.; Henn, L.; Hanlon, W.; Manning, S.; Mcgee, C. New records of eutherian mammals from the Goler Formation (Tiffanian, Paleocene) of california and their biostratigraphic and paleobiogeographic implications. Am. Mus. Novit. 2014, 3797, 1–57. [Google Scholar] [CrossRef]
- Albright, L.; Lofgren, D.; McKenna, M. Magnetostratigraphy, mammalian biostratigraphy, and refined age assessment of the Goler Formation (Paleocene), California. In Papers on Geology, Vertebrate Paleontology, and Biostratigraphy in Honor of Michael O. Woodburne; Museum of Northern Arizona: Flagstaff, AR, USA, 2009; Volume 65, pp. 259–278. [Google Scholar]
- McDougall, K. Foraminiferal Biostratigraphy and Paleoecology of Marine Deposits, Goler Formation, California. 1987. Available online: http://archives.datapages.com/data/pac_sepm/074/074001/pdfs/43.htm (accessed on 26 October 2019).
- Adams, J.B.; Smith, M.O.; Johnson, P.E. Spectral mixture modeling—A new analysis of rock and soil types at the Viking lander-1 site. J. Geophys. Res. Solid Earth Planets 1986, 91, 8098–8112. [Google Scholar] [CrossRef]
- Smith, M.O.; Ustin, S.L.; Adams, J.B.; Gillespie, A.R. Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sens. Environ. 1990, 31, 1–26. [Google Scholar] [CrossRef]
- Gillespie, A.R.; Smith, M.O.; Adams, J.B.; Willis, S.C.; Fischer, A.F.I.; Sabol, D.E. Interpretation of Residual Images: Spectral Mixture Analysis of AVIRIS Images, Owens Valley, California; Proceedings of the AVIRIS Airborne Geoscience Workshop; Pasadena, CA, USA, 1990. Available online: https://aviris.jpl.nasa.gov/proceedings/ (accessed on 26 October 2019).
- Small, C.; Milesi, C. Multi-scale standardized spectral mixture models. Remote Sens. Environ. 2013, 136, 442–454. [Google Scholar] [CrossRef] [Green Version]
- Sousa, D.; Small, C. Globally standardized MODIS spectral mixture models. Remote Sens. Lett. 2019, 10, 1018–1027. [Google Scholar] [CrossRef]
- Percival, H.J.; Duncan, J.F.; Foster, P.K. Interpretation of the kaolinite-mullite reaction sequence from infrared absorption spectra. J. Am. Ceram. Soc. 1974, 57, 57–61. [Google Scholar] [CrossRef]
- Guatame-García, A.; Buxton, M.; Deon, F.; Lievens, C.; Hecker, C. Toward an on-line characterization of kaolin calcination process using short-wave infrared spectroscopy. Miner. Process. Extr. Metall. Rev. 2018, 39, 420–431. [Google Scholar] [CrossRef] [Green Version]
- Wagner, D.L.; Jennings, C.W.; Bedrossian, T.L.; Bortugno, E.J. Geologic Map of the Sacramento Quadrangle, California, 1,250,000; California Division of Mines and Geology: Sacramento, CA, USA, 1981. [Google Scholar]
- Cecil, M.R.; Ferrer, M.A.; Riggs, N.R.; Marsaglia, K.; Kylander-Clark, A.; Ducea, M.N.; Stone, P. Early arc development recorded in Permian–Triassic plutons of the northern Mojave Desert region, California, USA. GSA Bull. 2018, 131, 749–765. [Google Scholar] [CrossRef]
- Carr, M.D.; Christiansen, R.L.; Poole, F.G.; Goodge, J.W. Bedrock Geologic Map of the El Paso Mountains in the Garlack and El Paso Peaks 7-1/2’ Quadrangle, Kern County, California; United States Geological Survey IMAP no. 2389; U.S. Department of the Interior: Newton, MA, USA, 1997.
- Galvão, L.S.; Formaggio, A.R.; Couto, E.G.; Roberts, D.A. Relationships between the mineralogical and chemical composition of tropical soils and topography from hyperspectral remote sensing data. ISPRS J. Photogramm. Remote Sens. 2008, 63, 259–271. [Google Scholar] [CrossRef]
- Crowley, J.K. Mapping playa evaporite minerals with AVIRIS data: A first report from Death Valley, california. Remote Sens. Environ. 1993, 44, 337–356. [Google Scholar] [CrossRef]
- Mohanty, B.; Gupta, A.; Das, B.S. Estimation of weathering indices using spectral reflectance over visible to mid-infrared region. Geoderma 2016, 266, 111–119. [Google Scholar] [CrossRef]
- Duncan, W.R.; Ledger, E.B.; Whitehead, V.S. X-ray diffraction verification of AVIRIS clay mineral identification, Summitville area, southwestern Colorado; NASA Jet Propulsion Laboratory: Pasadena, CA, USA, 1998; Volume 1.
- Younis, M.T.; Gilabert, M.A.; Melia, J.; Bastida, J. Weathering process effects on spectral reflectance of rocks in a semi-arid environment. Int. J. Remote Sens. 2010, 18, 3361–3377. [Google Scholar] [CrossRef]
- Small, C. The Landsat ETM+ spectral mixing space. Remote Sens. Environ. 2004, 93, 1–17. [Google Scholar] [CrossRef]
- Sousa, D.; Small, C. Global cross-calibration of Landsat spectral mixture models. Remote Sens. Environ. 2017, 192, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Sousa, D.; Small, C. Multisensor analysis of spectral dimensionality and soil diversity in the great central valley of California. Sensors 2018, 18, 583. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, F.J.; Sousa, D.J. Spatial Patterns of Chemical Weathering at the Basal Tertiary Nonconformity in California from Multispectral and Hyperspectral Optical Remote Sensing. Remote Sens. 2019, 11, 2528. https://doi.org/10.3390/rs11212528
Sousa FJ, Sousa DJ. Spatial Patterns of Chemical Weathering at the Basal Tertiary Nonconformity in California from Multispectral and Hyperspectral Optical Remote Sensing. Remote Sensing. 2019; 11(21):2528. https://doi.org/10.3390/rs11212528
Chicago/Turabian StyleSousa, Francis J., and Daniel J. Sousa. 2019. "Spatial Patterns of Chemical Weathering at the Basal Tertiary Nonconformity in California from Multispectral and Hyperspectral Optical Remote Sensing" Remote Sensing 11, no. 21: 2528. https://doi.org/10.3390/rs11212528
APA StyleSousa, F. J., & Sousa, D. J. (2019). Spatial Patterns of Chemical Weathering at the Basal Tertiary Nonconformity in California from Multispectral and Hyperspectral Optical Remote Sensing. Remote Sensing, 11(21), 2528. https://doi.org/10.3390/rs11212528