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Abstract: In olive groves, vegetation ground cover (VGC) plays an important ecological role. The EU
Common Agricultural Policy, through cross-compliance, acknowledges the importance of this factor,
but, to determine the real impact of VGC, it must first be quantified. Accordingly, in the present
study, eleven vegetation indices (VIs) were applied to quantify the density of VGC in olive groves
(Olea europaea L.), according to high spatial resolution (10–12 cm) multispectral images obtained by an
unmanned aerial vehicle (UAV). The fieldwork was conducted in early spring, in a Mediterranean
mountain olive grove in southern Spain presenting various VGC densities. A five-step method was
applied: (1) generate image mosaics using UAV technology; (2) apply the VIs; (3) quantify VGC
density by means of sampling plots (ground-truth); (4) calculate the mean reflectance of the spectral
bands and of the VIs in each sampling plot; and (5) quantify VGC density according to the VIs.
The most sensitive index was IRVI, which accounted for 82% (p < 0.001) of the variability of VGC
density. The capability of the VIs to differentiate VGC densities increased in line with the cover
interval range. RVI most accurately distinguished VGC densities > 80% in a cover interval range
of 10% (p < 0.001), while IRVI was most accurate for VGC densities < 30% in a cover interval range
of 15% (p < 0.01). IRVI, NRVI, NDVI, GNDVI and SAVI differentiated the complete series of VGC
densities when the cover interval range was 30% (p < 0.001 and p < 0.05).

Keywords: UAV; vegetation ground cover; multispectral; vegetation indices; agro-environmental
measures; olive groves; southern Spain

1. Introduction

The Mediterranean basin contains 93.44% of the 10.24 million hectares of global olive cultivation
(Olea europaea L.). Spain is the world’s leading producer, with an annual crop production of 6.56 million
tons, obtained from a growing area of over 2.57 million hectares (24.40% of the worldwide surface
area in this respect), of which 1.55 million hectares are in Andalusia [1,2]. In the 1980s, the surface
area of land dedicated to olive cultivation in Andalusia was expanded and production methods
intensified. These changes, together with the continued existence of inappropriate practices linked to
traditional land management, such as deep and continuous tillage in areas with high slopes or the
elimination of vegetation ground cover (VGC) that protects the soil from torrential rains, aggravated
the unsustainability environmental in the Andalusian olive groves [3,4].

VGC is the vegetal cover that grows spontaneously on the ground surface. This provides significant
benefits to agricultural soils in the olive groves of southern Spain. Maintaining this cover is the best
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management option in rain-fed conditions, facilitating greater biomass and more bacterial diversity
than in soils lacking vegetation cover. The microbial diversity of the soil deserves special attention
because it an accurate biological indicator of soil quality, since it is very sensitive to changes that
occur as a result of a bad crop management (weeds chemical control and soil tillage) [5]. Furthermore,
the reduction of the soil biological diversity leads to a reduction of the stability of the microbial
community, which causes a malfunction of the soil biota and its associated functions relating to
the decomposition of the soil organic matter, with the nutrient cycle and, ultimately, with the plant
production [6]. It is also important to highlight the advantages of maintaining VGC, compared to
conventional tillage practices, in terms of improving soil fertility and water retention [7], and reducing
water erosion in olive groves [8].

The importance of vegetation cover is also acknowledged in the cross-compliance system of the EU
Common Agricultural Policy (CAP) (Regulation No. 1306/2013), specifically in the Good Agricultural
and Environmental Conditions (GAEC) related to soil and the carbon stock, i.e., “minimum soil
cover” (GAEC 4) and the “maintenance of soil organic matter level through appropriate practices
including ban on burning arable stubble, except for plant health reasons” (GAEC 6). The application of
these rules, which are mandatory for recipients of CAP assistance, requires the VGC density on the
farms to be quantified. However, the effective control and monitoring of compliance is hampered by
methodological shortcomings.

At present, VGC is usually analysed by means of vegetation indices (VIs), especially those using
the R and NIR bands [9]. As is known, in remote sensing, the relationship between the two bands
is basic because they are a test of vigour of vegetation check. VIs can be a more precise plant cover
detection element than other traditional techniques, such as supervised or unsupervised classification,
as they have the advantage of maintaining detailed spectral information and the image with all its
sharpness. The basic principles are widely known: the vigorous vegetation, in the visible spectrum,
between 400 and 700 nm (Red) appears in dark colour due to the high absorption of the pigments of its
leaves (mainly chlorophyll), with a small increase of the reflectance around 550 nm (Green), in contrast
to its high reflectance between 700–1300 nm (Near-Infrared).

VIs are derived from arithmetical operations performed on spectral information from the radiation
reflected by the vegetation at different wavelengths [10]. These indices are used to evaluate the
biophysical characteristics of the plant canopy, such as the leaf area index, biomass and physiological
activities [11,12]; to classify types of vegetation cover [13]; and to determine the proportion of each
type of cover with respect to the total area studied [14–17]. To our knowledge, VIs have not previously
been used to quantify VGC density.

In olive cultivation (Olea europea L.), VIs are usually employed to differentiate types of soil
cover (cover crop, bare soil and tree areas) [18] and to determine the agronomic and environmental
characteristics of tree orchards [19]. They have also been used to analyse the three-dimensional
geometric characteristics of individual trees and tree-rows [20] and their physiological characteristics,
according to the canopy reflectance for cultivar recognition in an olive grove [21].

Traditionally, satellites have provided the platforms used for vegetation analysis [22]. However,
the quantification of land cover in woody crops, such as olive groves, is subject to an important
limitation, because the trees partially cover the soil, which generates high error rates in remote
sensing [23]. This problem is exacerbated when the VGC presents heterogeneous densities, due to
climatic seasonality and soil management (tillage vs. no tillage). Thus, in situations of scant VGC,
the resulting radiance depends on both the nature of the underlying soil and the current level of
vegetation cover [24,25].

The use of unmanned aerial vehicles (UAVs) for low-altitude remote sensing provides an
interesting alternative to traditional detection systems [26], presenting numerous advantages [27].
For the purposes of this study, the following are particularly important: (a) UAVs provide considerable
temporal flexibility for image capture, which enables periodic monitoring of the vegetation cover [28],
and also enables the operator to obtain images unaffected by clouds; and (b) ultra-high resolution
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images can be obtained, with a low proportion of mixed pixels (in which both soil and vegetation are
reflected) [15].

The aim of this study was to analyse the capacity of VIs, applied to images obtained by UAV
technology, to quantify the density of VGC in olive groves.

2. Materials and Methods

2.1. Study Site

The study was carried out in 57 privately-owned olive groves located in the centre-west of the
province of Malaga (southern Spain), in the municipalities of Alozaina (334494,72N, 4064214,89W
ETRS 1989 UTM Zone 30N) and Casarabonela (336842, 64N, 4068297.68W ETRS 1989 UTM Zone 30N)
(Figure 1a). The relief is undulating (flysch) with slopes ranging 7–30% (Figure 1b).
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Figure 1. Study area: (a) location in the province of Malaga; (b) undulating relief and geometric 
planting framework; (c) areas with high VGC density; (d) areas with medium VGC density; and (e) 
no VGC (bare soil). 

The predominant soils are Calcic Cambisols, Vertic Cambisols, Calcaric Regosols and Haplic 
Vertisols [29], with an average depth of 66.4 ± 30.9 cm and an average organic carbon content of 20.3 
± 13.5 g kg-1. 

The climate is temperate Mediterranean, with an average annual temperature of 18.4° C and 
mean annual precipitation of 636 mm. There is a period of prolonged water deficit, from April to 
September, which, together with the type of soil and its management, influence the development and 
seasonality of the VGC. These circumstances mean that the density of land cover is highly variable 
during the year (Figure 1c–e), with a vertical development that varies depending on the species, but 
in no case exceeds 1 m in height, as it is eliminated beforehand by the farmer. The VGC is mainly 
composed of grasses, together with weeds and ruderal nitrophytes of the Ruderali-Secalietea class. 
The Thero-Brometalia order is represented by species such as Aegilops triuncialis, Bromus spp. and 
Inula viscosa, while examples of the Chenopodietalia order (found in more nitrified environments) 
include species such as Hordeum murinum and Malva sylvestris, especially in compact surface soils, 
and Chenopodium album where there is more humidity and a high concentration of nitrogen [30]. 

Figure 1. Study area: (a) location in the province of Malaga; (b) undulating relief and geometric
planting framework; (c) areas with high VGC density; (d) areas with medium VGC density; and (e) no
VGC (bare soil).

The predominant soils are Calcic Cambisols, Vertic Cambisols, Calcaric Regosols and Haplic
Vertisols [29], with an average depth of 66.4 ± 30.9 cm and an average organic carbon content of 20.3 ±
13.5 g kg−1.

The climate is temperate Mediterranean, with an average annual temperature of 18.4◦ C and mean
annual precipitation of 636 mm. There is a period of prolonged water deficit, from April to September,
which, together with the type of soil and its management, influence the development and seasonality
of the VGC. These circumstances mean that the density of land cover is highly variable during the year
(Figure 1c–e), with a vertical development that varies depending on the species, but in no case exceeds
1 m in height, as it is eliminated beforehand by the farmer. The VGC is mainly composed of grasses,
together with weeds and ruderal nitrophytes of the Ruderali-Secalietea class. The Thero-Brometalia
order is represented by species such as Aegilops triuncialis, Bromus spp. and Inula viscosa, while examples
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of the Chenopodietalia order (found in more nitrified environments) include species such as Hordeum
murinum and Malva sylvestris, especially in compact surface soils, and Chenopodium album where there
is more humidity and a high concentration of nitrogen [30].

Olive trees are cultivated in non-irrigated land, in geometric planting frameworks with 8–10 m
between each tree, which provides an average density of 160 trees per hectare (Figure 1b). VGC is
managed by means of deep (15–20 cm) and continuous mouldboard ploughing (2–3 times per year),
beginning in January and continuing until June. As a result, the soil is bare for most of the year
(Figure 1e), except for periods between ploughing operations, especially in the spring, which is when
the VGC quickly returns (Figure 1c,d).

2.2. Quantifying the VGC Density

VGC density is the amount of vegetal cover present on the ground surface. As a preliminary step
to quantifying the VGC, a field survey was carried out in each farm and the owners were interviewed
to characterise the form of VGC management employed and determine the most appropriate time to
perform the UAV flights and obtain the aerial images. The ideal time for this was considered to be
mid-April (early spring), when the VGC presented greater variability of surface density, having been
present in some cases for several months, giving rise to dense coverage (Figure 1c), while, in other
plots, recently cleared, the soil was bare or had only minimal VGC (Figure 1e).

The flights were performed on 16 April at an altitude of 85 m in Alozaina and 90 m in Casarabonela.
The difference in altitude was to ensure the safety of the device, because the relief is more abrupt
in the Casarabonela farms. As a result of this difference, there was a slight variation in the spatial
resolutions obtained (mean ground sampling distance), which were 10.11 cm/pixel and 11.18 cm/pixel
in the Alozaina and Casarabonela images, respectively. This difference in altitude had no impact on
the study results, as has been reported previously [16].

The method used to quantify VGC consisted of the following steps (Figure 2): (1) conduct the
UAV flights and generate image mosaics; (2) apply the VIs; (3) quantify the VGC density by means of
sampling plots (SP) (ground-truth); (4) calculate the mean reflectance value of the spectral bands and
the VIs in the SPs; and (5) assess the VIs in order to quantify the density of the VGC.
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2.2.1. UAV Flights and Image Mosaicking

The images required for this study were obtained using a Parrot Bluegrass quadcopter (Parrot S.
A, Paris, France) (Figure 3a), with vertical take off and landing. This device carries a Parrot Sequoia
multispectral sensor (Parrot S. A, Paris, France) (Figure 3b), composed of four single-band global
shutter cameras with a resolution of 1.2 Mpx (1280 × 960 pixels), capable of capturing four spectral
bands in visible and invisible infrared light: Green (G), Red (R), Red Edge (RE), and Near Infrared
(NIR). In addition, it has a brightness sensor that records the light conditions, the GPS location and
inertial data.
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In each flight mission, a sequence of overlapping images (30% side-lap and 60% forward-lap) was
taken of each farm in the study area. Pix4Dmapper Pro software, version 4.2.25 (Pix4D S. A, Prilly,
Switzerland), was used for the mosaicking and for the radiometric calibration of the images. First,
the overall orthomosaic reflectance was obtained for each band. These values were then spectrally
corrected by applying an empirical linear relationship [31] from the light sensor data and from the
reference photographs taken of the calibrated reflectance panel (Diana Parrot Sequoia 19 cm × 13.5 cm).
The geometric calibration was obtained using the GPS parameters and the inertial measurement units
from the sensor.

2.2.2. Application of the Vegetation Indices (VIs)

We selected the VIs based on two criteria. Firstly, if they used some of the four bands (G, R, RE and
NIR) offered by the multispectral camera used in the flights in their calculations, they were selected.
Secondly, the scientific literature has shown that the behaviour of the IVs is variable depending on the
existing density of ground cover. Thus, some indices have provided better results when they have
been applied in an area with high vegetation ground cover density, while others have responded better
in areas with low cover. Taking into account the high heterogeneity of the VGC present in the study
area, varied indices were selected to assess their responses to this situation.

The VIs used can be classified as conventional ratio or differential indices (IRVI, RVI, DVI, GVI,
GRVI and VREI), indices corrected and derived from the traditional indicators (normalised difference
vegetation indices) (NDVI, NRDE, NRVI and GNDVI) and soil reflectance adjusted indices (SAVI)
(Table 1).
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Table 1. Vegetation indices applied.

Index Formula a Reference

IRVI (Inverse Ratio Vegetation Index) R
NIR [32]

RVI (Ratio Vegetation Index) NIR
R [33]

DVI (Difference Vegetation Index) NIR−R [32]
NDVI (Normalised Difference Vegetation Index) NIR−R

NIR+R [34]
GNDVI (Green Normalised Difference Vegetation Index) NIR−G

NIR+G [35]
NDRE (Normalised Difference Red Edge) NIR−RE

NIR+RE [36]
GRVI (Green-Red Vegetation Index) G−R

G+R [37,38]
GVI (Green Vegetation Index) NIR

G [39]
NRVI (Normalised Ratio Vegetation Index) RVI−1

RVI+1 [11]
SAVI (Soil-Adjusted Vegetation Index) b NIR−R

NIR+R+L (1 + L) [40]
VREI (Vogelmann Rededge Index) NIR

RE [41]
a Wavelength band values G (550 nm centre, 40 nm bandwidth), R (660 nm centre, 40 nm bandwidth), RE (735 nm
centre, 10 nm bandwidth), NIR (790 nm centre, 40 nm bandwidth). b L= Soil adjustment factor 0.5 for intermediate
coverage values [42].

2.2.3. Quantifying VGC Density by Means of Sampling Plots (Ground-Truth)

VIs provide an abstract number that reproduces, in each pixel, the relationship between the bands
used. These results must then be related to the real level of ground cover. To do so, a ground-truth field
quantification survey of VGC density was performed in 115 sampling plots (SP), distributed randomly
(1 SP per 0.5 ha of surface). No samples were taken in areas close to the tree canopies in order to avoid
the influence of shade. With a surface area of 1 m2, each SP was divided into quadrants measuring
12.5 cm × 12.5 cm, which provided 49 checkpoints per SP (Figure 4) in which the VGC was quantified
by the binary classes “vegetation present” and “vegetation absent”.
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The SPs were located in the field using a Trimble Geo XH 6000 real-time decimetric precision GPS
collector (10 cm DGNSS real-time accuracy) (Trimble GeoSpatial, Munich, Germany).
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2.2.4. Calculating the Mean Reflectance Values of the Spectral Bands and the Vis in the Sampling Plots

The mean reflectance value of the spectral bands and the VIs in each SP was then calculated
(Figure 5). Due to the above-discussed differences in spatial resolution, in the Alozaina farms, each SP
contained 98 pixels, while in those in Casarabonela there were 80 pixels per SP.
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constituting the average NDVI reflectance value for each SP (left), ground-truth (right) (* Coordinate
System: ETRS 1989 UTM Zone 30N).

2.2.5. Assessing the VIs to Quantify the VGC Density

The relationship among the spectral bands, the VIs and the ground-truth data was determined
by linear regression analysis (stepwise method). We then determined how well the VIs
differentiated VGC density at different ranges, using analysis of the variance (ANOVA) and Tukey’s
honestly-significant-difference (HSD) test. All statistical analyses were performed using IBM SPSS
Statistics 25.0.

3. Results

Regression analysis between the reflectance of the spectral bands used alone and the VGC density
shows that the R and G wavelengths have a greater explanatory capacity (R2 = 0.58 and R2 = 0.50,
p < 0.001, respectively) than the NIR and RE bands (R2 = 0.33 and R2 = 0.17, p < 0.001, respectively)
(Table 2). Multiple regression analysis significantly improves the results when the R and NIR bands
are combined (adjusted R2 = 0.74, p < 0.001). The equation with the R, NIR and G bands has the same
explanatory capacity (Table 2).

Application of the VIs substantially improves the results. IRVI, NDVI and NRVI provide the most
accurate estimates of VGC density (R2 > 0.81, p < 0.001) (Figure 6).
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Table 2. Estimating VGC density from spectral bands (n = 115).

Band Regression Model R R2 Adjusted R2 P-Value

R y = 108.05 − 413R 0.765 0.584 0.581 p < 0.001
G y = 135.63 − 659.93G 0.710 0.504 0.500 p < 0.001

NIR y = − 14.46 + 217.92NIR 0.571 0.326 0.320 p < 0.001
RE y = − 6.08 + 237.197RE 0.409 0.167 0.160 p < 0.001

R, NIR y = 49.53 − 358.58R + 155.76NIR 0.861 0.741 0.737 p < 0.001
R, NIR, G y = 60.41−161.04R + 173.28NIR−346.05G 0.867 0.752 0.745 p < 0.001

G: Green; R: Red; RE: Red Edge; NIR: Near Infrared.
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Figure 6. Scatter diagrams and regression curves of the relation between vegetation cover (Ground-
Truth) and VIs.

Analysis of the capability of VIs to differentiate intervals of VGC densities highlighted the existence
of important differences. Cover interval range is the reference value taken to establish the VGC density.
The increase in the range in which the VGC density intervals are expressed was directly proportional
to the separability of the VIs (Table 3). For a 10% cover interval range, Tukey’s HSD test shows that
RVI (p < 0.001); DVI, GVI and SAVI (p < 0.01); and NRVI and NDVI (p < 0.05) are the only VIs with the
ability to differentiate VGC densities > 80%. Lower VGC densities are not differentiated by any of the
VIs used.

Table 3. Tukey’s HSD test of reflectance values for VIs and ground-truth VGC at different intervals.
The table expresses in a range of increasing coverage interval (from 10% to 30%) the separability
between coverage intervals for each VI applied. The coverage interval ranges within the parentheses
correspond to VGC values greater than 90% because the entire series could not be divided into regular
intervals. Bold letters indicate that there is statistically significant separability in coverage intervals,
accompanied by the level of significance (p).

Cover Interval
Range (%) Significant Cover Intervals (Analysis Pairs) VI

10

0–10↔ 10–20↔ 20–30↔ 30–40↔ 40–50↔ 50–60↔ 60–70↔ 70–80↔ 80–90↔ 90–100
p < 0.001 RVI

0–10↔ 10–20↔ 20–30↔ 30–40↔ 40–50↔ 50–60↔ 60–70↔ 70–80↔ 80–90↔ 90–100
p < 0.01

DVI
GVI
SAVI

0–10↔ 10–20↔ 20–30↔ 30–40↔ 40–50↔ 50–60↔ 60–70↔ 70–80↔ 80–90↔ 90–100
p < 0.05

NRVI
NDVI

0–10↔ 10–20↔ 20–30↔ 30–40↔ 40–50↔ 50–60↔ 60–70↔ 70–80↔ 80–90↔ 90–100 Other VIs

15 (10)

0–15↔ 15–30↔ 30–45↔ 45–60↔ 60–75↔ 75–90↔ 90–100
p < 0.01 p < 0.01 IRVI

0–15↔ 15–30↔ 30–45↔ 45–60↔ 60–75↔ 75–90↔ 90–100
p < 0.05 p < 0.001

NRVI
NDVI

GNDVI

0–15↔ 15–30↔ 30–45↔ 45–60↔ 60–75↔ 75–90↔ 90–100
p < 0.001

RVI
DVI
GVI
SAVI

0–15↔ 15–30↔ 30–45↔ 45–60↔ 60–75↔ 75–90↔ 90–100
p < 0.05 VREI

0–15↔ 15–30↔ 30–45↔ 45–60↔ 60–75↔ 75–90↔ 90–100 Other VIs
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Table 3. Cont.

Cover Interval
Range (%) Significant Cover Intervals (Analysis Pairs) VI

20

0–20↔ 20–40↔ 40–60↔ 60–80↔ 80–100
p < 0.001 p < 0.001

IRVI
NRVI
NDVI

GNDVI

0–20↔ 20–40↔ 40–60↔ 60–80↔ 80–100
p < 0.01 p < 0.001 SAVI

0–20↔ 20–40↔ 40–60↔ 60–80↔ 80–100
p < 0.05 p < 0.05

NDRE

0–20↔ 20–40↔ 40–60↔ 60–80↔ 80–100
p < 0.001

RVI
DVI
GVI

0–20↔ 20–40↔ 40–60↔ 60–80↔ 80–100
p < 0.05 VREI

0–20↔ 20–40↔ 40–60↔ 60–80↔ 80–100 Other VIs

25

0–25↔ 25–50↔ 50–75↔ 75–100
p < 0.001 p < 0.001

IRVI
NRVI
NDVI

GNDVI
SAVI

0–25↔ 25–50↔ 50–75↔ 75–100
p < 0.05 p < 0.001

DVI
NDRE

0–25↔ 25–50↔ 50–75↔ 75–100
p < 0.001

RVI
GVI

GRVI
VREI

0–25↔ 25–50↔ 50–75↔ 75–100 Other VIs

30 (10)

0–30↔ 30–60↔ 60–90↔ 90–100
p < 0.001 p < 0.01 p < 0.001

IRVI
NRVI
NDVI

0–30↔ 30–60↔ 60–90↔ 90–100
p < 0.001 p < 0.05 p < 0.001

GNDVI
SAVI

0–30↔ 30–60↔ 60–90↔ 90–100
p < 0.001 p < 0.001 DVI

0–30↔ 30–60↔ 60–90↔ 90–100
p < 0.01 p < 0.001 GVI

0–30↔ 30–60↔ 60–90↔ 90–100
p < 0.05 p < 0.01 NDRE

0–30↔ 30–60↔ 60–90↔ 90–100
p < 0.05 p < 0.001 GRVI

0–30↔ 30–60↔ 60–90↔ 90–100
p < 0.001 RVI

0–30↔ 30–60↔ 60–90↔ 90–100
p < 0.01 VREI

0–30↔ 30–60↔ 60–90↔ 90–100 Other VIs

Increasing the cover interval range to 15% raises the number of indices capable of differentiating
VGC densities greater than 75% and, at the same time, improves the accuracy of those that were already
significant in the previous interval (10%) (Table 3). Thus, in addition to the high level of significance
already found for RVI (p < 0.001), NRVI, NDVI, SAVI, DVI and GVI are now significant. Moreover,
new significant indices appear: GNDVI (p < 0.001), IRVI (p < 0.01) and VREI (p < 0.05). In this range,
too, we observe the first indices capable of differentiating VGC densities below 30%, namely IRVI
(p < 0.01) and NRVI, NDVI and GNDVI (p < 0.05). On the other hand, VGC densities between 30%
and 75% remain undifferentiated.

The results obtained for VGC intervals of 20–25% are similar to those for the lower value (15%).
New indices (NDRE and GRVI) are capable of differentiating VGC densities greater than 60% and
75%, respectively (Table 3). With VGC densities below 40% and 50%, respectively, the VIs found to be
significant in the previous cover interval range (IRVI, NRVI, NDVI and GNDVI) become even more
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significant (p < 0.001), and further indices become significant, i.e., SAVI (p < 0.01) and NDRE (p < 0.05).
VGC densities of 40–60% and 25–75%, respectively, continue to be undifferentiated. Only when the
cover interval range reaches 30% do IRVI, NRVI and NDVI (p < 0.01) and GNDVI and SAVI (p < 0.05)
discriminate the complete series of VGC density intervals (Table 3).

Figures 7 and 8 show the quantification of the VGC from the application of the regression equation
obtained by IRVI. In both figures, the heterogeneity of VGC densities of the study area is clearly
observed, which denotes the existence of different temporality in the management of the soil by farmers.
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Lima et al. [8] showed for the study area that zones in which the VGC is non-existent or very
scarce (with percentages below 30%) correspond to areas ploughed later (early April), when normally
they are ploughed in March. For this reason, on the date of the flight (mid-April), the lands were
recently ploughed and, therefore, the soil had little vegetation cover. However, the areas that present
VGC intervals greater than 60% are those that have not yet were ploughed, which has allowed the
ground cover development, taking into account that the last ploughing was approximately in the
months of January and February. All these temporality differences in soil management, an aspect that
is normal in situations of real use outside the controlled conditions of experimental farmland, increase
the demands on the VGC detection and quantification system.

4. Discussion

According to the study results obtained, VIs can be used to quantify VGC density, increasing
the vegetation reflectance information obtained by the spectral bands alone. The IRVI, NDVI and
NRVI provide the most accurate estimates of VGC density (R2 > 0.81, p < 0.001) in the study area.
Although these VIs obtain very similar values, the best result is obtained with IRVI (R2 = 0.82, p < 0.001).
The ability of this index to measure green herbaceous biomass at the end of the rainy season was
reported by Verbesselt et al. [43]. In the present analysis, we show that the results obtained by the
inverse indices such as IRVI are substantially better than those from simple indices such as RVI
(R2 = 0.49, p < 0.001). The remaining simple VIs (DVI, GVI and VREI) present the lowest values,
and only account for 48–67% of VGC variability.

The corrected indices derived from traditional indicators are also interesting. Normalisation
substantially improves the results of the VIs. One example of this improvement is that of NDVI
(R2 = 0.81, p < 0.001). This same index, without normalisation (i.e., DVI), is less able to distinguish VGC
(R2 = 0.67, p < 0.001). The difference is even more apparent with NRVI (R2 = 0.81, p < 0.001), which prior
to normalisation (RVI) had a 32% poorer explanatory capability (R2 = 0.49, p < 0.001). These results are
consistent with those obtained by Carlson and Ripley [44] and by Hassan et al. [45], who obtained
good results with normalised indices, such as NDVI, to estimate the fraction of vegetation cover.
Index normalisation usually improves the results obtained because it provides a greater separation
of the green vegetation from its background soil brightness [34] and reduces the effects produced by
topographic, atmospheric and lighting factors [10].

The soil reflectance adjusted index (SAVI) is not among the best-performing indices (R2 = 0.77,
p < 0.001), because the study area considered has a predominance of areas with high cover density (in
44% of the SP the VGC was greater than 80%) and this VI was designed to analyse areas with little
vegetation cover [40].

In our study, the VGC is best quantified by the VIs based on the R and NIR bands, due to the spectral
behaviour of the vegetation; the chlorophyll absorbs a greater proportion of the electromagnetic waves
in the R region, and high reflectance values are observed in the NIR region due to the microcellular
structures of the leaf material [46].

However, this is not the case with the VIs derived from the G or RE bands. While the G band,
used individually, obtains an acceptable result (R2 = 0.50, p < 0.001), its incorporation into the VIs
worsens their performance. This deterioration is apparent with GNDVI (R2 = 0.79, p < 0.001) and even
more so with GRVI (R2 = 0.52, p < 0.001), with respect to NDVI (R2 = 0.81, p < 0.001). Both of these
VIs perform worse when the G band replaces the R band (GNDVI) or the NIR band (GRVI). These
results corroborate those of Khajeddin [14] and Barati et al. [47], who reported that the use of the G
band reduces the sensitivity of the VIs.

The RE band, used individually, does not obtain good results (R2 = 0.17, p < 0.001). This is
reflected in the VIs that incorporate this band, such as VREI (R2 = 0.48, p < 0.001) and NDRE (R2 = 0.50,
p < 0.001). From these results, we conclude that VIs based on the RE band are relatively insensitive
to the quantification of VGC, although Dong et al. [48] stated that RE-based VIs are more sensitive
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to chlorophyll and can be used to derive an empirical model for estimating the leaf area index in
different crops.

As expected, the behaviour of the VIs in response to different VGC densities is not homogeneous,
but improves in line with the increase in cover interval ranges. Tukey’s HSD test shows that the most
suitable indices to quantify areas with VGC densities greater than 80%, at a cover interval range of
10%, are RVI (p < 0.001); DVI, GVI and SAVI (p < 0.01); and NRVI and NDVI (p < 0.05). NDRE and
VREI are expected to obtain very similar results, since these indices are normally more robust and
perform better in areas of greater canopy density [49], and hence no saturation deficiencies [50–52].
These VIs begin to be significant (p < 0.05) at a cover range of 15% (VREI) and 20% (NDRE).

For the discrimination of areas with a VGC density of less than 30%, IRVI (p < 0.01) is the most
significant at a cover interval range of 15%. Its estimation capacity decreases as the biomass increases,
since the greater is the biomass, the lower is the reflectance of the R band and the greater is the
reflectance of the NIR band [43].

IRVI, NRVI and NDVI (p < 0.001 and p < 0.01) and GNDVI and SAVI (p < 0.001 and p < 0.05)
only achieve a significant differentiation at all coverage intervals within the same range when the
cover interval range reaches 30%. From these results, we conclude that VIs are especially useful for
detecting and quantifying homogeneous surfaces, such as areas that are either completely covered
or have very little vegetation cover. However, when the VGC is slight or moderate, the reflectance
measured does not depend exclusively on the vegetation cover, but also on other factors, such as
the soil. The VI is then a less precise instrument. As mentioned above, the analysis of land cover
in woody crops, such as olive groves, tends to generate high error rates in remote sensing. In the
present study, the differentiation capacity of the VIs was severely tested by their use in a region of very
heterogeneous soil cover; some of the olive groves had not been cleared for several months and so the
VGC was quite dense, while in others the soil was bare, and subjected to diverse soil management
regimes (tillage vs. no tillage). In this context, it can be considered normal that some of the VIs were
only able to significantly differentiate all vegetation cover intervals with the same range above a cover
interval range of 30%. Better results are to be expected for crops or areas in which the ground cover is
more homogeneous.

5. Conclusions

In this paper, we show that UAV technology, together with image processing based on VIs, makes
it possible to remotely quantify the density of VGC produced spontaneously in olive groves. Of the
11 VIs considered, IRVI was the most sensitive to quantify VGC density at intervals of 10–25%. Only
when the cover interval range rose to 30% did IRVI, NRVI, NDVI, GNDVI and SAVI differentiate the
complete series of densities.

The study described in this paper provides: (a) a better understanding of the behaviour of VIs
in response to different soil cover densities; (b) a demonstration of the ability to remotely quantify
the VGC in olive groves with heterogeneous soil cover; (c) a contribution to providing control and
monitoring tools enabling recipients of CAP benefits to comply with cross-compliance requirements in
terms of minimum soil cover; and (d) to know the temporality of the operations carried out in the soil,
which is of great importance to adapt this to the rainfall conditions of the area, and avoid the existence
of bare soils in the periods of more intense rainfall.

However, due to the dynamic, heterogeneous nature of the VGC in olive groves, further research is
needed in this area, applying the method to images obtained in other seasons (i.e., in summer, autumn
and winter), and in regions where there is less ground cover heterogeneity.
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