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Abstract: Aboveground biomass (AGB) plays a critical functional role in coastal wetland ecosystem
stability, with high biomass vegetation contributing to organic matter production, sediment accretion
potential, and the surface elevation’s ability to keep pace with relative sea level rise. Many remote
sensing studies have employed either imaging spectrometer or synthetic aperture radar (SAR) for
AGB estimation in various environments for assessing ecosystem health and carbon storage. This
study leverages airborne data from NASA’s Airborne Visible/Infrared Imaging Spectrometer-Next
Generation (AVIRIS-NG) and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) to
assess their unique capabilities in combination to estimate AGB in coastal deltaic wetlands. Here
we develop AGB models for emergent herbaceous and forested wetland vegetation in coastal
Louisiana. In addition to horizontally emitted, vertically received (HV) backscatter, SAR parameters
are expressed by the Freeman–Durden polarimetric decomposition components representing volume
and double-bounce scattering. The imaging spectrometer parameters include normalized difference
vegetation index (NDVI), reflectance from 290 visible-shortwave infrared (VSWIR) bands, the
first derivatives from those bands, or partial least squares (PLS) x-scores derived from those data.
Model metrics and cross-validation indicate that the integrated models using the Freeman-Durden
components and PLS x-scores improve AGB estimates for both wetland vegetation types. In our
study domain over Louisiana’s Wax Lake Delta (WLD), we estimated a mean herbaceous wetland
AGB of 3.58 Megagrams/hectare (Mg/ha) and a total of 3551.31 Mg over 9.92 km2, and a mean forested
wetland AGB of 294.78 Mg/ha and a total of 27,499.14 Mg over 0.93 km2. While the addition of
SAR-derived values to imaging spectrometer data provides a nominal error decrease for herbaceous
wetland AGB, this combination significantly improves forested wetland AGB prediction. This
integrative approach is particularly effective in forested wetlands as canopy-level biochemical
characteristics are captured by the imaging spectrometer in addition to the variable structural
information measured by the SAR.
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1. Introduction

In coastal wetlands, as in other ecosystems, aboveground biomass (AGB) is an important indicator
of vegetation health and productivity, as well as a key parameter for quantifying marsh response to
sea level rise and resulting carbon storage loss. Vegetation biomass contributes to several ecosystem
processes with feedbacks including nutrient allocation, sedimentation and accretion rates, riverine and
tidal inundation, and weather patterns [1–4]. Estimation and monitoring of wetland biomass, or “blue
carbon,” are needed to assess a wetland’s ability to trap exogenic sediment and produce organic soils
that increase surface elevation relative to sea level rise [5,6]. Accurate AGB maps can be used to analyze
and predict changes in wetland vegetation cover and total carbon storage [2,7,8], and accordingly
understand its impact on landscape and hydrological processes [9]. In addition to furthering our
understanding of these processes, the observed spatial variability in biomass distributions can help
support conservation and restoration efforts, making the research and development of optimized
remote sensing methods critical [10].

Remote sensing data from satellite and airborne instruments, supported by in situ field
measurements, offer the ability to develop empirical AGB models that can assess of ecosystem
health and change [4,5]. These models depend on relationships between one or several remotely
sensed parameters and AGB. Broadband multispectral data is the most widely distributed and utilized
remote sensing data. With the ubiquity of multispectral satellite datasets, normalized difference
vegetation index (NDVI), the normalized ratio of a pixel’s near-infrared (NIR) and red reflectance
that estimates plant photosynthetic activity [11], is the most commonly used optical variable for
biomass mapping [12,13]. Beyond the level of canopy coverage affecting a pixel’s radiance/reflectance
signal, optical data does not easily provide information on plant structure. Different approaches
employ synthetic aperture radar (SAR) data, as a radar signal’s backscatter is sensitive to vegetation
structure and thereby AGB [14]. There are often relationships between AGB and optical or radar
backscatter variables, though the relationships are frequently logarithmic as parameters saturate at high
biomass values [4,12]. Regression analysis provides the primary empirical tool for developing remote
sensing-based data models that can be scaled to imagery and produce biomass maps. Multivariate
regression analysis techniques can utilize the breadth of a sensor’s spectral bands or combine data
from multiple sensors to increase a model’s predictive capability [5].

Imaging spectroscopy—or hyperspectral remote sensing—can leverage hundreds of contiguous
narrow bands and complete spectral response for estimating AGB. Imaging spectrometer data can thus
improve on existing methods or enable new ones. For example, narrow bands may be used to calculate
indices with a more sensitive response for univariate regression [15], or multivariate techniques may
be employed that utilize the continuous spectral data. A comprehensively measured visible-shortwave
infrared (VSWIR) reflectance spectrum provides a powerful basis for estimating vegetation properties,
as with canopy foliar traits and other environmental variables [16,17]. The spectral signature measured
by the multitude of bands—either by an imaging spectrometer or an in situ field spectrometer [5]—can
optimize predictive capability and disentangle a surface’s spectral properties in relation to its AGB by
emphasizing the spectral features that are most associated with canopy coverage, water content, and
photosynthetic activity [5,18]. Utilizing the first derivative spectra, rather than reflectance or radiance,
removes pixel brightness variability and further enhances spectral features which may in turn be
correlated with AGB [19]. The resultant regression models will typically be more sensitive to those key
spectral features’ shapes and attain a higher coefficient of determination [5]. Imaging spectroscopy is
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thus potentially invaluable for attaining information on vegetation biochemical composition that can
relate to biomass.

Synthetic aperture radar (SAR) is an active microwave instrument sensitive to structural
information not contained within a plant’s spectral signature. The scattering mechanisms and measured
backscatter amplitudes can be used to make inferences of vegetation type, surface conditions, and
structural characteristics—including AGB [20]. Among these frequently studied measures is leaf area
index (LAI), which is often used as a measurement from which AGB can be estimated [21]. As several
studies have demonstrated empirical relationships between LAI and various backscatter metrics [22–24],
leaf abundance impacts SAR backscatter and contributes to AGB estimates. The primary SAR-based
AGB estimation method typically involves conducting a regression analysis using cross-polarized
horizontally emitted, vertically received (HV) data. HV backscatter measurements represent the
response from volumetric scattering resulting from the radar signal’s interaction with a vegetation
canopy before returning to the sensor [14]. Other scattering mechanisms include surface scattering—the
signal’s specular reflection off a flat surface—and double bounce—where the signal is reflected by
a surface onto a vertical object, effectively forming a right angle, scattering the signal towards the
instrument [14,25]. A polarimetric decomposition estimate expresses the contribution of each of these
three scattering mechanisms to the observed backscatter signal [26,27], and is useful for vegetation
classification and AGB modeling [25].

There is great potential for developing accurate methods to estimate wetland AGB by integrating
the biochemical data derived from imaging spectroscopy with the structural information provided by
SAR [13,28]. Past studies have merged these datasets for forest AGB estimates, either directly with
regression [29] or via leaf area index optimization [21]. Other studies use similar approaches with
imaging spectroscopy and LiDAR, though they rely on band selection and so do not assimilate the full
range of spectral information for model development [30,31]. This study examines the contribution of
each remote sensing variable to both herbaceous and forested wetland AGB. Louisiana’s Wax Lake
Delta offers a valuable case study to estimate coastal wetland biomass estimation, as it is a prograding
delta located within the greater Mississippi Deltaic Plain (MDP) where wetlands are severely degrading
and receding [32,33] (Figure 1). Coastal Louisiana lost an estimated 4833 km2 of marsh area from 1932 to
2016, accounting for roughly 25% of its coastal wetlands [34]. A better understanding of biomass stocks
and distributions in these prograding deltaic wetland areas may inform future restoration efforts. AGB
has been examined in the Wax Lake Delta (WLD), but as part of a broader national-scale assessment
of carbon stocks using satellite data that did not resolve the local-scale AGB distributions in the
WLD [29,35] or as part of a regional-scale AGB assessment that could not find a robust relationship with
available in situ and satellite data [6]. This study’s primary objective, then, is to develop an integrated
empirical approach for estimating AGB that leverages the unique capabilities provided by each data
type collected in tandem by airborne instruments. In doing so, we interpret the contributions of
different spectral features and radar scattering components to the AGB estimation, for both herbaceous
and forested wetland vegetation. We then apply the models that attain optimal performance metrics,
in both parameterization and cross-validation, to imaging spectrometer and SAR data collected over
Louisiana’s WLD (Figure 1).
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Figure 1. Study area for aboveground biomass sampling and airborne data collection. Sampling was
focused on the Wax Lake Delta, with other sample sites in the Atchafalaya Delta and Terrebonne Basins
to the east. Aboveground biomass (AGB) mapping was restricted to the Wax Lake Delta, though remote
sensing measurements coincident with field plots extended beyond the delta for model calibration.
Further AGB sample data and information is reported in Tables A1 and A2.

2. Materials and Methods

This study used airborne-derived reflectance spectra and SAR backscatter data, paired with
coincident in situ AGB sample data, to develop and cross-validate a series of models based on one
or both remote sensing datasets. The AGB data were primarily collected in the WLD, Louisiana,
with other sample plots being located throughout the Atchafalaya and western Terrebonne Basins
(Figure 1). The WLD is forming at the terminus of the Wax Lake Outlet, a constructed distributary
channel of the Atchafalaya River, the main distributary of the Mississippi River. The outlet was
constructed in 1942, diverting flow from the lower Atchafalaya River to alleviate flooding in the
Morgan City area [36]. Whereas the basins east of the Wax Lake Outlet and Atchafalaya River are
severely degrading and seeing widespread wetland submergence, the WLD is an actively prograding
system with accretion-driven feedbacks creating emergent deltaic floodplains [32]. Areal land growth
rates in the WLD range between 1–3 km2/year [37]. As this artificial outlet has been allowed to
build land under natural hydrologic conditions, the WLD presents an ideal case study for potential
river diversion projects aimed at alleviating wetland subsidence and degradation across Louisiana’s
coast [33].

2.1. Field Data

Biomass field surveys were conducted in 2015 and 2016 to spatially coincide with imagery collected
over multiple flight campaigns. Two field campaigns were conducted—one in May of 2015 and one
in November of 2016—to encompass a range of biomass values across the growing season, where
September is considered the peak biomass season. Fifteen sites coinciding with the May and June 2015
flight-lines (Table 1) were examined in the 2015 collections, six of which were forested wetlands and
nine herbaceous. Eight of the fifteen sites were located in the Wax Lake/Atchafalaya delta complex,
while seven were selected in the western Terrebonne Basin. Ten out of the fifteen selected sites are part
of Louisiana’s Coastwide Reference Monitoring System (CRMS) [38]. One site within the WLD was
examined on 15 November 2016, solely for herbaceous wetland samples coinciding with the 17 October
2016, flightlines.
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For the forested wetland sites (Figure 1, Table A2), which were only examined in May 2015 given
the small expected changes in annual tree growth and biomass, duplicate circular plots (10 m radius,
50 m apart) were established inside the forest approximately 30 m from the forest edge. Plots not
located at CRMS sites were chosen for their accessibility within the WLD and representativeness of the
immediate area. All trees with diameter at breast height (dbh, 1.3 m) ≥ 2.5 cm were measured within
each plot. Species type were also registered, with Salix nigra being the predominant species in most
plots. The height of all trees was measured with a laser range finder (Impulse 200 LR, Laser Technology
Inc., Tucson, WY) and species-specific allometric equations [39–41] were applied to estimate dry AGB.
Thirty-six individual forested wetland plots within the six examined sites coincided with airborne
flight-lines and were used in this study.

At herbaceous wetland sites (Figure 1, Table A1), AGB was harvested inside duplicate plots
(0.25 m2, 5 m apart) at 10, 50, and 100 m along a transect established perpendicular to the wetland edge.
The aboveground material in each plot was clipped at soil level, stored in plastic bags, refrigerated
at 4 ◦C, and transported to the laboratory for further processing. Fresh plant material was sorted by
species and dried at 60 ◦C for 72 h before weighing to attain dry AGB (g/m2). It should be noted that two
of the 2016 plots were 0.49 m2 and three were 0.75 m2, and that two plot pairs coincided with the same
pixel and were averaged together. In total, 25 herbaceous plots coinciding with airborne flight-lines
were utilized for this study, with fifteen plots collected in May 2015 and ten in November 2016.

2.2. Remote Sensing Data

2.2.1. Imaging Spectrometer Data

The Airborne Visible–Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) instrument
measures 14-bit radiance from 380 to 2510 nm wavelengths with a ~5 nm spectral resolution
(Table 1) [42,43]. AVIRIS-NG conducted five flight-lines over the WLD on 17 October 2016, producing
individual datasets with 425 bands at a 5.4 m spatial resolution. These flight-lines provided the basis for
mapping AGB, though we processed additional flight-lines from May and June, 2015, in order to extract
pixel spectra coincident with field plots. Each raw dataset was atmospherically corrected using the
physics-based Atmospheric removal (ATREM) algorithm to derive a surface reflectance image [43–45].
We applied the Adaptive Reflectance Geometric Correction (ARGC) algorithm to correct bidirectional
reflectance distribution (BRDF) effects that cause across-track variations in observed illumination
intensity [46]. With spectrally consistent surface reflectance data post-correction, we mosaicked the
2016 flight-lines and subset the resulting dataset to the WLD’s extent (Figure 2).

Table 1. Airborne remote sensing instrument information.

Airborne Visible/Infrared
Imaging Spectrometer-Next

Generation (AVIRIS-NG)

Uninhabited Airborne Vehicle
Synthetic Aperture Radar

(UAVSAR)

Acquisition Dates 17 October 2016 (Mosaic, Figure 2);
6–9 May 2015; 2–6 June 2015

17 October 2016 (Mosaic, Figure 3);
9 May 2015

Aircraft Platform B200 King Air Gulfstream-III

Wavelength/Frequency 380–2510 nm
(Passive Radiance Measurements)

Fully polarimetric L-band;
0.2379 m/1.26 GHz

(Transmitted Frequency)

Spectral Resolution 5 nm ± 0.5 nm 80 MHz
(Chirp Bandwidth)

Spatial Resolution 5.4 m 5 m

Direct Model Inputs Reflectance Horizontally-Transmitted,
Vertically-Received Backscatter

Derived Model Inputs NDVI;
First-Derivative of Reflectance

Volume and Double Bounce
Scattering Components
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Airborne Vehicle Synthetic Aperture Radar (UAVSAR) data over the WLD, and (Right) false color
composite of the volume, double bounce, and surface scattering components from the Freeman–Durden
polarimetric decomposition.

2.2.2. Synthetic Aperture Radar Data

NASA’s L-band Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) was flown
concurrently with AVIRIS-NG in May 2015 and October 2016 (Table 1). The 2016 data, with 5 m posting,
was subset to the WLD mosaic’s extent and resampled to 5.4 m resolution (Figure 3). The SAR signal
results from different scattering mechanisms as the emitted microwaves interact with a vegetation
canopy and surface before partially returning to the sensor [13,14]. The radar signal’s HV backscatter
amplitude is dominated by volume scattering and has been shown to be the polarization most sensitive
to AGB estimation [28,47,48].

2.3. Model Development

For each field measurement, we extracted the coincident AVIRIS-NG and UAVSAR pixel values.
These data entailed surface reflectance measurements from AVIRIS-NG in addition to HV backscatter
and scattering component values. These various measurements provided the basis of our modeling
approach, whereby we assessed the efficacy of commonly applied univariate approaches, multivariate
approaches from a single sensor, and new multivariate approaches that integrate both sensors. It should
be noted that the herbaceous samples did not include submerged aquatic vegetation (SAV) or floating
vegetation, which comprise a large portion of the low intertidal and subtidal zones. These types
were excised from the final mapped area, as the spectral signal from SAV is impacted by water while
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floating vegetation is too transient and spectrally variable for an accurate AGB prediction. For example,
Nelumbo lutea is an emergent floating leaf vegetation that dominates the transition zone between
submersed aquatic to emergent vegetation, and it is actively senescing at the time of image capture.
Assessment and cross-validation of the models consequently reveals the optimal models to apply to
the imagery and map AGB across the WLD.

2.3.1. Single Sensor Ordinary Least Squares Regression Models

Univariate regression based on a reflectance band, spectral index, or radar backscatter signal is
the most common approach for remote AGB estimates [13,28,49,50]. This is typically done by fitting
a linear, logarithmic, or other polynomial function to the in situ AGB data and the paired remotely
sensed value using ordinary least squares regression (OLSR), though machine learning algorithms
are increasingly prevalent [29]. Normalized difference vegetation index (NDVI), being sensitive to
vegetation’s chlorophyll content and health, is the most frequently applied optical index for AGB
estimation. To this end, many studies have shown NDVI to be the most effectively predictive optical
index [13,49]. While many studies employ NDVI such that the index values correspond to a single
field collection [18], NDVI is often applied with several field collections for empirical AGB models
such that it captures seasonal biomass variations [49], Without a full seasonal dataset, NDVI may
show a significant relationship with AGB if the study area contains sufficient variance in plant tissue
abundance and surface conditions [13]. However, these measurements may be hampered by the
tendency of NDVI to saturate beyond a certain LAI [18] or in areas where soil and water may strongly
influence the reflectance signal [13]. To test the index’s efficacy in relation to other approaches and data
types for AGB estimation, we generated NDVI values with red and near-infrared (NIR) AVIRIS-NG
bands centered at 671.95 and 757.10 nm, respectively. These are the closest AVIRIS-NG bands that
correspond to the optimal wavelengths for calculating narrow-band NDVI denoted by Elvidge and
Chen [15]. We then fit a linear OLS model to the resulting NDVI values and the AGB data to test
whether an optical index-based approach was sufficient for estimating biomass in the spectrally and
spatially complex WLD.

We implemented a similar approach with the UAVSAR imagery, whereby we fit a linear
OLSR model to the HV backscatter data [48]. Additionally, we decomposed the radar signal into
the contributions of its constituent scattering mechanisms—volume, double bounce, and surface
scattering—to provide a more comprehensive description of a plant area’s structural properties, and
thus biomass [25,50]. We applied the Freeman-Durden polarimetric decomposition [51] to the UAVSAR
data, producing the various scattering mechanism contributions to the observed backscatter signal
(Figure 3). Because the surface component contains excessive noise and is not significantly impacted
by vegetation structure [25], it was not included in subsequent AGB models. Conversely, volume
scattering is largely associated with attenuation and multiple reflection within vegetation canopies.
The volume scattering component in the Freeman–Durden decomposition is approximated by HV
backscatter [51]. Further, corner reflection resulting from surface-trunk interaction contributes to
double bounce scattering [25,52]. Using the volume and double bounce components, we developed
bivariate OLSR models for both herbaceous and forest vegetation.

2.3.2. Imaging Spectrometer Partial Least Squares Regression Models

Partial least squares regression (PLSR) provides a suitable tool for leveraging the full breadth of
imaging spectrometer data, as it does not rely on the statistical assumption of independence among
input variables that OLSR does [53]. PLSR is instead focused on maximizing predictive capabilities,
though it is prone to model overfitting [16]. As derivative spectroscopy has proven effective for
hyperspectral AGB models [5], the first derivative of reflectance was also calculated for each sample.
We generated PLSR models for AGB separately for herbaceous and forest vegetation, based on both
reflectances and derivatives to test the relative performance of each type. We subsequently examined
the spectral characteristics each model is sensitive to.
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For these reflectance and derivative models, we applied 290 of the original 425 AVIRIS-NG
bands. We excised bands within the 376.44–441.55, 892.33–942.42, 1107.71–1157.79, 1353.13–1488.36,
1783.88–2024.29, and 2404.95–2500.12 nm spectral regions due to atmospheric water vapor interference.
With the input spectra processed, further analysis was required to determine the PLSR models’ optimal
number of components. PLS components, also referred to as latent variables, are the synthetic variables
in n-space that the input independent variables are projected onto. These are akin to principal
components used in principal components analysis (PCA), though PLS components are developed
with a weighting for the dependent variable’s response [54,55]. The PLS transformations of both the
reflectance and derivative AVIRIS-NG data are shown in Figure 7. We then calculated the predicted
residual sum of squares (PRESS) statistic for 1–15 components (Figure 4). Calculating PRESS employs
leave-one-out cross validation, whereby the model with the minimum summed value denotes the
optimal number of components [16,56,57]. For the reflectance models, four and three components were
selected for the forest and herbaceous models, respectively. It should be noted that the one-component
PRESS statistic was slightly lower for the herbaceous reflectance models, though the model’s R2 (0.23)
and mean absolute error (MAE) (103.41) were significantly inferior to the selected three-component
model. Two components produced the lowest PRESS for both derivative-based models.

Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 24 

 

 

Figure 4. Predicted residual sum of squares (PRESS) statistic, calculated for 1–15 components for both 
reflectance and first-derivative-based models for herbaceous and forested wetlands. Error bars denote 
one standard deviation. 

The variable importance in the projection (VIP) metric highlights the spectral domains that have 
the greatest bearing on the dependent variable [53,54]. When applied to imaging spectrometer-
derivative data, the VIP response has the advantage of identifying narrow spectral features associated 
with the dependent variable [58]. We calculate VIP for both the herbaceous and forest derivative-
based PLSR models using Equation (1): 

ܫܸ ܲ ൌ ඩሾሺݍ	ଶ ‖ሻଶሿ/ݓ‖/ݓሻሺݐ′ݐ ሺݍଶݐ′ݐሻୀଵ


ୀଵ , (1) 

where p is the X-loading, qa is component a’s Y-loading, ta is its score vector, and wa is its loading 
weight. The loading (wai/‖wa‖)2 represents the importance of variable i and explains the variance in 
each PLS component. The VIPi weights thus measure the contribution of each variable according to 
that variance. We applied a moving average to smooth the VIP responses and clearly define spectral 
features where VIP > 1, denoting significant predictive power (Figures 5 and 6). By highlighting the 
specific spectral regions that increase predictive power, VIP aids in interpreting the biophysical 
characteristics that drive each PLSR model. Additionally, the biophysical information associated with 
each component for the different models can viewed spatially by applying the PLS transformation to 
the AVIRIS-NG data (Figure 7). 
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reflectance and first-derivative-based models for herbaceous and forested wetlands. Error bars denote
one standard deviation.

The variable importance in the projection (VIP) metric highlights the spectral domains that have the
greatest bearing on the dependent variable [53,54]. When applied to imaging spectrometer-derivative
data, the VIP response has the advantage of identifying narrow spectral features associated with the
dependent variable [58]. We calculate VIP for both the herbaceous and forest derivative-based PLSR
models using Equation (1):

VIPi =

√√√
p

A∑
a=1

[(
q2

at′ata
)
(wai/‖wa‖)

2
]
/

A∑
a=1

(
q2

at′ata
)
, (1)

where p is the X-loading, qa is component a’s Y-loading, ta is its score vector, and wa is its loading
weight. The loading (wai/‖wa‖)2 represents the importance of variable i and explains the variance in
each PLS component. The VIPi weights thus measure the contribution of each variable according to
that variance. We applied a moving average to smooth the VIP responses and clearly define spectral
features where VIP > 1, denoting significant predictive power (Figures 5 and 6). By highlighting
the specific spectral regions that increase predictive power, VIP aids in interpreting the biophysical
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characteristics that drive each PLSR model. Additionally, the biophysical information associated with
each component for the different models can viewed spatially by applying the PLS transformation to
the AVIRIS-NG data (Figure 7).
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Figure 5. Reflectance-based partial least squares regression (PLSR) model results, corresponding to
Model 2 in Table 4. The model coefficients for each band are shown in black in the top panels. In the
bottom panels, variable importance in the projection (VIP) values are shown in red while average
sample reflectance for either vegetation type is shown in blue. Spectral regions where VIP > 1 are
highlighted in gray. Mean sample reflectance is calculated from the pixel values corresponding with
each in situ plot and provides a reference for interpreting variable importance based on how the VIP
signal aligns with spectral characteristics.
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and legends indicate the component loading values.

2.3.3. Integrated Multi-Sensor Models

To determine if imaging spectrometer and SAR data beneficially complement each other for AGB
estimation, we applied different variable combinations to develop optimized models integrating both
datasets. We first combined the NDVI data with both the HV backscatter and the Freeman-Durden
scattering components together. This allowed us to examine if a simple and easily calculable optical
metric of vegetation health adds complementary information to the physical structural information
provided by SAR data. However, the PLSR model inputs cannot be similarly combined with the SAR
values to increase model efficacy, as we observed that the one or two extra parameters significantly
degrade model results by giving inordinately high weight to the SAR variables and diminishing the
spectral data’s contribution. Other studies employing imaging spectroscopy for integrative AGB
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models rely on VIP analysis for band selection, rather than just interpretation, and so lose other bands’
contributions to the AGB estimates by excising them from the final model [30,31]. To assimilate the full
range of VSWIR spectral information provided by imaging spectrometers into this approach, the PLSR
approach must be adapted.

To modify the approach and fully integrate the two remotely sensed datasets, we extracted the
PLS x-scores associated with each component—also referred to as factors [16], latent variables or
vectors [54,55], or bases [59]—from each model [60]. These represent the normalized scores for the
dimensionally reduced training data before each training variable is weighted with respect to the
dependent variable to calculate the component loadings [53,54,61]. Using PLS x-scores instead of
PCA loading values offers more predictive capability, as the PLS components are constructed by
taking information from both the independent and dependent variables into account [60]. Obtaining
the x-scores from the PLS decomposition and applying them separately in a regression to predict
a dependent variable provides flexibility in using PLS to optimally extract orthogonal components from
the independent variable dataset while avoiding restriction to the original PLS model [60]. In doing
so, the entire spectrum—for either reflectance or its derivative—associated with each AGB entry is
reduced to statistically independent variables suited for combination with other data. The reflectance
models were thus processed to calculate three PLS x-score values for herbaceous vegetation and
four for the forested wetland models, while the derivative models used two PLS x-scores each. The
x-scores were then combined with either the HV backscatter or the paired volume and double bounce
scattering values.

Our analysis resulted in a suite of models of varying complexity, each of which indicates the
relative quality and importance of each input type in relation to the other variables. Uncertainty in
each model was characterized by applying a leave-one-out cross validation, whereby we plotted the
distribution of errors and calculated the MAE for each model. The cross-validation distribution of
errors and MAE complement the model performance metrics based on calibration with all available
data. The models that attained the lowest MAE, for both the initial model statistics and cross-validation,
were applied to the AVIRIS-NG and UAVSAR imagery to map AGB over the Wax Lake Delta.

A classification (Figure 8) map was created to apply these models to their appropriate
corresponding pixels. We first employed PCA to transform the 290 AVIRIS-NG reflectance bands
into nine principle component bands. We then combined these bands with a LiDAR-based digital
elevation model of the WLD [62] and applied an ISODATA unsupervised classification. We combined
the resulting classes to reflect forested wetland vegetation, herbaceous wetland vegetation, other
vegetation, and water. The other vegetation class includes SAV, N. lutea, and other floating vegetation
types that are not suitable for the herbaceous AGB model’s application. The extent of the classification
map and the WLD’s boundaries reflect those employed by a 2011 vegetation map [63] for consistency
with established datasets. We conducted a validation survey on October 26, 2018, collecting 143 in
situ observations along seven transects that crossed different vegetation types. With these points, we
generated a confusion matrix (Table 2) and individual class accuracies, calculating an overall map
accuracy of 95.10% (Table 3).

Table 2. Classification confusion matrix.

Classification
Data

Reference Data
Forested Wetland Herbaceous Wetland Other Vegetation All

Forested wetland 21 0 0 21
Herbaceous wetland 1 67 0 68

Other vegetation 0 6 48 54
All 22 73 48 143
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Table 3. Classification accuracy statistics.

User’s
Accuracy (%)

Producer’s
Accuracy (%)

Forested wetland 100.00 95.45
Herbaceous wetland 98.53 91.78

Other vegetation 88.89 100.00

Overall accuracy 95.10
Kappa 0.92
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3. Results

All models and their corresponding numerical designation are reported in Table 4. The single
sensor OLSR models (models 1 and 4) did not produce suitable AGB predictions, with the exception of
the forest volume and double bounce scattering model (model 5) (Table 4). Adding NDVI to either the
HV backscatter (model 6) or volume and double bounce model (model 7) only marginally increased
model performances. These models did not attain appropriately low significance values, assuming
a standard threshold of p < 0.05, for herbaceous vegetation. For the forest models, though the NDVI
coupled with the Freeman–Durden components does attain a significant p-value, the performance
metrics are similar to the volume and double bounce-only model.

The models that employ the full spectral response via PLS (models 2 and 3) attain superior
performance metrics compared to the other models. For herbaceous vegetation, the first derivative
PLSR model based only on AVIRIS-NG data performed significantly better than its reflectance
counterpart. This is counter to the forest results, where the reflectance PLSR model is superior.
All PLSR models, though, show high RMSE values relative to their MAEs, meaning the models do not
perform well at higher AGB values. Combining the resultant PLS x-scores with the UAVSAR-derived
values yields marked increases in model performance. The herbaceous models show a minor increase
in R2 from the standard PLSR approach when adding HV backscatter to the derivative PLS x-scores
(model 9), with the Freeman–Durden components additionally producing similar results (model 11).



Remote Sens. 2019, 11, 2533 13 of 24

The forest models show a more significant increase in performance when integrating the SAR data with
the reflectance PLS x-scores. While adding the HV data to the PLS x-scores (model 8) yields similar
results to the PLSR models themselves, adding the volume and double bounce scattering component
data (model 10) significantly increases model R2 and decreases error.

Cross-validation of these models corroborates the compiled model performance metrics.
The leave-one-out cross validation approach produced a series of error values for each model,
shown as boxplot distributions in Figure 9. We averaged the errors for each model to calculate
validation MAE values, reported in Table 5. The combined PLS and Freeman–Durden components
models—using derivatives for herbaceous (model 11) and reflectance for forest vegetation (model
10)—produce the lowest MAE in the validation. Of the OLS models, though, model 9 attains the lowest
Akaike Information Criterion (AIC) for herbaceous vegetation. Models 10 and 11 attain the lowest AIC
for forested vegetation. AIC penalizes the use of additional variables to avoid overfitting, indicating
the potential benefit of including extra information relative to the error reduction. Model coefficient
and constant values are reported in Table A3. With the use of the PLS x-scores and Freeman–Durden
components, these results reveal a marginal improvement in herbaceous AGB estimation error relative
to the other models, but a substantial error reduction for forest AGB.
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Figure 9. Distribution of leave-one-out cross-validation errors for the applicable herbaceous and forest
AGB models. The circles, or “fliers,” represent outliers. Models 1 (NDVI) and 6 (NDVI, HV Backscatter)
are excluded as performance was not significant (p < 0.05) for either herbaceous or forested vegetation.

As the models applying PLS x-scores with the Freeman-Durden components (models 10 and 11)
yielded the lowest MAEs for both the overall model using all available data (Table 4) and cross-validation
(Table 5), the resultant models were selected to map AGB. The cross-validation point distributions for
these models are shown in Figure 10. The derivative-based model was applied to herbaceous pixels in
the AVIRIS-NG and UAVSAR products. The same process was performed on forest pixels using the
reflectance PLS x-scores, volume, and double bounce model. Combined with the classification map
of WLD herbaceous and forested wetland vegetation generated from the AVIRIS-NG data (Figure 8),
the models produced the AGB map in Figure 11.
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Table 4. Model performance statistics.

Herbaceous AGB Models
(n = 25, mean = 359.24 g/m2)

Forest AGB Models
(n = 36, mean = 25,555 g/m2)

PLS
Comps R2 RMSE MAE AIC p PLS

Comps R2 RMSE MAE AIC p

1. NDVI 0.08 150.59 111.38 325.68 0.18 0.08 16,309 13,033 805 0.11
2. Reflectance PLSR 3 0.33 180.51 92.21 4 0.45 20,418 9974

3. First Derivative PLSR 2 0.46 189.62 81.65 2 0.35 19,708 11,260
4. HV Backscatter 0.01 156.06 108.04 327.46 0.65 0.01 16,874 14,248 803 0.05

5. Volume, Double Bounce Components 0.08 150.58 100.85 327.67 0.41 0.35 13,706 11,409 794 <0.01
6. NDVI, HV Backscatter 0.08 150.42 110.79 327.62 0.40 0.09 16,138 13,007 806 0.19

7. NDVI, Volume, Double Bounce 0.23 137.22 99.91 325.03 0.13 0.38 13,375 10,972 794 <0.01
8. Reflectance PLS X-Scores, HV Backscatter 3 0.41 120.25 89.51 320.43 0.03 4 0.45 12,583 9979 794 <0.01
9. Derivative PLS X-Scores, HV Backscatter 2 0.51 109.24 * 79.44 313.63 * <0.01 2 0.36 13,560 11,311 795 <0.01

10. Reflectance PLS X-Scores, Volume, Double 3 0.42 117.73 86.99 322.21 0.05 4 0.53 * 11,626 * 8489 * 790 * <0.01
11. Derivative PLS X-Scores, Volume, Double Bounce 2 0.51 * 110.10 77.07 * 316.02 <0.01 2 0.48 12,233 10,066 790 * <0.01

* Marked values indicate the best performance for each metric.

Table 5. Mean absolute error results from cross-validation for applicable models.

Herbaceous MAE
(g/m2)

Forest MAE
(g/m2)

2. Reflectance PLSR 112.57 12,061
3. First derivative PLSR 110.05 14,192

4. HV backscatter 114.71 16,481
5. Volume, double bounce components 111.71 12,477

7. NDVI, volume, double bounce components 118.35 12,040
8. Reflectance PLS X-scores, HV backscatter 114.67 12,346
9. Derivative PLS X-scores, HV backscatter 110.47 14,345

10. Reflectance PLS X-scores, volume, double bounce 114.43 11,060 *
11. Derivative PLS X-scores, volume, double bounce 106.38 * 12,950

* Marked values indicate the lowest MAE results, and thus the selected models. Models 1 (NDVI) and 6 (NDVI, HV Backscatter) are excluded as performance was not significant (p < 0.05)
for either herbaceous or forested vegetation.



Remote Sens. 2019, 11, 2533 15 of 24

Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 24 

 

As the models applying PLS x-scores with the Freeman-Durden components (models 10 and 11) 
yielded the lowest MAEs for both the overall model using all available data (Table 4) and cross-
validation (Table 5), the resultant models were selected to map AGB. The cross-validation point 
distributions for these models are shown in Figure 10. The derivative-based model was applied to 
herbaceous pixels in the AVIRIS-NG and UAVSAR products. The same process was performed on 
forest pixels using the reflectance PLS x-scores, volume, and double bounce model. Combined with 
the classification map of WLD herbaceous and forested wetland vegetation generated from the 
AVIRIS-NG data (Figure 8), the models produced the AGB map in Figure 11. 

Table 5. Mean absolute error results from cross-validation for applicable models. 

 Herbaceous MAE  
(g/m2) 

Forest MAE  
(g/m2) 

2. Reflectance PLSR 112.57 12,061 
3. First derivative PLSR 110.05 14,192 

4. HV backscatter 114.71 16,481 
5. Volume, double bounce components 111.71 12,477 

7. NDVI, volume, double bounce components 118.35 12,040 
8. Reflectance PLS X-scores, HV backscatter 114.67 12,346 
9. Derivative PLS X-scores, HV backscatter 110.47 14,345 

10. Reflectance PLS X-scores, volume, double bounce 114.43 11,060* 
11. Derivative PLS X-scores, volume, double bounce 106.38* 12,950 
*Marked values indicate the lowest MAE results, and thus the selected models. Models 1 (NDVI) and 
6 (NDVI, HV Backscatter) are excluded as performance was not significant (p < 0.05) for either 
herbaceous or forested vegetation. 

 

Figure 10. Point distribution of cross-validation predictions vs. sample AGB values for the herbaceous 
(model 11) and forest (model 10) models using the PLS x-scores. The black dashed lines represent the 
1:1 line while the green and red dashed lines represent the lines of best fit for the cross-validation 
predictions, and thus the potential model biases. 
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predictions, and thus the potential model biases.
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Figure 11. Estimated aboveground biomass (Mg/ha) map of herbaceous and forested wetland vegetation
in the WLD. The gray area represents N. lutea, floating vegetation, and submerged aquatic vegetation
that was not included in this analysis.

4. Discussion

The VIP response calculated simultaneously with the PLSR models offers insight into the spectral
properties inherent to each model. Using a threshold of VIP > 1, Figures 5 and 6 highlight the
spectral domains that most increase the reflectance and derivative PLSR models’ respective predictive
capacity. The herbaceous reflectance model is particularly sensitive to the NIR domain, while the forest
reflectance model is sensitive to the visible, red edge, parts of the NIR, and SWIR 1 (1493.37–1778.87 nm)
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domains. For the forest reflectance model, the visible, red edge, and NIR bands associated with high
VIP correspond with negative model coefficients, though much of the NIR domain exhibits positive
coefficients and VIP values close to one. Turgid leaves, i.e., the leaf canopy, is associated with visible
absorption (with relatively higher green reflectance) and NIR reflectance [64]. Thus, the importance
of these bands indicates that greater scattering from leaves is closely associated with greater forest
biomass. The SWIR 1 region also exhibits high VIP values and positive coefficients. This spectral
domain responds to non-photosynthetic vegetation (NPV), such that woody stems show low reflectance
variation relative to the NIR domain [64,65]. The observed significance and positive coefficient values
across the SWIR 1 domain likely indicate that more observed NPV material is associated with higher
tree biomass. It is likely that this is due to lower canopy closure and leaf content being observed
by AVIRIS-NG.

Conversely, the derivative-based PLSR models are attuned to specific spectral features’
characteristics. Both the herbaceous and forest PLSR model VIP scores depict a significant response to
the red edge region (Figure 6), for which the steepness and magnitude are strongly associated with
red-absorbing chlorophyll and other pigments [65–67]. The other important regions in both models
represent spectral features whose depth and curvature are associated with leaf water content [65,68,69].
It should be noted that the herbaceous derivative PLSR model quantifies a narrow feature at
approximately 810–820 nm as important (Figure 6). It is unclear whether this feature is an artifact of the
minor water vapor absorption lines from 813 to 820 [70], or whether it is correlated with a particular
biophysical property in the herbaceous canopy [71]. For example, narrowband reflectance at 810 nm
has been applied for estimating chlorophyll content [66,72], water stress [65], nutrient (nitrogen,
phosphorous, potassium)-related stress [73], and photosynthetic rate [74]. Additionally, reflectance
at 820 nm has been incorporated in indices for detecting plant water stress [68] or leaf water content
while accounting for chlorophyll concentrations and structural properties [75]. Given the water vapor
absorption feature here and the numerous studies that use its wavelength range for detecting plant
stress, the spectral response may be affected by the canopy liquid water features—which correlates
with biomass—in turn affecting atmospheric reflectance estimates. Whereas the reflectance-based
models describe biomass as a function of canopy cover, the first-derivative of the reflectance spectra
train the models on chlorophyll and water absorption features. In forested wetlands where reflectance
is the superior predictor, leaf abundance and woody NPV appear to be most closely associated with
AGB. For herbaceous vegetation, water content appears to be most closely related to AGB.

For each of these PLSR models, the PLS x-scores values entail the essential information, though
not the full weighted projection for each input band. Carrying the PLS x-scores forward into the
integrated OLSR models complements the biochemical information inherent in the spectra with the
structural information in the SAR data. For these data, model results including R2, error metrics,
and AIC values (Table 4) indicate that full spectral responses are more effective at estimating AGB
than standard vegetation indices. With respect to optical remote sensing generally, this supports the
superior efficacy of imaging spectrometers over multispectral instruments. It is important to determine
whether these optical data, being sensitive to vegetation biochemical information, aptly complement
the information provided by the interaction of radar signals with plant structure.

The HV backscatter data from UAVSAR alone shows no significant relationship with AGB
in either plant type in this assessment, though this parameter has proven effective in other AGB
retrievals [25,48,52]. It should be noted that HV backscatter constitutes the volume scattering component
in the Freeman–Durden algorithm [51]. When the Freeman–Durden polarimetric decomposition is
applied to the UAVSAR data, though, the scattering components together in forested wetlands show
a weak but significant (R2 = 0.35, p < 0.01) relationship with AGB. On the contrary, the volume and
double bounce scattering model remains insignificant for herbaceous vegetation—on par with the HV
backscatter model. As HV backscatter is essentially equal to the volume scattering, any improvement
from the addition of the double bounce component is due to the quantification of corner reflection and
its interaction with the volume scattering variable. From this we can conclude that the polarimetric
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decomposition significantly increases AGB estimation capability for forest vegetation but not for
herbaceous vegetation, as the volume and double bounce scattering components are controlled by
plant structures (i.e., leaf canopy and tree trunks) that are more differentiated among trees.

A similar pattern is manifest in the combination of the SAR data with the PLS x-scores. Adding
NDVI to any of the SAR-dominated models does not add any significant explanatory power, though
the PLS x-scores combined with SAR data increase performance across the board. NDVI, showing little
explanatory power alone or with other variables, here represents a standard multispectral application
and the first step in a series of increasingly complicated empirical models. For herbaceous vegetation,
HV backscatter with the PLS x-scores produces the lowest AIC, which quantifies model quality in terms
of accuracy, variable explanatory power, and model simplicity. However, the PLS x-scores combined
with the Freeman–Durden components produced the lowest model (Table 4) and cross-validation
(Table 5) error values. Whereas the lower error is desirable for maximizing AGB estimation accuracy,
the marginal increase in performance with the polarimetric decomposition may be less preferable than
a simpler model requiring less data processing in studies looking solely at herbaceous vegetation.
The forested wetland vegetation, though, shows a significant decrease in error with the inclusion of
the Freeman–Durden components. Coupling the PLS x-scores with the scattering components here
produces a significant reduction in cross-validation error as well as the lowest AIC value. We conclude
that while the polarimetric decomposition only slightly increases herbaceous AGB estimation accuracy
when paired with imaging spectrometer data, it enables a significant increase in model performance
for forested vegetation.

Lastly, we provide AGB estimates for the study domain over the WLD. 9.92 km2 of herbaceous
emergent vegetation was mapped, over which we calculated a mean AGB of 3.58 Mg/ha and a total of
3551.31 Mg. For the 0.93 km2 of forested wetland vegetation, we estimated a mean AGB of 294.78 Mg/ha
and a total of 27,499.14 Mg.

Other studies have assessed AGB in the broader MDP [6,29], including the Atchafalaya basin,
though these studies employ coarser satellite data that is not as well suited for local-scale sites such as
the WLD. For example, Byrd et al. [29] use Landsat and Sentinel-1 data to model herbaceous marsh
biomass in seven coastal wetland regions throughout the conterminous United States, of which the
MDP is one. An expansive in situ dataset was paired with six Landsat indices in a random forest
model to estimate AGB, and subsequently uses an average percent carbon value of 44.1% to calculate
an average carbon concentration of 1.85 Mg/ha in coastal Louisiana. This yields a mean herbaceous
AGB value of 4.20 Mg/ha throughout the greater MDP, higher than this study’s predicted average. This
may be due to the study’s use of coarser Landsat data, whose larger pixels likely mixed some forested
wetlands with the herbaceous cover. Further, the study [25] is not limited to emergent vegetation and
includes the deltaic island interiors (i.e., interdistributary bays) where floating vegetation is prominent,
which may appear very bright in optical data (Figure 1) and lead to erroneous higher AGB estimates.
In addition, Thomas et al. [6] use an in situ AGB dataset for both herbaceous and forested wetland
vegetation in the study area, which overlaps with the data used in this study, reporting a mean sample
AGB density of 3.82 Mg/ha for herbaceous wetlands and 227.02 Mg/ha for forested wetlands in May
of 2015. Thomas et al. [6], however, could not devise a robust model from coincident Sentinel-1 and
Sentinel-2 data with the number of field sites available. This corroborates this study’s poor results
from NDVI and HV backscatter-only models, which represent standard multispectral and backscatter
methods typically employed with widely available satellite data products. This further indicates that
imaging spectrometers, especially in combination with SAR, have greater potential for AGB estimation
than currently available multispectral instruments. Our lower herbaceous AGB estimates compared to
these studies [6,29] are likely due to the more limited dataset not including many of the higher biomass
samples from the peak growing season in September as they were not coincident with remotely sensed
imagery. Additionally, with the October flight campaign being just after the peak biomass period,
some of the herbaceous species had started to senesce, likely resulting in lower AGB estimates. Unlike
these studies [6,29], where coarser satellite-based data is used to map vegetation, here we employ
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high-resolution remote sensing data to map AGB at a local scale. This enables our estimates to be used
in future studies concerning AGB’s relationships with elevation, age, and species.

5. Conclusions

This study integrated airborne imaging spectrometer and SAR data for estimating wetland
vegetation AGB, and in doing so showed that these distinct datasets complement each other and enable
more accurate models than either sensor alone. Additionally, the full spectral response provided by the
imaging spectrometer was shown to be superior to standard univariate vegetation index approaches
for AGB estimation. Building on this, we found that the first derivative of reflectance is superior
to reflectance itself for estimating AGB in herbaceous vegetation, though the converse holds true
for forested vegetation. We have identified the spectral regions most closely associated with AGB,
which predominately relate to chlorophyll and water content in herbaceous vegetation as well as leaf
abundance and NPV in forested wetlands. Similarly, the use of a polarimetric decomposition for the
SAR data increases the models’ effectiveness relative to standard backscatter, and this increase is larger
for forested vegetation than for herbaceous due to greater structural diversity. These factors lead the
integrated multi-sensor models to attain superior accuracies. High resolution imaging spectrometer
data is shown here to be an effective tool for modeling and mapping AGB when integrating the
structural information provided by SAR. Our approach and local AGB estimates, which are lower on
average than other remote sensing studies in coastal Louisiana [6,29], are suited for further study of
AGB’s ecological role in deltaic emergent wetland development.

Our methods and findings bear significance for future studies and Earth-observing satellite
missions. Further study should incorporate more herbaceous and forested wetland AGB data
coincident with field spectrometer/imaging spectrometer and SAR data collections. In doing so, the
spectral characteristics associated with AGB across different vegetation types may be more accurately
quantified and a transferable algorithm for emergent wetland vegetation may be developed. Our
analysis provides an assessment of capabilities for two upcoming spaceborne missions: the NASA ISRO
Synthetic Aperture Radar (NISAR), an L-band sensor partly designed to estimate biomass, and the
Surface Biology and Geology (SBG) mission that will provide frequent and global hyperspectral data
akin to AVIRIS-NG. Our methods show the benefit of leveraging and integrating imaging spectrometer
and radar data to estimate wetland vegetation biomass.
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Appendix A

Table A1. Herbaceous wetland aboveground biomass field sample data.

Collection Date Plot Size (m2) Latitude Longitude Dominant Species AGB (g/m2)

6 May 2015 0.25 29.53893 −91.38042 Sagittaria lancifolia 324.10
6 May 2015 0.25 29.53918 −91.38051 Sagittaria lancifolia 401.52
6 May 2015 0.25 29.53943 −91.38044 Sagittaria lancifolia 394.42
8 May 2015 0.25 29.42521 −91.27973 Alternanthera philoxeroides 132.92
8 May 2015 0.25 29.47480 −91.10216 Spartina alterniflora 332.30
8 May 2015 0.25 29.42525 −91.27923 Ludwigia grandiflora 259.50
8 May 2015 0.25 29.42533 −91.27925 Typha domingensis 299.20
8 May 2015 0.25 29.42527 −91.27888 Typha domingensis 519.10
8 May 2015 0.25 29.42527 −91.27280 Colocasia esculenta 244.44
8 May 2015 0.25 29.50637 −91.23360 Saururus cernuus 126.00
9 May 2015 0.25 29.41716 −90.94989 Sagittaria lancifolia 451.28
9 May 2015 0.25 29.41719 −90.94984 Eleocharis radicans 338.00
9 May 2015 0.25 29.41759 −90.95010 Sagittaria lancifolia 908.76
9 May 2015 0.25 29.41762 −90.95002 Sagittaria lancifolia 622.20
9 May 2015 0.25 29.41796 −90.95036 Sagittaria lancifolia 379.44

15 November 2016 0.25 29.50650 −91.44556 Colocasia esculenta 250.04
15 November 2016 0.25 29.50644 −91.44558 Colocasia esculenta 351.44
15 November 2016 0.25 29.50639 −91.44567 Colocasia esculenta 253.72
15 November 2016 0.25 29.50672 −91.44564 Colocasia esculenta 243.32
15 November 2016 0.25 29.50664 −91.44550 Colocasia esculenta 279.68
15 November 2016 0.49 29.50664 −91.44539 Colocasia esculenta 482.02
15 November 2016 0.49 29.50656 −91.44542 Colocasia esculenta 348.67
15 November 2016 0.75 29.50639 −91.44541 Colocasia esculenta 255.73
15 November 2016 0.75 29.50647 −91.44531 Colocasia esculenta 380.67
15 November 2016 0.75 29.50655 −91.44576 Colocasia esculenta 402.40

Table A2. Forested wetland aboveground biomass field sample data.

Collection Date Plot Radius (m) Latitude Longitude Dominant Species AGB (g/m2)

6–8 May 2015 10 29.51538 −91.43171 Salix nigra 38,030
6–8 May 2015 10 29.51121 −91.43267 Salix nigra 8160
6–8 May 2015 10 29.51070 −91.42787 Salix nigra 42,590
6–8 May 2015 10 29.50545 −91.43219 Salix nigra 30,100
6–8 May 2015 10 29.61462 −91.32393 Taxodium distichum 19,552
6–8 May 2015 10 29.49074 −91.43710 Salix nigra 8850
6–8 May 2015 10 29.61431 −91.32350 Salix nigra 1790
6–8 May 2015 10 29.51413 −91.43279 Salix nigra 51,520
6–8 May 2015 10 29.51214 −91.43756 Salix nigra 23,100
6–8 May 2015 10 29.51361 −91.44246 Salix nigra 16,350
6–8 May 2015 10 29.51607 −91.45768 Salix nigra 13.830
6–8 May 2015 10 29.51266 −91.45770 Salix nigra 30,210
6–8 May 2015 10 29.50539 −91.44698 Salix nigra 3070
6–8 May 2015 10 29.53821 −91.44451 Salix nigra 36,300
6–8 May 2015 10 29.53608 −91.43400 Salix nigra 66,080
6–8 May 2015 10 29.53263 −91.43570 Salix nigra 34,780
6–8 May 2015 10 29.50715 −91.44643 Salix nigra 5180
6–8 May 2015 10 29.53821 −91.44451 Salix nigra 36,300
6–8 May 2015 10 29.53608 −91.43400 Salix nigra 66,080
6–8 May 2015 10 29.53263 −91.43570 Salix nigra 34,780
6–8 May 2015 10 29.51538 −91.43171 Salix nigra 38,030
6–8 May 2015 10 29.51413 −91.43279 Salix nigra 51,520
6–8 May 2015 10 29.51121 −91.43267 Salix nigra 8160
6–8 May 2015 10 29.51070 −91.42787 Salix nigra 42,590
6–8 May 2015 10 29.51214 −91.43756 Salix nigra 23,100
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Table A2. Cont.

Collection Date Plot Radius (m) Latitude Longitude Dominant Species AGB (g/m2)

6–8 May 2015 10 29.51361 −91.44246 Salix nigra 16,350
6–8 May 2015 10 29.51607 −91.45768 Salix nigra 13,830
6–8 May 2015 10 29.51299 −91.45649 Salix nigra 16,710
6–8 May 2015 10 29.52044 −91.44769 Salix nigra 29,990
6–8 May 2015 10 29.49821 −91.45908 Salix nigra 24,020
6–8 May 2015 10 29.51266 −91.45770 Salix nigra 30,210
6–8 May 2015 10 29.50545 −91.43219 Salix nigra 30,100
6–8 May 2015 10 29.50539 −91.44698 Salix nigra 3070
6–8 May 2015 10 29.49074 −91.43710 Salix nigra 8850
6–8 May 2015 10 29.48458 −91.43940 Salix nigra 10,430
6–8 May 2015 10 29.51120 −91.44429 Salix nigra 6370

Table A3. Aboveground biomass ordinary least squares regression models.

Herbaceous
Model Coefficient

Forest
Model Coefficient

Derivative PLS Component 1 −1966.287
Derivative PLS Component 2 −11555.016
Reflectance PLS Component 1 1188.786
Reflectance PLS Component 2 −16,737.491
Reflectance PLS Component 3 −194,039.813
Reflectance PLS Component 4 −41,831.015
Volume Scattering Component −7.293 1471.021

Double Bounce Scattering
Component 3.418 −1398.494

Constant 339.758 23,568.644

Volume and double bounce scattering component values are inherently negative. The coefficient sign is indicative
of an inverse relationship if positive or a positive relationship if negative.
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