Sea Ice Remote Sensing Using GNSS-R: A Review
Abstract
:1. Introduction
2. Spaceborne Applications
2.1. Preliminary Investigation in Sea Ice Sensing
2.2. DDM Observable-Based Sea Ice Detection
- Pixel Number (PN): The total number of normalized (with respect to the DDM maximum) DDM pixels with power greater than the pre-set threshold ().
- Power Summation: The power summation of normalized DDM pixels with power greater than .
- Geometrical center (GC) Distance: The distance from the DDM geometrical center pixel [located at (GC, GC)] to (MAX, MAX), and is formulated as
- Center-of-mass (CM) Distance: The distance from the DDM center-of-mass pixel [whose coordinate is (CM, CM)] to the peak power pixel [with a coordinate of (MAX, MAX)], and is formulated as
- CM Taxicab Distance: The taxicab distance from (CM, CM) to (MAX, MAX) is
- Delay-Doppler Map Average (DDMA): The average value of the normalized DDM around its peak.
- Trailing Edge Slope (TES): The slope of Doppler integrated waveform (DIW, summation of all delay waveforms at each Doppler bin) between its maximum and the value at, for example, 3 bins after the peak.
- Matched Filer (MF): The correlation coefficient between the obtained DIW and a Doppler cut of the so-called Woodward ambiguity function (WAF).
- : The distance between two pixels with a value below the average of the waveform that are immediately before and after the peak power point. These two points confine the boundary of the “effective zone” of a waveform.
- : The standard deviation of effective zone.
- Offset Centre of Gravity (OCOG): This parameter is based on a waveform, which is selected and re-centered on the peak power point. OCOG is calculated as the difference between the CM point and peak power point of a waveform.
- and : The difference between the peak power and the location on the waveform where the power has decreased to 85% of its maximum.
- Kurtosis: The kurtosis for the DDM of scattered power.
- Ice-water transition, if PN ;
- Water-ice transition, if PN ;
- Ice-ice/Water-water transition, if |PN| ; further classification will be made as:
- -
- Ice-ice transition, if |PN’| ;
- -
- Water-water transition, if |PN’| ;
2.3. Retrieval-Based Sea Ice Detection
- 2-D TSVD-basedThe reconstruction of from (6) is presented in the following form:P represents the space in which the minimization proceeds. In [66,81], Hilbert spaces were selected, and the 2-D TSVD approach was used. Based on the TSVD, a regularized solution of (10) is derived using the singular-value decomposition. The noisiest singular values are discarded, and only the first k singular values are reserved in the TSVD solution
- SIA-basedUnlike [66], is deconvolved from a DDM using the Fourier transformation ():By assuming a uniform within each spatial cluster, can be calculated using the SIA with obtained , throughThe ambiguity problem exists when converting a DDM pixel into the spatial coordinate, as one DDM pixel is associated with two different spatial clusters that are symmetrical to the ambiguity-free line (see illustration in Figure 3). To resolve the ambiguity issue, the multi-scan method is adopted, which uses two consecutive DDMs. Due to a short time gap (1 s) among the TDS-1 DDM measurement, two adjacent DDMs share nearly (over 90%) the same glistening zone by assuming its size is about 100 km and the surface scattering property almost remains unchanged within 1 s. The multi-scan approach can be expressed by
2.4. Machine Learning-Based Sea Ice Detection
- Neural Networks (NNs)Before being input to the neural networks, each DDM is preprocessed with (1) noise floor subtraction, (2) normalization, (3) signal box determination, and (4) data stretching. To mitigate the noise effect, the noise floor is deducted for each DDM, which is determined as the average of a signal-free box (containing the first four delay bins along all Doppler bins). It is worth mentioning that an original TDS-1 DDM consists of 128 bins (with a resolution of 244 ns) in delay and 20 bins in Doppler (with a resolution of 500 Hz). Next, each DDM is normalized with respect to its peak power, which is determined by the local maxima in the DDM. After that, the signal box is selected based on the local maxima, specifically, 4 rows before and 35 rows after the local maxima in delay and all the Doppler bins. Then the 2-D signal box is transferred into a lexicographically ordered vector, which has 800 elements and is the input of the NN.In [69], an NN with 1 input layer (800 units, i.e., , ), 1 hidden layer (3 units, i.e., , ), and 1 output layer (1 unit, i.e., that produces the detection results) was devised. The corresponding diagram is displayed in Figure 5a. In general, the associations between the layers can be summarized in the matrix formWith the constructed NN, a training process begins to determine weights and bias, for which the back-propagation (BP) learning [84] and the Levenberg-Marquardt algorithm [85] can be employed. Detailed formulas can be found in [69]. After learning with a training set of DDM data and its corresponding seawater/ice label data, the sea ice detection results can be generated by inputting the processed DDMs to the trained NN.
- Convolutional Neural Networks (CNNs)Compared with NNs, CNNs deploy extra convolutional and pooling layers. The convolutional layer directly interacts with the input 2-D DDM, which preserves the correlation between adjacent DDM pixels. The employment of a pooling layer helps reduce the redundancy in data and makes CNNs less sensitive to the misalignment of the signal box within a DDM frame. CNNs also require less data preprocessing than NN, including noise floor subtraction, normalization, and (optional) signal box determination. Ref. [63] designed a CNN architecture (see Figure 5b) that contains 1 convolution layer (which is made of 5 seven-by-seven filters) followed by 1 two-by-two pooling layer and 2 fully connected layers (whose functionality is similar to the input and hidden layers for NN). The use of a convolution layer can be described by
- Support Vector Machines (SVMs)SVMs [87] are capable of operating classification tasks by finding a hyperplane that can best distinguish (with the maximum margin) between different types and are able to provide better accuracy than other pattern classification models [64,88]. In addition to noise floor subtraction and normalization, another feature extraction process is undertaken as a preprocess in [64]. The mean value along the delay-axis at each Doppler bin is calculated, and processed by ReLU. Such an array of 20 elements is then normalized by its maximum and consequently reserved as the feature vector (noted as feature selection, FS).The classifier can be formulated as
2.5. SIC Estimation Approaches
2.6. Performance Comparison and Evaluation
2.6.1. NN vs. CNN
2.6.2. NN vs. SVM
2.7. Sea Ice Type Classification
2.8. Sea Ice Thickness Retrieval
2.9. Ice Altimetry Techniques
2.9.1. Waveform-Based
2.9.2. Phase-Based
2.10. Summary
3. Airborne and Ground-Based Experiments
3.1. Airborne Tests
3.2. Ground-Based Operations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
GNSS-R | Global Navigation Satellite System-Reflectometry |
TDS-1 | TechDemoSat-1 |
SAR | Synthetic aperture radar |
Tx | Transmitter |
Rx | Receiver |
GPS | Global Positioning System |
CYGNSS | Cyclone Global Navigation Satellite System |
UK-DMC | UK Disaster Monitoring Constellation |
SIC | Sea ice concentration |
DDM | Delay-Doppler map |
SIT | Sea ice thickness |
PN | Pixel number |
GC | Geometrical center |
CM | Center-of-mass |
DDMA | Delay-Doppler map average |
TES | Trailing edge slope |
DIW | Doppler integrated waveform |
MF | Global Navigation Satellite System-Reflectometry |
WAF | Woodward ambiguity function |
OCOG | Offset centre of gravity |
TSVD | Truncated singular value decomposition |
SIA | Spatial integration approach |
ZV | Zavorotny-Voronovich |
NN | Neural network |
BP | Back-propagation |
CNN | Convolutional neural network |
ReLU | Rectified linear unit |
SGDM | Stochastic gradient descendant with momentum |
SVM | Support vector machine |
SVR | Support vector regression |
FYI | First-year ice |
MYI | Multi-year ice |
LES | Leading edge slope |
CART | Classification and regression tree |
NIC | National Ice Center |
SMOS | Soil Moisture Ocean Salinity |
RMSD | Root-mean-square difference |
RHCP | Right-handed circular polarization |
LHCP | Left-handed circular polarization |
SNR | Signal-to-noise ratio |
References
- Rothrock, D.A.; Yu, Y.; Maykut, G.A. Thinning of the Arctic sea-ice cover. Geophys. Res. Lett. 1999, 26, 3469–3472. [Google Scholar] [CrossRef] [Green Version]
- Comiso, J.C.; Parkinson, C.L.; Gersten, R.; Stock, L. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett. 2008, 35, L01703. [Google Scholar] [CrossRef]
- Laxon, S.W.; Giles, K.A.; Ridout, A.L.; Wingham, D.J.; Willatt, R.; Cullen, R.; Kwok, R.; Schweiger, A.; Zhang, J.; Haas, C.; et al. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett. 2013, 40, 732–737. [Google Scholar] [CrossRef] [Green Version]
- Hartman, D.; Klein Tank, A.; Rusicucci, M.; Alexander, L.; Broenniman, B.; Charabi, Y.; Dentener, F.; Dlugokencky, E.; Easterling, E.; Kaplan, A.; et al. Observations: Atmosphere and Surface; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Barry, R.G.; Serreze, M.C.; Maslanik, J.A.; Preller, R.H. The Arctic Sea Ice-Climate System: Observations and modeling. Rev. Geophys. 1993, 31, 397. [Google Scholar] [CrossRef]
- McPhee, M.G.; Proshutinsky, A.; Morison, J.H.; Steele, M.; Alkire, M.B. Rapid change in freshwater content of the Arctic Ocean. Geophys. Res. Lett. 2009, 36, L10602. [Google Scholar] [CrossRef]
- Galley, R.J.; Else, B.; Prinsenberg, S.; Babb, D.; Barber, D. Summer Sea Ice Concentration, Motion, and Thickness Near Areas of Proposed Offshore Oil and Gas Development in the Canadian Beaufort Sea—2009. ARCTIC 2013, 66, 105–116. [Google Scholar] [CrossRef]
- Sandven, S.; Johannessen, O.M.; Kloster, K. Sea Ice Monitoring by Remote Sensing; John Wiley & Sons, Ltd.: Chichester, UK, 2006. [Google Scholar] [CrossRef]
- Petrou, Z.I.; Tian, Y. Prediction of Sea Ice Motion With Convolutional Long Short-Term Memory Networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6865–6876. [Google Scholar] [CrossRef]
- Kashiwase, H.; Ohshima, K.I.; Fukamachi, Y.; Nihashi, S.; Tamura, T. Evaluation of AMSR-E Thin Ice Thickness Algorithm from a Mooring-Based Observation: How Can the Satellite Observe a Sea Ice Field with Nonuniform Thickness Distribution? J. Atmos. Ocean. Technol. 2019, 36, 1623–1641. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yu, Y.; Li, X.; Hui, F.; Cheng, X.; Chen, Z. Arctic Sea Ice Classification Using Microwave Scatterometer and Radiometer Data During 2002–2017. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5319–5328. [Google Scholar] [CrossRef]
- Cooke, C.L.V.; Scott, K.A. Estimating Sea Ice Concentration From SAR: Training Convolutional Neural Networks with Passive Microwave Data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4735–4747. [Google Scholar] [CrossRef]
- Meier, W.N.; Stewart, J.S. Assessing uncertainties in sea ice extent climate indicators. Environ. Res. Lett. 2019, 14, 035005. [Google Scholar] [CrossRef]
- Otosaka, I.; Belmonte Rivas, M.; Stoffelen, A. Bayesian Sea Ice Detection With the ERS Scatterometer and Sea Ice Backscatter Model at C-Band. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2248–2254. [Google Scholar] [CrossRef]
- Belmonte Rivas, M.; Otosaka, I.; Stoffelen, A.; Verhoef, A. A scatterometer record of sea ice extents and backscatter: 1992–2016. Cryosphere 2018, 12, 2941–2953. [Google Scholar] [CrossRef]
- Laxon, S.W.; Peacock, N.; Smith, D. High interannual variability of sea ice thickness in the Arctic region. Nature 2003, 425, 947–950. [Google Scholar] [CrossRef]
- Rose, S.K.; Andersen, O.B.; Passaro, M.; Ludwigsen, C.A.; Schwatke, C. Arctic Ocean Sea Level Record from the Complete Radar Altimetry Era: 1991–2018. Remote Sens. 2019, 11, 1672. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G.F. Seasonal ice area and volume production of the Arctic Ocean: November 1996 through April 1997. J. Geophys. Res. 2002, 107, 8038. [Google Scholar] [CrossRef]
- Wang, L.; Scott, K.A.; Xu, L.; Clausi, D.A. Sea ice concentration estimation during melt from dual-pol SAR scenes using deep convolutional neural networks: A case study. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4524–4533. [Google Scholar] [CrossRef]
- Gao, F.; Wang, X.; Gao, Y.; Dong, J.; Wang, S. Sea Ice Change Detection in SAR Images Based on Convolutional-Wavelet Neural Networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1240–1244. [Google Scholar] [CrossRef]
- Longepe, N.; Thibaut, P.; Vadaine, R.; Poisson, J.C.; Guillot, A.; Boy, F.; Picot, N.; Borde, F. Comparative Evaluation of Sea Ice Lead Detection Based on SAR Imagery and Altimeter Data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4050–4061. [Google Scholar] [CrossRef]
- Hall, C.; Cordey, R. Multistatic Scatterometry. In Proceedings of the International Geoscience and Remote Sensing Symposium, ‘Remote Sensing: Moving Toward the 21st Century’, Edinburgh, UK, 12–16 September 1988; pp. 561–562. [Google Scholar] [CrossRef]
- Garrison, J.; Komjathy, A.; Zavorotny, V.; Katzberg, S. Wind speed measurement using forward scattered GPS signals. IEEE Trans. Geosci. Remote Sens. 2002, 40, 50–65. [Google Scholar] [CrossRef] [Green Version]
- Katzberg, S.J.; Torres, O.; Ganoe, G. Calibration of reflected GPS for tropical storm wind speed retrievals. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Marchan-Hernandez, J.F.; Rodriguez-Alvarez, N.; Camps, A.; Bosch-Lluis, X.; Ramos-Perez, I.; Valencia, E. Correction of the sea state impact in the L-Band brightness temperature by means of delay-Doppler maps of global navigation satellite signals reflected over the sea surface. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2914–2923. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, N.; Akos, D.M.; Zavorotny, V.U.; Smith, J.A.; Camps, A.; Fairall, C.W. Airborne GNSS-R wind retrievals using delay–Doppler maps. IEEE Trans. Geosci. Remote Sens. 2013, 51, 626–641. [Google Scholar] [CrossRef]
- Clarizia, M.P.; Ruf, C.S.; Jales, P.; Gommenginger, C. Spaceborne GNSS-R minimum variance wind speed estimator. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6829–6843. [Google Scholar] [CrossRef]
- Li, C.; Huang, W. An algorithm for sea-surface wind field retrieval from GNSS-R delay-doppler map. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2110–2114. [Google Scholar] [CrossRef]
- Foti, G.; Gommenginger, C.; Jales, P.; Unwin, M.; Shaw, A.; Robertson, C.; Roselló, J. Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission. Geophys. Res. Lett. 2015, 42, 5435–5441. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Huang, W.; Foti, G. Quantification of the relationship between sea surface roughness and the size of the glistening zone for GNSS-R. IEEE Geosci. Remote Sens. Lett. 2018, 15, 237–241. [Google Scholar] [CrossRef]
- Larson, K.M.; Gutmann, E.D.; Zavorotny, V.U.; Braun, J.J.; Williams, M.W.; Nievinski, F.G. Can we measure snow depth with GPS receivers? Geophys. Res. Lett. 2009, 36, L17502. [Google Scholar] [CrossRef]
- Najibi, N.; Jin, S.; Najibi, N.; Jin, S. Physical reflectivity and polarization characteristics for snow and ice-covered surfaces interacting with GPS signals. Remote Sens. 2013, 5, 4006–4030. [Google Scholar] [CrossRef]
- McCreight, J.L.; Small, E.E.; Larson, K.M. Snow depth, density, and SWE estimates derived from GPS reflection data: Validation in the western U. S. Water Resour. Res. 2014, 50, 6892–6909. [Google Scholar] [CrossRef]
- Jin, S.; Najibi, N. Sensing snow height and surface temperature variations in Greenland from GPS reflected signals. Adv. Sp. Res. 2014, 53, 1623–1633. [Google Scholar] [CrossRef]
- Najibi, N.; Jin, S.; Wu, X. Validating the Variability of Snow Accumulation and Melting From GPS-Reflected Signals: Forward Modeling. IEEE Trans. Antennas Propag. 2015, 63, 2646–2654. [Google Scholar] [CrossRef]
- Jin, S.; Qian, X.; Kutoglu, H. Snow Depth Variations Estimated from GPS-Reflectometry: A Case Study in Alaska from L2P SNR Data. Remote Sens. 2016, 8, 63. [Google Scholar] [CrossRef]
- Katzberg, S.J.; Torres, O.; Grant, M.S.; Masters, D. Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: Results from SMEX02. Remote Sens. Environ. 2006, 100, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Arroyo, A.; Camps, A.; Aguasca, A.; Forte, G.F.; Monerris, A.; Rudiger, C.; Walker, J.P.; Park, H.; Pascual, D.; Onrubia, R. Dual-Polarization GNSS-R Interference Pattern Technique for Soil Moisture Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1533–1544. [Google Scholar] [CrossRef]
- Camps, A.; Park, H.; Pablos, M.; Foti, G.; Gommenginger, C.P.; Liu, P.W.; Judge, J. Sensitivity of GNSS-R Spaceborne Observations to Soil Moisture and Vegetation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4730–4742. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Savi, P.; Canone, D.; Notarpietro, R. Estimation of Surface Characteristics Using GNSS LH-Reflected Signals: Land Versus Water. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4752–4758. [Google Scholar] [CrossRef]
- Jin, S.; Komjathy, A. GNSS reflectometry and remote sensing: New objectives and results. Adv. Space Res. 2010, 46, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Feng, G.; Gleason, S. Remote sensing using GNSS signals: Current status and future directions. Adv. Space Res. 2011, 47, 1645–1653. [Google Scholar] [CrossRef]
- Zavorotny, V.U.; Gleason, S.; Cardellach, E.; Camps, A. Tutorial on Remote Sensing Using GNSS Bistatic Radar of Opportunity. IEEE Geosci. Remote Sens. Mag. 2014, 2, 8–45. [Google Scholar] [CrossRef]
- Ruf, C.; Unwin, M.; Dickinson, J.; Rose, R.; Rose, D.; Vincent, M.; Lyons, A. CYGNSS: Enabling the Future of Hurricane Prediction [Remote Sensing Satellites]. IEEE Geosci. Remote Sens. Mag. 2013, 1, 52–67. [Google Scholar] [CrossRef]
- Ruf, C. Cyclone Global Navigation Satellite System (CYGNSS) and Soil Moisture Product Prospects; SMAP CalVal Work; 2018. Available online: https://smap.jpl.nasa.gov/system/internal_resources/details/original/498_203_-_Ruf.pdf (accessed on 31 October 2019).
- Gleason, S. Space-Based GNSS Scatterometry: Ocean Wind Sensing Using an Empirically Calibrated Model. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4853–4863. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. GNSS-R Delay-Doppler Map Simulation Based on the 2004 Sumatra-Andaman Tsunami Event. J. Sens. 2016, 2016, 2750862. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Tsunami Detection and Parameter Estimation from GNSS-R Delay-Doppler Map. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4650–4659. [Google Scholar] [CrossRef]
- Unwin, M.; Jales, P.; Tye, J.; Gommenginger, C.; Foti, G.; Rosello, J. Spaceborne GNSS-Reflectometry on TechDemoSat-1: Early Mission Operations and Exploitation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4525–4539. [Google Scholar] [CrossRef]
- Pierdicca, N.; Mollfulleda, A.; Costantini, F.; Guerriero, L.; Dente, L.; Paloscia, S.; Santi, E.; Zribi, M. Spaceborne GNSS Reflectometry Data for Land Applications: An Analysis of Techdemosat Data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 3343–3346. [Google Scholar] [CrossRef]
- Cardellach, E.; Fabra, F.; Nogués-Correig, O.; Oliveras, S.; Ribó, S.; Rius, A. GNSS-R ground-based and airborne campaigns for ocean, land, ice, and snow techniques: Application to the GOLD-RTR data sets. Radio Sci. 2011, 46. [Google Scholar] [CrossRef] [Green Version]
- Cardellach, E.; Rius, A.; Martin-Neira, M.; Fabra, F.; Nogues-Correig, O.; Ribo, S.; Kainulainen, J.; Camps, A.; D’Addio, S. Consolidating the Precision of Interferometric GNSS-R Ocean Altimetry Using Airborne Experimental Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4992–5004. [Google Scholar] [CrossRef]
- Egido, A.; Paloscia, S.; Motte, E.; Guerriero, L.; Pierdicca, N.; Caparrini, M.; Santi, E.; Fontanelli, G.; Floury, N. Airborne GNSS-R Polarimetric Measurements for Soil Moisture and Above-Ground Biomass Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1522–1532. [Google Scholar] [CrossRef]
- Fabra, F.; Cardellach, E.; Nogues-Correig, O.; Oliveras, S.; Ribo, S.; Rius, A.; Belmonte-Rivas, M.; Semmling, M.; Macelloni, G.; Pettinato, S.; et al. Monitoring sea-ice and dry snow with GNSS reflections. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 3837–3840. [Google Scholar] [CrossRef]
- Semmling, A.M.; Beyerle, G.; Stosius, R.; Dick, G.; Wickert, J.; Fabra, F.; Cardellach, E.; Ribó, S.; Rius, A.; Helm, A.; et al. Detection of Arctic Ocean tides using interferometric GNSS-R signals. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Fabra, F.; Cardellach, E.; Rius, A.; Ribo, S.; Oliveras, S.; Nogues-Correig, O.; Belmonte Rivas, M.; Semmling, M.; D’Addio, S. Phase Altimetry with Dual Polarization GNSS-R Over Sea Ice. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2112–2121. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, W.; Gu, Q.; Han, Y.; Hong, Z.; Cao, Y.; Xia, Q.; Wang, W. Detection of bohai bay sea ice using GPS-reflected signals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 39–46. [Google Scholar] [CrossRef]
- Komjathy, A.; Maslanik, J.; Zavorotny, V.; Axelrad, P.; Katzberg, S. Sea ice remote sensing using surface reflected GPS signals. In Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium (IGARSS 2000). Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, Honolulu, HI, USA, 24–28 July 2000; Proceedings (Cat. No.00CH37120). Volume 7, pp. 2855–2857. [Google Scholar] [CrossRef]
- Rivas, M.; Maslanik, J.; Axelrad, P. Bistatic Scattering of GPS Signals Off Arctic Sea Ice. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1548–1553. [Google Scholar] [CrossRef]
- Gao, H.; Yang, D.; Zhang, B.; Wang, Q.; Wang, F. Remote Sensing of Sea Ice Thickness with GNSS Reflected Signal. J. Electron. Inf. Technol. 2017, 39, 1096–1100. [Google Scholar] [CrossRef]
- Strandberg, J.; Hobiger, T.; Haas, R. Coastal Sea Ice Detection Using Ground-Based GNSS-R. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1552–1556. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Spaceborne GNSS-R Sea Ice Detection Using Delay-Doppler Maps: First Results from the U.K. TechDemoSat-1 Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4795–4801. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Sea Ice Sensing From GNSS-R Data Using Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1510–1514. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Detecting Sea Ice From TechDemoSat-1 Data Using Support Vector Machines with Feature Selection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1409–1416. [Google Scholar] [CrossRef]
- Alonso-Arroyo, A.; Zavorotny, V.U.; Camps, A. Sea Ice Detection Using U.K. TDS-1 GNSS-R Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4989–5001. [Google Scholar] [CrossRef] [Green Version]
- Schiavulli, D.; Frappart, F.; Ramillien, G.; Darrozes, J.; Nunziata, F.; Migliaccio, M. Observing Sea/Ice Transition Using Radar Images Generated from TechDemoSat-1 Delay Doppler Maps. IEEE Geosci. Remote Sens. Lett. 2017, 14, 734–738. [Google Scholar] [CrossRef]
- Hu, C.; Benson, C.; Rizos, C.; Qiao, L. Single-Pass Sub-Meter Space-Based GNSS-R Ice Altimetry: Results From TDS-1. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3782–3788. [Google Scholar] [CrossRef]
- Li, W.; Cardellach, E.; Fabra, F.; Rius, A.; Ribó, S.; Martín-Neira, M. First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals. Geophys. Res. Lett. 2017, 44, 8369–8376. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W.; Moloney, C. Neural Networks Based Sea Ice Detection and Concentration Retrieval From GNSS-R Delay-Doppler Maps. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3789–3798. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, K.; Zou, J.; Wickert, J. Sea Ice Detection Based on Differential Delay-Doppler Maps from UK TechDemoSat-1. Sensors 2017, 17, 1614. [Google Scholar] [CrossRef]
- Gleason, S.; Adjrad, M.; Unwin, M. Sensing Ocean, Ice and Land Reflected Signals from Space: Results from the UK-DMC GPS Reflectometry Experiment. In Proceedings of the ION GNSS 18th International Technical Meeting of theSatellite Division, Long Beach, CA, USA, 13–16 September 2005; pp. 1679–1685. [Google Scholar]
- Gleason, S. Remote Sensing of Ocean, Ice and Land Surfaces Using Bistatically Scattered GNSS Signals from Low Earth Orbit. Ph.D. Thesis, University of Surrey, Guildford, UK, 2006. [Google Scholar]
- Gleason, S. Towards Sea Ice Remote Sensing with Space Detected GPS Signals: Demonstration of Technical Feasibility and Initial Consistency Check Using Low Resolution Sea Ice Information. Remote Sens. 2010, 2, 2017–2039. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Huang, W. Sea ice detection from GNSS-R Delay-Doppler Map. In Proceedings of the 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Montreal, QC, Canada, 10–13 July 2016; pp. 1–2. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, J.; Yang, D.; Wang, F.; Gao, H. Sea Ice Edge Detection Using Spaceborne GNSS-R Signal. Geomatics Inf. Sci. Wuhan Univ. 2019, 44, 668–674. [Google Scholar]
- Cartwright, J.; Banks, C.J.; Srokosz, M. Sea Ice Detection Using GNSS-R Data From TechDemoSat-1. J. Geophys. Res. Ocean. 2019, 124, 5801–5810. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Sea Ice Detection Based on Unambiguous Retrieval of Scattering Coefficient from GNSS-R Delay-Doppler Maps. In Proceedings of the 2018 OCEANS—MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28–31 May 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Valencia, E.; Camps, A.; Marchan-Hernandez, J.F.; Park, H.; Bosch-Lluis, X.; Rodriguez-Alvarez, N.; Ramos-Perez, I. Ocean Surface’s Scattering Coefficient Retrieval by Delay–Doppler Map Inversion. IEEE Geosci. Remote Sens. Lett. 2011, 8, 750–754. [Google Scholar] [CrossRef]
- Zavorotny, V.; Voronovich, A. Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Trans. Geosci. Remote Sens. 2000, 38, 951–964. [Google Scholar] [CrossRef] [Green Version]
- Marchan-Hernandez, J.; Camps, A.; Rodriguez-Alvarez, N.; Valencia, E.; Bosch-Lluis, X.; Ramos-Perez, I. An Efficient Algorithm to the Simulation of Delay–Doppler Maps of Reflected Global Navigation Satellite System Signals. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2733–2740. [Google Scholar] [CrossRef]
- Schiavulli, D.; Nunziata, F.; Migliaccio, M.; Frappart, F.; Ramilien, G.; Darrozes, J. Reconstruction of the Radar Image From Actual DDMs Collected by TechDemoSat-1 GNSS-R Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4700–4708. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, J.; Zhang, X.; Meng, J.; Ke, C. Sea Ice Classification Using Cryosat-2 Altimeter Data by Optimal Classifier–Feature Assembly. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1948–1952. [Google Scholar] [CrossRef]
- Bobylev, L.P.; Zabolotskikh, E.V.; Mitnik, L.M.; Johannessenn, O.M. Neural-Network based algorithm for ice concentration retrievals from satellite passive microwave data. In Proceedings of the 2008 Microwave Radiometry and Remote Sensing of the Environment, Firenze, Italy, 11–14 March 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Werbos, P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 1974. [Google Scholar]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- LeCun, Y.A.; Bottou, L.; Orr, G.B.; Müller, K.R. Efficient BackProp; Springer: Berlin/Heidelberg, Germany, 2012; pp. 9–48. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Sea Ice Concentration Estimation From TechDemoSat-1 Data Using Support Vector Regression. In Proceedings of the 2019 IEEE Radar Conference (RadarConf19), Boston, MA, USA, 2–7 June 2019; pp. 1–6. [Google Scholar]
- Cavalieri, D.J.; Parkinson, C.L.; Gloerson, P.; Zwally, H.J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 1996. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, N.; Holt, B.; Jaruwatanadilok, S.; Podest, E.; Cavanaugh, K.C. An Arctic sea ice multi-step classification based on GNSS-R data from the TDS-1 mission. Remote Sens. Environ. 2019, 230, 111202. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, N.; Garrison, J.L. Generalized Linear Observables for Ocean Wind Retrieval From Calibrated GNSS-R Delay–Doppler Maps. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1142–1155. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification And Regression Trees; Wadsworth & Brooks: Monterey, CA, USA, 1984. [Google Scholar] [CrossRef]
- Mayers, D.; Ruf, C. Measuring Ice Thickness with Cygnss Altimetry. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8535–8538. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Sea Ice Thickness Estimation from TechDemoSat-1 Data. In Proceedings of the Oceans 2019—MTS/IEEE Marseille, Marseille, France, 17–20 June 2019; pp. 1–4. [Google Scholar]
- Vant, M.R.; Ramseier, R.O.; Makios, V. The complex-dielectric constant of sea ice at frequencies in the range 0.1–40 GHz. J. Appl. Phys. 1978, 49, 1264–1280. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive; Addison-Wesley: Boston, MA, USA, 1986; Volume 2, p. 2162. [Google Scholar]
- Tian-Kunze, X.; Kaleschke, L.; Maass, N. SMOS Daily Sea Ice Thickness Version 3. 2016. Available online: https://icdc.cen.uni-hamburg.de/1/daten/cryosphere/l3c-smos-sit.html (accessed on 31 October 2019).
- Yu, K.; Rizos, C.; Dempster, A.G. GNSS-Based Model-Free Sea Surface Height Estimation in Unknown Sea State Scenarios. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1424–1435. [Google Scholar] [CrossRef]
- Clarizia, M.P.; Ruf, C.; Cipollini, P.; Zuffada, C. First spaceborne observation of sea surface height using GPS-Reflectometry. Geophys. Res. Lett. 2016, 43, 767–774. [Google Scholar] [CrossRef]
- Helm, A. Ground-Based GPS Altimetry with the L1 OpenGPS Receiver Using Carrier Phase-Delay Observations of Reflected GPS Signals. Ph.D. Thesis, Postdam Deutsches GFZ, Potsdam, Germany, 2008. [Google Scholar]
- Hobiger, T.; Strandberg, J.; Haas, R. Inverse modeling of ground-based GNSS-R—Results and new possibilities. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2671–2681. [Google Scholar] [CrossRef]
ID | Observable | Full-Size Input | Cropped Input | FS | |||
---|---|---|---|---|---|---|---|
CNN | NN | CNN | NN | NN | SVM | ||
RD 17 (training) | 97.96% | 99.15% | 99.60% | 99.03% | 99.13% | 98.95% | 98.81% |
RD 18 (test) | 98.17% | 98.12% | 97.94% | 98.94% | 99.01% | 98.63% | 99.06% |
RD 19 (test) | 96.58% | 97.97% | 97.29% | 98.77% | 98.54% | 98.21% | 98.33% |
RD 23 (test) | 97.67% | 96.42% | 93.98% | 98.41% | 98.04% | 97.00% | 97.58% |
RD 27 (test) | 98.10% | 97.04% | 95.97% | 98.43% | 98.41% | 97.78% | 98.64% |
Average | 97.78% | 97.83% | 97.17% | 98.73% | 98.67% | 98.18% | 98.56% |
ID | Full-Size Input | Cropped Input | FS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CNN | NN | CNN | NN | CNN | NN | CNN | NN | NN | SVR | NN | SVR | |
RD 17 (training) | 0.15 | 0.11 | 0.95 | 0.97 | 0.15 | 0.11 | 0.95 | 0.97 | 0.13 | 0.12 | 0.96 | 0.97 |
RD 18 (test) | 0.17 | 0.20 | 0.91 | 0.88 | 0.16 | 0.17 | 0.92 | 0.91 | 0.17 | 0.16 | 0.91 | 0.92 |
RD 19 (test) | 0.15 | 0.17 | 0.93 | 0.92 | 0.15 | 0.16 | 0.94 | 0.93 | 0.16 | 0.15 | 0.93 | 0.94 |
RD 23 (test) | 0.16 | 0.19 | 0.93 | 0.91 | 0.15 | 0.13 | 0.94 | 0.95 | 0.15 | 0.15 | 0.94 | 0.95 |
RD 27 (test) | 0.18 | 0.20 | 0.89 | 0.86 | 0.17 | 0.18 | 0.89 | 0.90 | 0.17 | 0.16 | 0.90 | 0.90 |
Average | 0.16 | 0.17 | 0.92 | 0.91 | 0.16 | 0.15 | 0.93 | 0.93 | 0.15 | 0.15 | 0.93 | 0.94 |
Application | Source | Technique | Accuracy |
---|---|---|---|
Altimetry/SIC | [72,73] | N/A | |
Detection | [62] | Observable-based | 97.78% |
Detection | [65] | Observable-based | |
Detection | [70] | Observable-based | |
Detection | [66] | TSVD-based retrieval | |
Detection | [77] | SIA-based retrieval | |
Detection | [75] | Observable-based | |
Detection | [64] | SVM | 98.56% |
Detection | [76] | Observable-based | |
Detection/SIC | [69] | NN | 98.41%/0.93 (R) |
Detection/SIC | [63] | CNN | 98.73%/0.93 (R) |
SIC | [89] | SVR | 0.94 (R) |
Type Classification | [91] | CART | |
Altimetry | [67] | Waveform-based | 4.4 m (RMSD) |
Altimetry | [68] | Phase-based | 4.7 cm (RMSD) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Q.; Huang, W. Sea Ice Remote Sensing Using GNSS-R: A Review. Remote Sens. 2019, 11, 2565. https://doi.org/10.3390/rs11212565
Yan Q, Huang W. Sea Ice Remote Sensing Using GNSS-R: A Review. Remote Sensing. 2019; 11(21):2565. https://doi.org/10.3390/rs11212565
Chicago/Turabian StyleYan, Qingyun, and Weimin Huang. 2019. "Sea Ice Remote Sensing Using GNSS-R: A Review" Remote Sensing 11, no. 21: 2565. https://doi.org/10.3390/rs11212565
APA StyleYan, Q., & Huang, W. (2019). Sea Ice Remote Sensing Using GNSS-R: A Review. Remote Sensing, 11(21), 2565. https://doi.org/10.3390/rs11212565