Identifying Linear Traces of the Han Dynasty Great Wall in Dunhuang Using Gaofen-1 Satellite Remote Sensing Imagery and the Hough Transform
Abstract
:1. Introduction
1.1. Historical and Archaeological Background
1.2. Archaeological Remote Sensing
2. Study Area and Data
2.1. Ancient Dunhuang
2.2. Linear Traces of GH in Dunhuang
2.3. Remote Sensing Data
3. Methodology
3.1. Data Pre-Processing
3.2. M-Statistic
3.3. Otsu Segmentation
3.4. Linear Hough Transform
3.5. Ground Verification Surveys
4. Results and Discussion
4.1. M-Statistic of Linear Traces of GH
4.2. Image Segmentation
4.3. Automatic Identification of Linear Traces
4.4. Performance Evaluation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, G. The Evolution of the Great Wall of China; The Commercial Press: Shanghai, China, 1928. (In Chinese) [Google Scholar]
- Jing, A. The History of the Great Wall of China; Shanghai People’s Publishing House: Shanghai, China, 2006. (In Chinese) [Google Scholar]
- Waldron, A. The Great Wall of China: From History to Myth; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Luo, L. Space Archaeology for Tunshu Sites along the South Route of the Ancient Silk Road. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2016. (In Chinese). [Google Scholar]
- Zhang, W. The Construction System of the Great Wall of China; Zhonghua Book Company: Beijing, China, 1976. (In Chinese) [Google Scholar]
- Waltner, A. Review of Arthur Waldron, The Great Wall of China: From History to Myth. J. Orient. Stud. 1992, 19, 255–256. [Google Scholar]
- Su, H.; Qu, L.; He, K.; Zhang, Z.; Wang, J.; Chen, Z.; Gu, H. The Great Wall of China: A physical barrier to gene flow? Heredity 2003, 90, 212. [Google Scholar] [CrossRef] [PubMed]
- Lattimore, O. Origins of the Great Wall of China: A Frontier Concept in Theory and Practice. Geogr. Rev. 1937, 27, 529–549. [Google Scholar] [CrossRef]
- Sima, Q. Shiji; Zhonghua Book Company: Beijing, China, 1962. First published 91 BC. (In Chinese) [Google Scholar]
- Ban, G. HanShu; Zhonghua Book Company: Beijing, China, 1962. First published 92 BC. (In Chinese) [Google Scholar]
- Xu, P. The Archaeology of the Great Wall of the Qin and Han Dynasties. J. East Asian Archaeol. 2001, 3, 259–281. [Google Scholar]
- Duan, Q.; Xu, W. The Discovery and Research of the Great Wall of China; Science Press: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Stein, A. Serindia; Clarendon Press: Oxford, UK, 1921. [Google Scholar]
- Li, Z. Sites of the Great Wall and beacon towers in Dunhuang prefecture (Synopsis). Dunhuang Res. 1995, 2, 120–126. (In Chinese) [Google Scholar]
- Li, B. An oasis disappeared between Guazhou and Shazhou. Dunhuang Res. 1994, 3, 71–78. (In Chinese) [Google Scholar]
- Li, B. Yihe and Central military towns of Dunhuang prefecture in the Han Dynasty. J. Northwest Norm. Univ. (Social Sci.) 1995, 32, 93–96. (In Chinese) [Google Scholar]
- Li, B. Courier stations from Guazhou to Shazhou in the Tang Dynasty. In Historical Geography; Chen, Q., Zou, Y., Eds.; Shanghai People Press: Shanghai, China, 1996; pp. 93–101. (In Chinese) [Google Scholar]
- Li, Z. Collation and Annotation of Dunhuang Manuscripts; Gansu People Press: Lanzhou, China, 2008. (In Chinese) [Google Scholar]
- Luo, L.; Wang, X.; Liu, C.; Guo, H.; Du, X. Integrated RS, GIS and GPS Approaches to Archaeological Prospecting in the Hexi Corridor, NW China: A Case Study of the Royal Road to Ancient Dunhuang. J. Archaeol. Sci. 2014, 50, 178–190. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, W. Research on the Great Wall of Han Dynasty: A review. J. Chin. Hist. Stud. 2012, 5, 40–47. (In Chinese) [Google Scholar]
- Stein, A. Innermost Asia: Detailed Report of Explorations in Central Asia, Kansu and Eastern Iran, Carried Out and Described under the Orders of H. M. Indian Government; Clarendon Press: Oxford, UK, 1928. [Google Scholar]
- Hedin, S. Scientific Results of a Journey in Central Asia 1899–1902; Lithographic Institute of the General Staff of the Swedish Army: Stockholm, Sweden, 1907. [Google Scholar]
- Xiang, D. Zhong Xi Jiao Tong Shi; Zhonghua Book Company: Beijing, China, 1930. [Google Scholar]
- Xia, N. Archaeological investigations in Dunhuang. Archaeol. Lett. 1955, 1, 1–3. (In Chinese) [Google Scholar]
- Yan, W. Archaeological investigations in Hexi corridor. Cult. Herit. Ref. Mater. 1953, 12, 53–71. (In Chinese) [Google Scholar]
- Wu, R. Hexi Han Sai Diao Cha Yu Yan Jiu; Cultural Relics Press: Beijing, China, 2005. (In Chinese) [Google Scholar]
- Wang, G. Guang Tang Ji Lin; Zhonghua Book Company: Beijing, China, 1961. [Google Scholar]
- Zhang, D. Station Troops to Open-up Wasteland of Western Region in the Han Dynasty Based on the Han Slips from Xuanquan. Dunhuang Res. 2001, 3, 113–121. (In Chinese) [Google Scholar]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Zong, X.; Masini, N.; Wang, G.; Shi, P.; Khatteli, H.; Chen, F.; et al. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sens. Environ. 2019, 232, 111280. [Google Scholar] [CrossRef]
- Verhoeven, G.; Sevara, C. Trying to break new ground in aerial archaeology. Remote Sens. 2016, 8, 918. [Google Scholar] [CrossRef]
- Lasaponara, R.; Yang, R.; Chen, F.; Li, X.; Masini, N. Corona satellite pictures for archaeological studies: A review and application to the lost Forbidden City of the Han–Wei Dynasties. Surv. Geophys. 2018, 39, 1303–1322. [Google Scholar] [CrossRef]
- Doneus, M. Precision mapping and interpretation of oblique aerial photographs. Archaeol. Prospect. 2001, 8, 13–27. [Google Scholar] [CrossRef]
- Lin, A.; Novo, A.; Har-Noy, S.; Ricklin, N.; Stamatiou, K. Combining GeoEye-1 satellite remote sensing, UAV aerial imaging, and geophysical surveys in anomaly detection applied to archaeology. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2011, 4, 870–876. [Google Scholar] [CrossRef]
- Agapiou, A.; Lysandrou, V.; Lasaponara, R.; Masini, N.; Hadjimitsis, D.G. Study of the Variations of Archaeological Marks at Neolithic Site of Lucera, Italy Using High-Resolution Multispectral Datasets. Remote Sens. 2016, 8, 723. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Liu, J.; Zheng, W.; Zhen, J.; Zhu, L.; Liu, C.; Wan, H. Low-Cost Archaeological Investigation and Rapid Mapping of Ancient Stone Tidal Weirs in the Penghu Archipelago Using Google Earth. Sustainability 2019, 11, 4536. [Google Scholar] [CrossRef]
- Cerra, D.; Agapiou, A.; Cavalli, R.M.; Sarris, A. An Objective Assessment of Hyperspectral Indicators for the Detection of Buried Archaeological Relics. Remote Sens. 2018, 10, 500. [Google Scholar] [CrossRef]
- Abate, N.; Lasaponara, R. Preventive Archaeology Based on Open Remote Sensing Data and Tools: The Cases of Sant’Arsenio (SA) and Foggia (FG), Italy. Sustainability 2019, 11, 4145. [Google Scholar] [CrossRef]
- Kalayci, T.; Lasaponara, R.; Wainwright, J.; Masini, N. Multispectral Contrast of Archaeological Features: A Quantitative Evaluation. Remote Sens. 2019, 11, 913. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F.; Donoghue, D. ‘Looting marks’ in space-borne SAR imagery: Measuring rates of archaeological looting in Apamea (Syria) with TerraSAR-X Staring Spotlight. Remote Sens. Environ. 2016, 178, 42–58. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F. COSMO-SkyMed SAR for Detection and Monitoring of Archaeological and Cultural Heritage Sites. Remote Sens. 2019, 11, 1326. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, F.; Guo, H. Reconstruction of the Water Cultivation Paleoenvironment Dating Back to the Han and Tang Dynasties Surrounding the Yangguan Frontier Pass Using X- and L-Band SAR Data. Remote Sens. 2018, 10, 1536. [Google Scholar] [CrossRef]
- Stewart, C.; Oren, E.; Cohen-Sasson, E. Satellite remote sensing analysis of the Qasrawet archaeological site in North Sinai. Remote Sens. 2018, 10, 1090. [Google Scholar] [CrossRef]
- Masini, N.; Gizzi, F.; Biscione, M.; Fundone, V.; Sedile, M.; Sileo, M.; Pecci, A.; Lacovara, B.; Lasaponara, R. Medieval archaeology under the canopy with LiDAR. The (re)discovery of a medieval fortified settlement in Southern Italy. Remote Sens. 2018, 10, 1598. [Google Scholar] [CrossRef]
- Canuto, M.; Estrada-Belli, F.; Garrison, T.; Houston, S.; Acuna, M.; Kovac, M.; Marken, D.; Nondedeo, P.; Auld-Thomas, L.; Castanet, C.; et al. Ancient lowland Maya complexity as revealed by airborne laser scanning of northern Guatemala. Science 2018, 361, eaau0137. [Google Scholar] [CrossRef]
- Doneus, M.; Doneus, N.; Briese, C.; Pregesbauer, M.; Mandlburger, G.; Verhoeven, G. Airborne laser bathymetry—Detecting and recording submerged archaeological sites from the air. J. Archaeol. Sci. 2013, 40, 2136–2151. [Google Scholar] [CrossRef]
- Zeng, C.; Gu, W.; Liu, J. Remote sensing investigation of Great Wall in Beijing. Remote Sens. Inform. 1987, 1, 7–9. (In Chinese) [Google Scholar]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Shi, P.; Bachagha, N.; Li, L.; Yao, Y.; Masini, N.; Chen, F. Google Earth as a Powerful Tool for Archaeological and Cultural Heritage Applications: A Review. Remote Sens. 2018, 10, 1558. [Google Scholar] [CrossRef]
- Guo, H. Spaceborne multifrequency, polarametric and interferometric radar for detection of the targets on earth surface and subsurface. J. Remote Sens. 1997, 1, 32–39. (In Chinese) [Google Scholar]
- Chen, J.; Jin, S.; Liao, A.; Zhao, Y.; Zhang, H.; Rong, D.; Yang, Z. Stereo mapping of Ming Great Wall with remote sensing. Chin. Sci. Bull. 2010, 55, 2290–2294. [Google Scholar] [CrossRef]
- Li, Y. The Research of Military Fortresses of Nine Defense Areas along the Great Wall in Ming Dynasty. Ph.D. Thesis, Tianjin University, Tainjin, China, 2007. (In Chinese). [Google Scholar]
- Liu, J. Research on Gansu-Town’s Defense System and its Spatial Analysis of the Great Wall in Ming Dynasty. Ph.D. Thesis, Tianjin University, Tainjin, China, 2013. (In Chinese). [Google Scholar]
- Ruan, H.; Wang, N.; Niu, Z.; Jia, P. Spatial pattern of ancient city sites and its driving forces in Mu Us Sandy Land during Han Dynasty. Acta Geogr. Sin. 2016, 71, 873–882. (In Chinese) [Google Scholar]
- Davis, D. Object-based image analysis: A review of developments and future directions of automated feature detection in landscape archaeology. Archaeol. Prospect. 2018, 1–9. [Google Scholar] [CrossRef]
- De Laet, V.; Paulissen, E.; Waelkens, M. Methods for the extraction of archaeological features from very high-resolution Ikonos-2 remote sensing imagery, Hisar (southwest Turkey). J. Archaeol. Sci. 2007, 34, 830–841. [Google Scholar] [CrossRef]
- Lasaponara, R.; Leucci, G.; Masini, N.; Persico, R.; Scardozzi, G. Towards an Operative Use of Remote Sensing for Exploring the Past Using Satellite Data: The Case Study of Hierapolis (Turkey). Remote Sens. Environ. 2016, 174, 148–164. [Google Scholar] [CrossRef]
- D’Orazio, T.; Da Pelo, P.; Marani, R.; Guaragnella, C. Automated Extraction of Archaeological Traces by a Modified Variance Analysis. Remote Sens. 2015, 7, 3565–3587. [Google Scholar] [CrossRef]
- Traviglia, A.; Torsello, A. Landscape Pattern Detection in Archaeological Remote Sensing. Geosciences 2017, 7, 128. [Google Scholar] [CrossRef]
- Figorito, B.; Tarantino, E. Semi-automatic detection of linear archaeological traces from orthorectified aerial images. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 458–463. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Liu, C.; Liu, J.; Li, L.; Du, X.; Qian, G. Automated extraction of the archaeological tops of Qanat Shafts from VHR imagery in Google Earth. Remote Sens. 2014, 6, 11956–11976. [Google Scholar] [CrossRef]
- Trier, Ø.; Cowley, D.; Waldeland, A. Using deep neural networks on airborne laser scanning data: Results from a case study of semi-automatic mapping of archaeological topography on Arran, Scotland. Archaeol. Prospect. 2018, 1–11. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Lasaponara, R.; Xiang, B.; Zhen, J.; Zhu, L.; Yang, R.; Liu, D.; Liu, C. Auto-Extraction of Linear Archaeological Traces of Tuntian Irrigation Canals in Miran Site (China) from Gaofen-1 Satellite Imagery. Remote Sens. 2018, 10, 718. [Google Scholar] [CrossRef] [Green Version]
- Trimble. GeoExplorer 6000 Series GeoXR User Guide; Trimble: Sunnyvale, CA, USA, 2015. [Google Scholar]
- Exelis VIS. ENVI 5.4; Exelis VIS: Boulder, CO, USA, 2016. [Google Scholar]
- Lasaponara, R.; Masini, N. Satellite Remote Sensing: A New Tool for Archaeology; Springer: Berlin, Germany, 2012. [Google Scholar]
- Kaufman, Y.; Remer, L. Detection of Forests Using Mid-IR Reflectance: An Application for Aerosol Studies. IEEE Trans. Geosci. Remote Sens. 1994, 32, 672–683. [Google Scholar] [CrossRef]
- Ostu, N. A threshold selection method from gray-histogram. IEEE Trans. Syst. Man Cybern.-Syst. 1979, 9, 62–66. [Google Scholar]
- Zhang, J.; Hu, J. Image segmentation based on 2D Otsu method with histogram analysis. In Proceeding of the International Conference on Computer Science and Software Engineering, Wuhan, China, 12–14 December 2008; pp. 105–108. [Google Scholar]
- Vala, H.; Baxi, A. A review on Otsu image segmentation algorithm. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 2013, 2, 387. [Google Scholar]
- Duda, R.; Hart, P. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15. [Google Scholar] [CrossRef]
- Hough, P. Method and Means for Recognizing Complex Patterns. U.S. Patent No. 3,069,654, 18 December 1962. [Google Scholar]
- Shapiro, L.; Stockman, G. Computer Vision; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 2001; p. 304. [Google Scholar]
- Tarantino, E.; Figorito, B. Steerable Filtering in Interactive Tracing of Archaeological Linear Features Using Digital True Color Aerial Images. Int. J. Digit. Earth 2014, 7, 870–880. [Google Scholar] [CrossRef]
ID (See Figure 2 for Location) | Sensor | Acquisition Date |
---|---|---|
GF1_PMS1_E93.6_N40.3 | PMS | 2014-07-30 |
GF1_PMS1_E93.9_N40.3 | PMS | 2014-08-03 |
GF1_PMS2_E94.1_N40.5 | PMS | 2014-07-30 |
GF1_PMS2_E94.4_N40.5 | PMS | 2014-08-03 |
GF1_PMS1_E94.9_N40.5 | PMS | 2014-09-17 |
GF1_PMS2_E95.3_N40.5 | PMS | 2014-04-06 |
GF1_PMS2_E95.7_N40.5 | PMS | 2014-09-17 |
GF1_PMS1_E96.1_N40.5 | PMS | 2014-08-15 |
GF1_PMS2_E96.4_N40.5 | PMS | 2014-09-25 |
GF1_PMS1_E96.6_N40.5 | PMS | 2014-04-18 |
Sensors | Wavelength/μm | Spatial Resolution/m | |
---|---|---|---|
GF-1 PMS | PAN | 0.45–0.90 | 2 |
MS | B1-Blue: 0.45–0.52 | 8 | |
B2-Green: 0.52–0.59 | |||
B3-Red: 0.63–0.69 | |||
B4-NIR: 0.77–0.89 |
Types | GF-1 PAN Sub-Images of Linear Traces | Walls? | Field Photos |
---|---|---|---|
G1 | No | ||
G2 | Yes | ||
G3 | No | ||
G4 | No | ||
G5 | No | ||
G6 | Yes | ||
G7 | No | ||
G8 | Yes | ||
G9 | No | ||
G10 | Yes | ||
G11 | No | ||
G12 | No |
Bands | μ1 − μ2 | σ1 + σ2 | M |
---|---|---|---|
B1-Blue | 1.54 | 6.24 | 0.25 |
B2-Green | 2.53 | 9.13 | 0.28 |
B3-Red | 3.76 | 9.02 | 0.42 |
B4-NIR | 3.92 | 10.88 | 0.36 |
PAN | 2.86 | 5.55 | 0.52 |
NDVI | 1.01 | 11.34 | 0.09 |
PCA1 | 3.45 | 8.57 | 0.40 |
PCA2 | 2.93 | 18.11 | 0.16 |
PCA3 | 3.38 | 14.96 | 0.23 |
PCA4 | 3.67 | 18.33 | 0.20 |
Integrity | Visibility | Background Complexity | |
---|---|---|---|
High | No gaps | High contrast with background | Homogeneous background |
Medium | Less than 2 gaps and gap lengths always less than 3 m | Intermediate conditions | Heterogeneous Background |
Low | More than 2 gaps and gap lengths greater than 3 m | Poorly defined contour | Heterogeneous Background |
Linear Trace of GH | Integrity | Visibility | Background Complexity | Identification Level | LT/m | LF/m | Ml/m | LT/LM × 100% | LF/LM × 100% |
---|---|---|---|---|---|---|---|---|---|
G1 | High | High | Low | High | 805 | 0 | 1000 | 80.5% | 0 |
G2 | Medium | Medium | High | Medium | 620 | 0 | 1000 | 62.0% | 0 |
G3 | Low | Low | Medium | Low | 350 | 720 | 1000 | 35.0% | 72.0 |
G4 | High | High | Low | High | 1080 | 0 | 1200 | 90.0% | 0 |
G5 | High | High | Low | High | 810 | 0 | 1000 | 81.0% | 0 |
G6 | Medium | Medium | High | Medium | 685 | 315 | 1000 | 68.5% | 31.5 |
G7 | Low | Low | High | Low | 790 | 2050 | 1000 | 79.0% | 205.0 |
G8 | Medium | Medium | High | Medium | 535 | 505 | 1000 | 53.5% | 50.5 |
G9 | Medium | Medium | High | Medium | 800 | 395 | 1000 | 76.5% | 39.5 |
G10 | Medium | High | Medium | High | 830 | 0 | 1000 | 83.0% | 0 |
G11 | Low | Low | High | Low | 300 | 605 | 1000 | 30.0% | 60.5 |
G12 | High | High | Low | High | 855 | 0 | 1000 | 85.5% | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, L.; Bachagha, N.; Yao, Y.; Liu, C.; Shi, P.; Zhu, L.; Shao, J.; Wang, X. Identifying Linear Traces of the Han Dynasty Great Wall in Dunhuang Using Gaofen-1 Satellite Remote Sensing Imagery and the Hough Transform. Remote Sens. 2019, 11, 2711. https://doi.org/10.3390/rs11222711
Luo L, Bachagha N, Yao Y, Liu C, Shi P, Zhu L, Shao J, Wang X. Identifying Linear Traces of the Han Dynasty Great Wall in Dunhuang Using Gaofen-1 Satellite Remote Sensing Imagery and the Hough Transform. Remote Sensing. 2019; 11(22):2711. https://doi.org/10.3390/rs11222711
Chicago/Turabian StyleLuo, Lei, Nabil Bachagha, Ya Yao, Chuansheng Liu, Pilong Shi, Lanwei Zhu, Jie Shao, and Xinyuan Wang. 2019. "Identifying Linear Traces of the Han Dynasty Great Wall in Dunhuang Using Gaofen-1 Satellite Remote Sensing Imagery and the Hough Transform" Remote Sensing 11, no. 22: 2711. https://doi.org/10.3390/rs11222711
APA StyleLuo, L., Bachagha, N., Yao, Y., Liu, C., Shi, P., Zhu, L., Shao, J., & Wang, X. (2019). Identifying Linear Traces of the Han Dynasty Great Wall in Dunhuang Using Gaofen-1 Satellite Remote Sensing Imagery and the Hough Transform. Remote Sensing, 11(22), 2711. https://doi.org/10.3390/rs11222711