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Abstract: The Greater Bay Area (GBA) of China is experiencing a high level of exposure to outdoor
PM2.5 pollution. The variations in the exposure level are determined by spatiotemporal variations in the
PM2.5 concentration and population. To better guide public policies that aim to reduce the population
exposure level, it is essential to explicitly decompose and assess the impacts of different factors.
This study took advantage of high-resolution satellite observations to characterize the long-term
variations in population exposure to outdoor PM2.5 for cities in the GBA region during the three
most-recent Five-Year Plan (FYP) periods (2001–2015). A new decomposition method was then used
to assess the impact of PM2.5 variations and demographic changes on the exposure variation. Within
the decomposition framework, an index of pollution-population-coincidence–induced PM2.5 exposure
(PPCE) was introduced to characterize the interaction of PM2.5 and the population distribution.
The results showed that the 15-year average PPCE levels in all cities were positive (e.g., 6 µg/m3 in
Guangzhou), suggesting that unfavorable city planning had led to people dwelling in polluted areas.
An analyses of the spatial differences in PM2.5 changes showed that urban areas experienced a greater
decrease in PM2.5 concentration than did rural areas in most cities during the 11th (2006–2010) and
12th (2011–2015) FYP periods. These spatial differences in PM2.5 changes reduced the PPCE levels of
these cities and thus reduced the exposure levels (by as much as -0.58 µg/m3/year). The population
migration resulting from rapid urbanization, however, increased the PPCE and exposure levels (by
as much as 0.18 µg/m3/year) in most cities during the three FYP periods considered. Dongguan
was a special case in that the demographic change reduced the exposure level because of its rapid
development of residential areas in cleaner regions adjacent to Shenzhen. The exposure levels in
all cities remained high because of the high mean PM2.5 concentrations and their positive PPCE. To
better protect public health, control efforts should target densely populated areas and city planning
should locate more people in cleaner areas.
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1. Introduction

Long-term exposure to outdoor particulate matter with an aerodynamic diameter of <2.5 µm
(PM2.5) is associated with a range of adverse health effects [1–5]. The level of population exposure to
outdoor PM2.5 in China is much higher than that in the U.S. or Europe [6]. As one of the major city
clusters in China, the Pearl River Delta (PRD) region is exposed to a high level of PM2.5 pollution [7].
The population-weighted mean PM2.5 concentrations have been extensively used by researchers as
an indicator of the population exposure level [8–15]. It is estimated by averaging the ambient PM2.5

concentration associated with each individual within the study region. Burnett et al. [16] assessed the
global population exposure to outdoor PM2.5 in 2015 and concluded that the population-weighted
mean PM2.5 concentrations varied from the lowest levels in Canada/U.S. (7.9 µg/m3) to the highest
levels in China (57.5 µg/m3) and India (74.0 µg/m3). Using satellite-derived PM2.5 data, Lin et al. [17]
estimated the population-weighted mean PM2.5 concentration to be 43.9 µg/m3 in the PRD region from
2000 to 2014. In addition, their results showed that 84.0% of the population lived in areas with PM2.5

concentrations that exceeded the World Health Organization (WHO) Interim Target 1 (IT-1) or the
Chinese National Ambient Air Quality Standard (NAAQS), both of which are 35 µg/m3. In February
2019, the “Outline Development Plan for Guangdong-Hong Kong-Macao Greater Bay Area” (the
Greater Bay Area (GBA) Plan) was promulgated, which emphasized green development in this region.
The regulation of pollutant emissions was tightened to further alleviate air pollution.

The variations in the mean PM2.5 concentration level directly affect a population’s exposure
level in any given city. During the past decade, the governments of Guangdong Province and Hong
Kong promulgated a series of control measures to reduce the PM2.5 concentration [18]. Using satellite
observations, Ma et al. [19] showed that the mean PM2.5 concentration in the GBA region remained
relatively constant from 2004 to 2007 and decreased from 2008 to 2013. Another study reported that all
cities in the GBA region experienced an increasing mean PM2.5 concentration during the 10th Five-Year
Plan (FYP) period (2001–2005) and a decreasing mean PM2.5 concentration during the 11th (2006–2010)
and 12th (2011–2015) FYP periods [20].

A decrease in the mean PM2.5 concentration is not necessarily associated with a decreasing
population exposure level for the city if the PM2.5 concentrations decrease in vast rural areas but
increase in densely populated urban areas. The spatial differences in PM2.5 changes therefore play an
important role in exposure management [21]. Ideally, control efforts to reduce the PM2.5 concentration
should target densely populated urban areas. Lin et al. [22] assessed the differences in PM2.5 variations
between urban and rural areas for Chinese provinces, and they showed that the urban areas in the
GBA region experienced a greater decrease in the PM2.5 concentration than did rural areas during the
11th and 12th FYP periods. This type of spatial difference in PM2.5 change assists a region to reduce its
population exposure level.

Rapid urbanization typically leads to population migration into large urban areas. As reported
by the Chinese statistical yearbook, the urban population in Guangdong Province increased from
47.5 million (55% of total population) in 2000 to 74.5 million (69% of total population) in 2015
(http://www.stats.gov.cn/tjsj/ndsj/). As urban areas are typically highly polluted, the migration of
people to the urban areas in the GBA region during the past decade tended to increase its overall
population exposure level. Ideally, demographic changes can reduce the exposure level if city planners
relocate the population away from polluted areas. Further scientific and quantitative investigation of
the impact of demographic change is needed.

The variations in the population exposure level are therefore determined by changes in the mean
PM2.5 concentration, spatial differences in PM2.5 change and demographic changes. The level of
population exposure to PM2.5 for a city decreases if: (1) the mean PM2.5 concentration declines, (2)
urban areas experience a greater reduction of PM2.5 concentration than rural areas, or (3) city planners
relocate people away from polluted areas. To better guide public policies that aim to reduce exposure
levels, it is essential to explicitly decompose and assess the impact of different factors.

http://www.stats.gov.cn/tjsj/ndsj/
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Traditional studies have used ground-based networks to monitor the PM2.5 concentration. However,
such monitoring in China is much more limited than in developed countries [23]. Satellite remote sensing
is an important step toward filling this data gap [24–26]. This study took advantage of high-resolution
satellite observations to characterize long-term variations in human exposure to PM2.5 for cities in the
GBA region during the three most-recent FYP periods (2001–2015). A new decomposition method was
then used to assess the impact of PM2.5 variations and demographic changes on the exposure variation.
Finally, suggestions for future environmental policies and urbanization planning were developed.

2. Data

2.1. Population Density

The GBA region of China contains nine major cities in Guangdong Province [Guangzhou (GZ),
Shenzhen (SZ), Zhuhai (ZH), Dongguan (DG), Foshan (FS), Zhongshan (ZS), Zhaoqing (ZQ), Jiangmen
(JM) and Huizhou (HZ)]. Guangzhou is the capital city of Guangdong Province. Shenzhen and Zhuhai
are two special economic zones of China. The GBA region also contains two special administrative
zones of China [i.e., Hong Kong (HK) and Macau (MC)]. All eleven administrative regions as cities
were considered.

The yearly population density data was obtained at a spatial resolution of 1 km for the GBA
region for 2001 and 2015 from the LandScan population database (http://web.ornl.gov/sci/landscan/).
LandScan population data was constructed with the use of spatial data and imagery analyses to
disaggregate census counts within administrative boundaries. A linear interpolation method was
then applied to derive population densities for other years of the study period. The year- and
city-specific gross population data were obtained from 2001 to 2015 from local statistical yearbooks
(http://www.gdstats.gov.cn/). The LandScan-derived population data were adjusted by year- and
city-specific factors to match the gross populations from the statistical yearbooks. Figure 1 shows the
spatial distribution of the 15-year mean of population density in the GBA region. The population
densities exceeded 103 persons/km2 in urban areas of the GBA region.
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Figure 1. The spatial distribution of the 15-year mean of the population density at a spatial resolution
of 0.01◦ × 0.01◦ in the Greater Bay Area (GBA) region of China.

2.2. Satellite-Derived PM2.5

A high-resolution satellite-based PM2.5 dataset was taken advantage of to characterize the
long-term variations in the PM2.5 concentration in the GBA region (http://envf.ust.hk/dataview/

aod2pm/current). The algorithm was first used to build aerosol optical depth (AOD) data at a
spatial resolution of 0.01◦ × 0.01◦ using spectral data from the two Moderate Resolution Imaging
Spectroradiometer (MODIS) instruments aboard the Terra and Aqua satellites [27]. The verification

http://web.ornl.gov/sci/landscan/
http://www.gdstats.gov.cn/
http://envf.ust.hk/dataview/aod2pm/current
http://envf.ust.hk/dataview/aod2pm/current
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of the satellite-retrieved AOD against the ground-based sunphotometer observations showed
retrieval errors within 15–20%. An observational data-driven AOD-PM2.5 algorithm, which used
ground-observed visibility and relative humidity data as inputs, was then applied to derive the
ground-level PM2.5 concentrations [28,29]. The uncertainty in the PM2.5 concentrations resulted from
the input data such as the AOD, meteorological values and model parameters. The evaluation of the
satellite-derived PM2.5 data against observations from the ground monitoring network within the GBA
region during the entire study period identified the correlation coefficient, root mean square error, mean
absolute bias and mean absolute percentage bias as 0.86 (N = 363), 4.7 µg/m3, 3.6 ± 3.1 µg/m3, and 9.3 ±
8.1%, respectively [20]. This accuracy is comparable to those with a correlation coefficient of 0.76–0.82
(N = 974–1145) in the U.S. and 0.74–0.79 (N = 45–68) in China for other existing long-term PM2.5 data
sets [11,30–32]. This study focused on residential areas with population densities of ≥10 persons/km2.
Figure 2 shows the spatial distribution of the 15-year mean of the PM2.5 concentration in the residential
areas of the GBA region. The PM2.5 concentrations exceeded 60 µg/m3 in the central GBA region.
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Figure 2. The spatial distribution of the 15-year mean of PM2.5 concentration at a spatial resolution of
0.01◦ × 0.01◦ in the residential areas of the GBA region.

3. Methodology

The exposure decomposition framework is summarized as follows (more information can be
found in the Appendix A). In a given region, the spatial distributions of PM2.5 concentration and
population density are denoted as ci, j and ρi, j, respectively, where i = {1, 2, 3, . . . , X} and j = {1, 2, 3, . . . ,
Y}. The population-weighted mean PM2.5 concentration (cρ) can be estimated by Equation (1):

cρ =

∑X
i = 1

∑Y
j = 1 ci, j·ρi, j∑X

i = 1
∑Y

j = 1 ρi, j
(1)

The spatial averages of the PM2.5 concentration and population density in a region are represented
by c0 and ρ0, respectively. The c0 and ρ0 values are estimated by averaging the PM2.5 concentration and
population density from all grids within the study region. Further, c′i, j = ci, j − c0 and p′i, j =

ρi, j−ρ0
ρ0

was then defined as the deviation of the PM2.5 concentration from c0 and the relative deviation of
population density from ρ0, respectively. The c′i, j and p′i, j values therefore represent the differences
in the PM2.5 concentration and population density, respectively, from their regional average levels.
The term cρ can be estimated by Equation (2):

cρ = c0 +
1
A
·

X∑
i = 1

Y∑
j = 1

c′i, j·p′i, j (2)
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where A = X·Y is the total grid number, representing the area of the study region. The authors defined C′

and P′ as the matrices of c′i, j and p′i, j, respectively. The term cρcan then be expressed as Equation (3):

cρ = c0 +
1
A
·(C′·P′) (3)

An index of pollution-population-coincidence–induced PM2.5 exposure (PPCE) of c1 = 1
A ·(C

′
·P′)

was introduced to represent the PM2.5 exposure resulting from the spatial coincidence between the
PM2.5 concentration and population density. This PPCE is associated with the dot product of C′ and P′.

An increase in population density in polluted areas leads to a positive value of c1, which increases
the cρ level. Ideally, more people would reside in cleaner areas, which would be associated with a
negative value of c1. The trend in cρ can be expressed as Equation (4):

dcρ
dt

=
dc0

dt
+

1
A
·

(
P′·

dC′

dt

)
+

1
A
·

(
C′·

dP′

dt

)
(4)

Equation (4) contains three parts:
dcρ1

dt = dc0
dt ;

dcρ2
dt = 1

A ·
(
P′· dC′

dt

)
; and

dcρ3
dt = 1

A ·
(
C′· dP′

dt

)
.

The combination of the second and third parts represents the trend in PPCE (dc1/dt). The cρ value
decreases under three conditions: dc0

dt < 0; P′· dC′
dt < 0; or C′· dP′

dt < 0. The first condition occurs if the
mean PM2.5 concentration decreased; the second condition occurs if densely populated urban areas
experience a greater reduction of PM2.5 concentration than rural areas; the third condition occurs if city
planners relocate people from polluted areas to clean areas. These conditions are associated with the
respective effects of the change in the mean PM2.5 concentration, the spatial difference in PM2.5 change
and the demographic change.

4. Results

4.1. 15-Year Mean Population Exposure

Based on the 15-year averages of the PM2.5 concentration and population density, Figure 3a,b
show the deviation of the PM2.5 concentration (C′) and the relative deviation of population density
(P′), respectively, for different cities in the GBA region. The c’i,j or p’i,j values were positive (in red) in
areas where the PM2.5 concentration or population density was higher than the city’s averages. It is
noted that the population density in urban areas could be several times larger than the city average.
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Figure 3. The 15-year averages of (a) the deviation of PM2.5 concentration (𝑪′) and (b) the normalized 

deviation of population density (𝑷′) for different cities in the GBA region. 
Figure 3. The 15-year averages of (a) the deviation of PM2.5 concentration (C′) and (b) the normalized
deviation of population density (P′) for different cities in the GBA region.
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Figure 4 shows the 15-year average of PPCE for different cities in the GBA region. Ideally, the PPCE
values should be negative. However, all cities had a positive PPCE value because of a positive spatial
coincidence between the PM2.5 concentration and population density. Hong Kong and Zhuhai had the
lowest PPCE (c1 = 1.3 µg/m3). In contrast, the highest PPCE was found in Guangzhou (c1 = 5.9 µg/m3).
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Figure 4. The 15-year average of pollution-population-coincidence–induced PM2.5 exposure (PPCE)
(c1) for different cities in the GBA region.

The blue and red bars in Figure 5 show the 15-year averages of the mean PM2.5 concentration
(c0) and the population-weighted mean PM2.5 concentration (cρ), respectively, for different cities
in the GBA region. The c0 values were the lowest in Hong Kong (c0 = 33.2 µg/m3) and Macau
(c0 = 33.9 µg/m3). In contrast, Foshan experienced the highest concentration of c0 (57.1 µg/m3). The high
mean PM2.5 concentrations and the positive PPCE values resulted in high levels of population exposure.
The highest cρ values were found in the central GBA region: Foshan (cρ = 59.8 µg/m3) and Guangzhou
(cρ = 51.9 µg/m3). These values were much higher than the WHO air-quality standards for annual
PM2.5 concentration, including those for IT-1 (35 µg/m3), IT-2 (25 µg/m3), IT-3 (15 µg/m3) and Air
Quality Guideline (AQG, 10 µg/m3). Although the lowest cρ value (34.5 µg/m3 in Hong Kong) did not
exceed the WHO IT-1, it was still much higher than the WHO IT-2, IT-3 and AQG.

Remote Sens. 2019, 10, x FOR PEER REVIEW  6 of 19 

 

Figure 4 shows the 15-year average of PPCE for different cities in the GBA region. Ideally, the 

PPCE values should be negative. However, all cities had a positive PPCE value because of a positive 

spatial coincidence between the PM2.5 concentration and population density. Hong Kong and Zhuhai 

had the lowest PPCE (c1 = 1.3 µg/m3). In contrast, the highest PPCE was found in Guangzhou (c1 = 5.9 

µg/m3). 

 

Figure 4. The 15-year average of pollution-population-coincidence–induced PM2.5 exposure (PPCE) 

(c1) for different cities in the GBA region. 

The blue and red bars in Figure 5 show the 15-year averages of the mean PM2.5 concentration (c0) 

and the population-weighted mean PM2.5 concentration (cρ), respectively, for different cities in the 

GBA region. The c0 values were the lowest in Hong Kong (c0 = 33.2 µg/m3) and Macau (c0 = 33.9 µg/m3). 

In contrast, Foshan experienced the highest concentration of c0 (57.1 µg/m3). The high mean PM2.5 

concentrations and the positive PPCE values resulted in high levels of population exposure. The 

highest cρ values were found in the central GBA region: Foshan (cρ = 59.8 µg/m3) and Guangzhou (cρ 

= 51.9 µg/m3). These values were much higher than the WHO air-quality standards for annual PM2.5 

concentration, including those for IT-1 (35 µg/m3), IT-2 (25 µg/m3), IT-3 (15 µg/m3) and Air Quality 

Guideline (AQG, 10 µg/m3). Although the lowest cρ value (34.5 µg/m3 in Hong Kong) did not exceed 

the WHO IT-1, it was still much higher than the WHO IT-2, IT-3 and AQG. 

 

Figure 5. The 15-year averages of the mean PM2.5 concentration (c0, blue bars) and the population-

weighted mean PM2.5 concentration (cρ, red bars) for different cities in the GBA region. The cities are 

ordered according to their c0 values. 

Figure 5. The 15-year averages of the mean PM2.5 concentration (c0, blue bars) and the
population-weighted mean PM2.5 concentration (cρ, red bars) for different cities in the GBA region.
The cities are ordered according to their c0 values.



Remote Sens. 2019, 11, 2646 7 of 19

4.2. Decomposition of Exposure Variation

4.2.1. Effect of Changes in Mean PM2.5 Concentration

Figure 6 shows the trends in the population-weighted mean PM2.5 concentration resulting from

changes in the mean PM2.5 concentration (
dcρ1

dt = dc0
dt ) for different cities in the GBA region during

the three most-recent FYP periods. During the 10th FYP period, all cities experienced an increase in
c0. The most substantial increase in cρ resulting from increasing c0 was observed in Foshan, where
the concentration increased by 2.77 µg/m3/year. During the 11th and 12th FYP periods, all cities
experienced a decrease in c0. The most substantial reduction of cρ resulting from decreasing c0 was
observed in Foshan, where the exposure level decreased by −2.25 µg/m3/year during the 11th FYP
period and in Zhongshan, where the exposure level decreased by −3.71 µg/m3/year during the 12th
FYP period.
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Figure 6. Trends in the population-weighted mean PM2.5 concentration resulting from changes in

the mean PM2.5 concentration (
dcρ1
dt = dc0

dt ) for different cities in the GBA region during the three
most-recent Five-Year Plan (FYP) periods.

4.2.2. The Effect of Spatial Differences in PM2.5 Change

Figure 7a shows the trends in the deviation of the PM2.5 concentration (dC′/dt) for different cities
during the three most-recent FYP periods. The areas with increasing c′i, j values (in red) experienced
less of a reduction of the PM2.5 concentration than those with decreasing c′i, j values (in blue). During
the 10th FYP period, densely populated urban areas (p′i, j > 0) experienced greater increases in the
PM2.5 concentration than rural areas (p′i, j < 0) in most cities (8 out of 11). As a result, the spatial
difference in the PM2.5 change increased cρ in these cities. The left panel of Figure 7b shows the trends
in the population-weighted mean PM2.5 concentration resulting from the spatial difference in the

PM2.5 change [
dcρ2

dt = 1
A ·

(
P′· dC′

dt

)
] for different cities during the 10th FYP period. The most substantial

increase in cρ resulting from the spatial difference in the PM2.5 change was observed in Guangzhou,
where the exposure level increased by 1.03 µg/m3/year.

During the 11th and 12th FYP periods, densely populated urban areas (p′i, j > 0) experienced
a greater decline in the PM2.5 concentration than rural areas (p′i, j < 0) in most cities (7 and 10
cities, respectively). As a result, the spatial difference in the PM2.5 change reduced cρ in these cities.
The middle and right panels of Figure 7b show the trends in the population-weighted mean PM2.5

concentration resulting from the spatial difference in PM2.5 change for different cities during the
11th and 12th FYP periods, respectively. During the 11th FYP period, the effect reduced cρ most
substantially in Guangzhou, where the exposure level decreased by −0.31 µg/m3/year. During the 12th
FYP period, the effect reduced cρ most substantially in Macau, where the exposure level decreased by
−0.58 µg/m3/year and in Shenzhen, where the exposure level decreased by −0.42 µg/m3/year.
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Figure 7. (a) Trends in the deviation of the PM2.5 concentration (dC′/dt) for different cities during
the three most-recent FYP periods. (b) Trends in the population-weighted mean PM2.5 concentration

resulting from the spatial differences in PM2.5 changes [
dcρ2
dt = 1

A ·
(
P′· dC′

dt

)
] for different cities during

the three most-recent FYP periods.

4.2.3. The Effect of Demographic Change

Figure 8a plots trends in the relative deviation of population density (dP′/dt) for different cities in
the GBA region during the three most-recent FYP periods. The areas with increasing p′i, j values (in
red) experienced a greater percentage increase in the population density than those with decreasing
p′i, j values (in blue). It was found that urban areas in most cities experienced an increase in p′i, j
value. As these urban areas were typically more polluted than the rural areas, the increasing p′i, j
value in urban areas (typically with c′i, j > 0) increased cρ in these cities. Figure 8b plots trends
in the population-weighted mean PM2.5 concentration resulting from the demographic changes

[
dcρ3

dt = 1
A ·

(
C′· dP′

dt

)
] for different cities in the GBA region during the three most-recent FYP periods.

The effect increased cρ by as much as 0.18 µg/m3/year.
Dongguan was a special case, in which the demographic change decreased cρ [i.e., 1

A ·
(
C′· dP′

dt

)
< 0]

by as much as −0.10 µg/m3/year during the three FYP periods studied. Figure 9a shows the 15-year
trend in the relative deviation of the population density (dP′/dt) from 2001 to 2015 in Dongguan. It
was found that the southeastern region experienced a greater increase of the population density than
the northwestern region. To evaluate this demographic change, gross population data was collected
for different towns in Dongguan from the statistical yearbook (http://tjj.dg.gov.cn). The ratios of the
gross population for 2001 and 2015 in different towns are shown in Figure 10. The results showed
that towns southeast of the city adjacent to Shenzhen experienced a greater percentage increase in
population than those in the northwest. This population change characteristic is consistent with that
using the gridded data.

http://tjj.dg.gov.cn
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Figure 9. (a) The trend in the relative deviation of the population density (dP′/dt) from 2001 to 2015 in
Dongguan. (b) The 15-year average of the deviation of the PM2.5 concentration (C′) in Dongguan.

Based on the 15-year average of PM2.5 concentration, Figure 9b shows the deviation of the PM2.5

concentration (C′) in Dongguan. Higher PM2.5 concentrations were observed in the northwestern
region, whereas lower PM2.5 concentrations were observed in the southeastern region. These results
indicate that Dongguan rapidly developed residential areas in the cleaner regions that were adjacent
to Shenzhen during the past decade. This demographic change pattern helped Dongguan reduce its
population PM2.5 exposure level.
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Figure 10. The ratios of gross population for 2001 and 2015 for different towns in Dongguan.
The numbers in red indicate towns with ratios that were higher than the city average. In contrast, the
numbers in blue indicate towns with ratios that were lower than the city average.

4.2.4. Long-Term Variation in PPCE

The variation in PPCE was determined by the combined effect of spatial differences in PM2.5

changes and demographic changes. Figure 11 shows the inter-annual variations in PPCE for different
cities in the GBA region from 2001 to 2015. Most cities experienced an increase in PPCE during the
10th FYP period and a decrease in PPCE during the 12th FYP period. It is encouraging to find that the
PPCE levels decreased to approximately half the previous maximum in most cities except in a few
non-central cities such as Zhaoqing, Jiangmen and Huizhou. In 2015, the PPCE levels were still positive
in all cities. The maximum PPCE levels in 2015 were found in Zhaoqing (3.7 µg/m3), Guangzhou
(3.4 µg/m3) and Huizhou (3.2 µg/m3).
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4.2.5. The Long-Term Variations in Population Exposure

The variations in the population-weighted mean PM2.5 concentration (cρ) were determined by the
combined effect of changes in the mean PM2.5 concentration, spatial differences in PM2.5 change and
demographic changes. Figure 12 shows inter-annual variations in cρ for different cities in the GBA
region from 2001 to 2015. In general, the cρ values started to decrease during the 11th and 12th FYP
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periods in all cities. However, in 2015, the cρ values remained high in all cities. Although the lowest
cρ value (cρ = 25.9 µg/m3 in Hong Kong) was lower than that of WHO IT-1, it still exceeded those of
WHO IT-2, IT-3 and AQG.
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Figure 12. The inter-annual variations in the population-weighted mean PM2.5 concentration (cρ) for
different cities in the GBA region from 2001 to 2015.

Figure 13 shows the trends in the population-weighted mean PM2.5 concentration (dcρ/dt) resulting
from the combined effect for different cities in the GBA region during the three most-recent FYP
periods. During the 10th FYP period, cρ increased in all cities. The most substantial increases in cρ
were observed in Foshan, where the exposure level increased by 3.27 µg/m3/year and in Guangzhou,
where the exposure level increased by 3.28 µg/m3/year. During the 11th and 12th FYP periods, cρ
declined in all cities. The reduction in cρ was the most substantial in Foshan, where the exposure level
decreased by −2.53 µg/m3/year during the 11th FYP period, and in Zhongshan, where the exposure
level decreased by −3.78 µg/m3/year during the 12th FYP period.
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5. Discussion

Lin et al. [17] compared the spatial mean and population-weighted mean PM2.5 concentrations
for the cities in the GBA region from 2000 to 2014 and found that the population-weighted mean PM2.5

concentrations were systematically higher than the spatial averages. The systematic differences were
related to the positive spatial correlation between the PM2.5 concentration and population density.
For the entire GBA region, the population-weighted mean PM2.5 concentration was higher than the
spatial average by 5.9 µg/m3. This study further investigated the characteristics of this difference using
the pollution-population-coincidence induced PM2.5 exposure (PPCE). The PPCE is an important part
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of the population exposure level not only because its current level is significantly high, but also because
its optimal level should be negative.

The mean PM2.5 concentration levels in all cities of the GBA region of China decreased during the
11th and 12th FYP periods, due to the implementation of improved control measures. In addition to the
beneficial effect of the decreasing mean PM2.5 concentrations, it was found that spatial differences in
the PM2.5 changes also reduced the population exposure levels in most cities during the 11th and 12th
FYP periods. In contrast, demographic changes increased the exposure levels in most cities because
of their rapid urbanization. Dongguan was a special case that experienced the best city planning in
terms of reducing population exposure. The rapid development of residential areas in cleaner regions
adjacent to Shenzhen reduced its population exposure level during the past decade.

Although the population exposure levels greatly decreased for cities in the GBA region during
the past decade, their levels remained high because of the high mean PM2.5 concentrations and a
positive PPCE. To better protect public health, more control efforts are required to reduce both the mean
PM2.5 concentration and PPCE. Currently, the reduction of the mean PM2.5 concentration contributes
significantly to the reduction of exposure levels in the GBA region. However, further reduction in
the mean PM2.5 concentration becomes more difficult as it drops to a lower level. The positive PPCE
levels in all cities suggest that unfavorable city planning has located residential dwellings in polluted
areas. To reduce PPCE, it is suggested that control efforts further target densely populated areas (e.g.,
controls of mobile and residential sources) and that city planners relocate some sources of pollution
(e.g., emissions from industrial sources or power generation) away from these densely populated
urban areas and locate more residential dwellings in cleaner areas.

It is difficult to find a truly objective criterion to classify a geographical area as urban or rural.
All classification methods require a choice of threshold, which is subjective to a certain extent.
The Organization for Economic Co-operation and Development (OECD) uses population size cutoffs
(50,000 or 100,000 people) and population density cutoffs (1000 or 1500 persons/km2 depending on the
country) to define urban cores [33]. Following the OECD approach, Lin et al. [22] used the population
density threshold of 1500 persons/km2 for the classification of urban and rural areas, and investigated
the differences in PM2.5 variations between urban and rural areas for provinces in China. Their results
showed that the urban areas in the GBA region experienced a greater increase in the PM2.5 concentration
than did rural areas during the 10th FYP period and a greater decrease in PM2.5 concentration than
did rural areas during the 11th and 12th FYP periods. These results are consistent with this study
showing that the spatial difference in the PM2.5 change increased population exposure levels in most
cities during the 10th FYP period and reduced population exposure levels in most cities during the
11th and 12th FYP periods.

The uncertainties of exposure assessment might result from both the PM2.5 concentration and
population density. The evaluation of the satellite-derived PM2.5 concentration against ground
observations in the GBA region obtained a correlation coefficient of 0.86 and a mean percentage
bias of <20% [20]. To reduce the bias of the LandScan-derived population density data, the gridded
population data was adjusted using gross population data collected from the statistical yearbooks.
The assessment in this study focused on residential areas with population densities of ≥10 persons/km2.
These residential areas contained 99.9% of the total population within the study region.

This study was focused on the decomposition of long-term variations in the population exposure
to outdoor PM2.5, which were measured using a satellite remote sensing technique. The exposure to
indoor PM2.5 would also negatively impact human health [34]. The indoor and outdoor exposure levels
differ because of factors such as the spatial variability of the PM2.5 concentration and outdoor-to-indoor
infiltration. The measurement of indoor pollution exposure requires advanced and portable sensor
devices [35,36]. Future studies could assess the indoor exposure and its health impact using the
sensor measurements.

The climate in the GBA region is affected by seasonal monsoons. The prevailing winds are from
the north in winter and from the south in summer. The monsoons affect the monthly variation in
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the PM2.5 concentration in this region. Based on the satellite-derived monthly PM2.5 data, Figure 14
shows the monthly variation of the population-weighted mean PM2.5 concentration for different cities
during the study period. All cities experienced lower population exposure levels in summer and
higher population exposure levels in winter. The highest population exposure levels were typically
found in January and December, with a level as high as >60 µg/m3 for cities in central GBA region (e.g.,
Foshan and Guangzhou). The population exposure levels actually doubled from summer to winter in
several cities such as Zhongshan, Zhuhai and Jiangmen. Stronger regional transport of pollutants from
inland, fewer mixing layers and less precipitation leads to higher levels of PM2.5 exposure in winter
than in summer [17].
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different cities in the GBA region during the entire study period.

The highly developed economy and industry in the GBA region offer a large number of employment
opportunities. Therefore, many residents in the GBA region come from other provinces and work in
this region. During the Chinese New Year, which is usually a one-week holiday in February, most of
these people move back to their hometowns. The movement of these people changes their short-term
exposure levels. The changes are determined by the differences in the PM2.5 concentration level between
the GBA region and their hometowns. Future studies could collect detailed information on the movement
of populations over specific short-term periods and assess its effect on population exposure level.

The rapid economic development and urbanization in the GBA region has also caused complex
environmental and health challenges from other air pollutants, such as sulfur dioxide (SO2), nitrate
oxides (NOx) and ozone [37–39]. To better guide local environmental policies, it would be of great
value to assess the population exposure to other air pollutants and the factors that influence such
exposure. Further research could delineate exposure decompositions for other air pollutants in the
study region.

6. Conclusions

This study used a decomposition method to assess the impact of PM2.5 variations and demographic
changes on the exposure variations for cities in the GBA region of China during the three most-recent
FYP periods. This study took advantage of high-resolution satellite observations to characterize the
long-term variation in human exposure to PM2.5. The results showed that the 15-year average PPCE
levels were positive in all cities, suggesting that unfavorable city planning had placed people in the
polluted areas. The analyses of the spatial differences in PM2.5 changes showed that urban areas
experienced a greater decrease in the PM2.5 concentration than rural areas did in most cities during
the 11th (2006–2010) and 12th (2011–2015) FYP periods. These spatial differences in PM2.5 changes
reduced their PPCE levels and thus reduced the exposure levels. The migration of population resulting
from rapid urbanization, however, increased the PPCE and exposure levels in most cities during
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the three FYP periods considered. Dongguan was the only city in which the demographic change
reduced the exposure level because of its rapid development of residential areas in cleaner regions
adjacent to Shenzhen. The exposure levels in all cities remained high because of the high mean PM2.5

concentrations and their positive PPCE. To better protect public health, control efforts should target
densely populated areas and city planning should place more residential dwellings in cleaner areas.
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C′ Matrix of c′i, j
P′ Matrix of p′i, j
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Appendix A. Appendix: Exposure decomposition

In a two-dimensional region, the spatial distribution of PM2.5 concentration is denoted as ci, j and population
density is denoted as ρi, j, where i = {1, 2, 3, . . . , X} and j = {1, 2, 3, . . . , Y}. This study used c0 and ρ0 to represent
the spatial averages of the PM2.5 concentration and population density, respectively, in the study region. They can
be respectively expressed as Equations (A1.1) and (A1.2):

c0 =
1
A

X∑
i = 1

Y∑
j = 1

ci, j (A1.1)

ρ0 =
1
A

X∑
i = 1

Y∑
j = 1

ρi, j (A1.2)

where A = X·Y is the total grid number, representing the area of the study region. Then, c′i, j and ρ′i, j are defined
as the deviation of the PM2.5 concentration from c0 and the deviation of population density from ρ0, respectively.
They can be respectively expressed as Equations (A2.1) and (A2.2)

c′i, j = ci, j − c0 (A2.1)

ρ′i, j = ρi, j − ρ0 (A2.2)

The c′i, j values are positive in polluted areas and negative in clean areas. The ρ′i, j values are positive in
densely populated urban areas and negative in rural areas. By definition, Equations (A3.1) and (A3.2) are as
follows:

X∑
i = 1

Y∑
j = 1

c′i, j = 0 (A3.1)

X∑
i = 1

Y∑
j = 1

ρ′i, j = 0 (A3.2)

The population-weighted mean PM2.5 concentration (cρ) can be quantified by Equation (A4):

cρ =

∑X
i = 1

∑Y
j = 1 ci, j·ρi, j∑X

i = 1
∑Y

j = 1 ρi, j
(A4)

Or, it can be expressed as Equations (A5.1) and (A5.2):

cρ =

∑X
i = 1

∑Y
j = 1(c0 + c′i, j)·

(
ρ0 + ρ′i, j

)
ρ0·A

(A5.1)

cρ =

∑X
i = 1

∑Y
j = 1(c0·ρ0 + c0·ρ

′

i, j + c′i, j·ρ0 + c′i, j·ρ
′

i, j)

ρ0·A
(A5.2)

By separating out c0, cρ can be expressed as Equations (A6.1) and (A6.2):

cρ = c0 +

∑X
i = 1

∑Y
j = 1 c′i, j·ρ

′

i, j

ρ0·A
(A6.1)

cρ = c0 +
1
A
·

X∑
i = 1

Y∑
j = 1

(ci, j − c0)·
(ρi, j − ρ0)

ρ0
(A6.2)

Equation(A7) can be defined as:

p′i, j =
ρi, j − ρ0

ρ0
(A7)
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to represent the normalized deviation of the population density from ρ0. cρ can then be expressed as Equation
(A8):

cρ = c0 +
1
A
·

X∑
i = 1

Y∑
j = 1

c′i, j·p′i, j (A8)

Furthermore, C′ and P′ are defined as Matrices of c′i, j and p′i, j, respectively. Then, cρ can be expressed as
Equation (A9):

cρ = c0 +
1
A
·(C′·P′) (A9)

The cρ value is therefore determined by the mean PM2.5 concentration (c0) together with a dot product of the
deviation of the PM2.5 concentration (C′) and the normalized deviation of the population density (P′). The second
part of cρ is associated with the spatial coincidence between the population density and PM2.5 concentration. A
pollution-population-coincidence–induced PM2.5 exposure (PPCE) of c1 was used to represent the PM2.5 exposure
resulting from this effect. This PPCE (c1) can be expressed as Equation (A10):

c1 =
1
A
·(C′·P′) (A10)

cρ can then be expressed as Equation (A11):

cρ = c0 + c1 (A11)

The cρ value can be decomposed into two parts. The first part is the mean PM2.5 concentration (c0) and
the second part is PPCE (c1). An increase in population density in polluted areas leads to a positive value of c1,
which boosts the cρ level. To lessen the human exposure to PM2.5, the most successful control strategies must
simultaneously decrease the mean PM2.5 concentration (c0) and the PPCE (c1). The trend in cρ can be expressed as
Equation (A12):

dcρ
dt

=
dc0
dt

+
dc1
dt

(A12)

The trend in c1 can be expressed as Equation (A13):

dc1
dt

=
1
A
·

(
P′·

dC′

dt

)
+

1
A
·

(
C′·

dP′

dt

)
(A13)

The elements of the trends in C′ and P′ can be expressed as Equations (A14.1) and (A14.2):

dc′i, j
dt

=
d
(
ci, j − c0

)
dt

=
dci, j

dt
−

dc0
dt

(A14.1)

dp′i, j
dt

=
d
( ρi, j−ρ0

ρ0

)
dt

=
ρi, j

ρ0

(
1
ρi, j

dρi, j

dt
−

1
ρ0

dρ0

dt

)
(A14.2)

The c′i, j values decline in areas where the PM2.5 concentrations undergo a greater reduction than the average
level. The p′i, j values decline in areas where the population densities undergo a greater percentage reduction than

the average level. When ρ0 is relatively stable (i.e., dρ0
dt ≈ 0), the p′i, j values decrease in areas where population

densities decrease (i.e., people migrate out of the area). In contrast, the p′i, j values increase in areas where
population densities increase (i.e., people migrate into the areas).

The trend in cρ can then be expressed as Equation (A15):

dcρ
dt

=
dc0
dt

+
1
A
·

(
P′·

dC′

dt

)
+

1
A
·

(
C′·

dP′

dt

)
(A15)

The trend in cρ can be decomposed into three parts (Equations (A16.1–16.3)):

dcρ1

dt
=

dc0
dt

(A16.1)

dcρ2

dt
=

1
A
·

(
P′·

dC′

dt

)
(A16.2)
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dcρ3

dt
=

1
A
·

(
C′·

dP′

dt

)
(A16.3)

The cρ value therefore decreases under three conditions: (a) dc0
dt < 0; (b) P′· dC′

dt < 0; or (c) C′· dP′
dt < 0. The first

condition can be achieved if the mean PM2.5 concentration decreases. The second condition occurs when
dc′ i, j

dt < 0

in populous urban areas with p′i, j > 0, whereas
dc′ i, j

dt > 0 in rural areas with p′i, j < 0. This condition can be
achieved if the PM2.5 concentration within populous urban areas reduces more than it does within rural areas.

The third condition takes place when
dp′ i, j

dt < 0 in polluted areas with c′i, j > 0, whereas
dp′ i, j

dt > 0 in clean areas with
c′i, j < 0. This condition can be achieved if city planning relocates people from living in polluted areas to clean
areas. In summary, the variation in cρ can be decomposed into three parts, which are associated with the change
in the mean PM2.5 concentration, the spatial difference in PM2.5 change and the demographic change, respectively.
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