Theoretical Evaluation of Anisotropic Reflectance Correction Approaches for Addressing Multi-Scale Topographic Effects on the Radiation-Transfer Cascade in Mountain Environments
Abstract
:1. Introduction
2. Background
2.1. Radiation-Transfer Cascade
2.1.1. Direct Irradiance
2.1.2. Diffuse-Skylight Irradiance
2.1.3. Adjacent-Terrain Irradiance
2.1.4. Bi-Directional Reflectance Distribution Function
2.2. ARC
Empirical Corrections
2.3. ARC Evaluation
2.4. Study Area
3. Materials and Methods
3.1. Data
3.2. Radiation-Transfer Modeling
3.2.1. Exoatmospheric Irradiance and Solar Geometry
3.2.2. Atmospheric Parameters
3.2.3. Surface Irradiance
3.2.4. Surface Reflectance
3.3. Simulated ASTER Imagery
3.4. Anisotropic Reflectance Correction
- B-Correction assuming isotropic reflectance conditions [14].
- B-Correction assuming a non-linear relationship and an anisotropic reflectance model [105].
- Cosine Correction [55].
- Global Minnaert Correction [39]:
3.5. Validation and Statistical Analysis
- First, we evaluated the image magnitude of reflectance differences using the Root Mean Squared Error (RMSE) as:
- We computed the magnitude of the Pearson-Product Moment correlation coefficient (r), to ensure that the spatial variability in reflectance accounts for reflectance variation due to land cover structure and biophysical variation as:
- We then utilized a structural-similarity index (SSI) developed and evaluated by Wang et al. [80] to determine the collective influence of reflectance magnitude (l), global variation (c; contrast) and the correlation coefficient (r), on the topographically corrected reflectance values compared to simulated reflectance. It was computed as follows:
- Nevertheless, to better characterize the spatial nature of how each topographic-correction procedure performs under different topographic conditions, we implemented the SSI over an arbitrary window size of to ensure an adequate sample size for computing the statistic. We generated SSI images to evaluate where the topographic-correction procedures worked well, and where they did not. This provided for better interpretation of the results in terms of what topographic conditions cause problems for various techniques.
4. Results
4.1. RTC Simulation
4.2. ARC Validation
5. Discussion
- The use of the human visualization system to evaluate empirical ARC methods. Decreased spectral variation is thought to signify effective topographic correction. This approach cannot be used to evaluate the degree of information compression given the use of a scaling factor, the correct magnitude of surface reflectance, or the spatial variation structure of surface spectral reflectance. Furthermore, interpretation is subject to biases resulting from a-priori experience, generalization caused by 8-bit display monitors, color bins, and graphic production techniques.
- The concept of similar surface reflectance conditions for homogeneous landcover is assumed to be the result of effective ARC. This assumption is not realistic in mountain environments because of biophysical property variation related to topography and land cover structure. Environmental dynamics in mountain environments determine the magnitude and extent of various processes which dramatically alter surface irradiance, surface composition and the BRDF. These include processes such as evapotranspiration, gravitational sediment fluxes, erosion, deposition and slope stability that governs plant dispersion and mineralogical composition. In addition, climate forcing and variations in temperature and precipitation govern vegetation density, glaciation and snow cover. ARC methods need to work over large spatial and temporal scales, therefore the operational scale dependencies of processes may vary significantly, and the assumption that homogeneous land cover conditions will exhibit similar reflectance on illuminated and shadowed terrain, which serves as a basis for evaluation, does not account for spatial variation in surface-process dynamics and radiation-transfer theory.
- The relationship between and L should not be used to evaluate the effectiveness of topographic correction, as it does not account for numerous radiation-transfer parameters (e.g., and ) that exhibit spectral variation at different scales and magnitudes than . In addition, land cover patterns are dependent upon topographic variables and residual correlations between , and spectral reflectance values would be expected following topographic corrections [18,63]. Furthermore, as we have demonstrated, a global image evaluation procedure cannot be used to account for local effectiveness of a topographic-correction method.
- It is frequently assumed that spectral homogeneity should increase after topographic correction, e.g., [18]. This assumption is not consistent with the concept of enhancing the moderate- to high-frequency surface reflectance conditions, as lower-frequency topographic information is reduced. This was demonstrated by Bishop and Colby [15], who used semi-variogram analysis to evaluate surface reflectance variability after topographic correction. This is especially the case in more dynamic mountain environments where moisture variations, sediment fluxes, and anthropogenic forcing can cause significant compositional and biophysical variation that can increase spectral variation over various spatial scales.
- The utilization of classification accuracy as a way to evaluate topographic correction. This approach is extremely problematic and does not address numerous radiometric calibration issues related to the fundamental radiation-transfer components. The magnitude and spatial variation of reflectance is also not accounted for. It introduces significant uncertainty given various assumptions, and is influenced by overcorrection or information compression, the nature of the algorithm, training, as well as dimensionality of the feature space and specific information components making up that feature space. Therefore, many potential sources of error are intrinsic in the classification process [19,50]. Given high spectral variability in mountain environments, and the availability of high resolution imagery, good classification accuracy can be difficult to obtain given increased spectral variation. Nevertheless, good classification results do not equate to optimized ARC results that need to be representative of surface biophysical property variation to enable the prediction of surface parameters and generation of thematic information.
- Issues of empiricism associated with using parameter values and thresholds to modify results for a particular geographic region. Often, such attempts are applied over relatively small geographic areas, and their utilization may become questionable over larger regions due to more spatial variability in morphometric properties of the topography and RT parameters. We would argue that, given the paucity of data over large areas by which to formally validate ARC results, investigators cannot effectively select the appropriate magnitude or interval range of parameters in an attempt to optimize results. For example, empirically modifying results based on visual interpretation does not effectively address the removal of radiation-transfer components from the imagery, as the parameterization schemes and modification procedures cannot deterministically account for other topographic effects. It also results in non-repeatable results, as such procedures may not produce consistent results in different environments, at different times, or with different analysts. Consequently, empiricism is also partially responsible for inconsistent results presented in the literature.
- Research involving the ranking of empirical ARC procedures. We would argue that this should not be a research objective, as traditional statistical and classification evaluation methods do not account for the reduction of radiation-transfer components encapsulated in multispectral imagery. As demonstrated in our simulation, radiometric calibration is required and the results are highly dependent upon the wavelength region, time, and morphometric properties of the topography. Most of these factors have not been systematically evaluated. Rather, investigators assume that more evaluation procedures are better and produce reliable results when, in fact, the radiometric calibration issues are not being addressed using simplistic empirical ARC procedures. Rankings which are based on different evaluation approaches also lead to inconsistencies in the literature.
- Mountain topographic and spectral variability. The literature is ubiquitous with statements indicating that investigators are evaluating ARC methods in complex topography. Complexity needs to be semantically defined, as indicated by Bishop and Dobreva [107], who evaluated the term from morphometric property and system perspectives. Clearly, the magnitude and spatial variability of morphometric properties govern the multi-scale topographic effects that partially regulate irradiance and reflectance variations. As demonstrated, even secondary or tertiary parameters can significantly influence results if they are not formally accounted for (i.e., need for atmospheric correction given relief variations). Similarly, the radiation-transfer process dynamics need to be accounted for in order to represent their variation adequately so that it can be removed. Consequently, we could expect that various empirical ARC methods will better function in environments with less topographic and spectral variability. We would argue that the concept needs to be evaluated from a radiation-transfer systems perspective. Therefore, researchers need to account for the morphometric properties of the topography within their study areas.
- Small angle approximation. Most investigators utilize constant solar geometry parameters for atmospheric correction, the cosine of the incidence angle and ARC methods. Solar geometry parameters vary for each pixel and are a function of time, latitude, longitude, and altitude. The computation of these parameters is more important for processing large regions or scenes compared to small areas. Nevertheless, it is assumed that the variance is insignificant. It is yet unclear as to the impact that this assumption has on ARC, as it is a parameter that partially governs atmospheric transmittance, path radiance, direct irradiance, diffuse-skylight irradiance, adjacent-terrain irradiance and the BRDF.
- Performance dependence on land cover. Numerous researchers have indicated that the effectiveness of empirical ARC methods is largely dependent on land-surface types, e.g., [17,81,108]. We would argue that this is not technically correct, as effective ARC depends upon a multitude of factors including: (1) parameterization scheme of technique/model; (2) spatial variability in morphometric properties; (3) landcover type and structure; and (4) sensor characteristics, such as wavelength. Clearly, the morphometric properties of the topography coupled with atmospheric conditions and the land cover surface structure will collectively govern the irradiance fluxes and the BRDF. Sensor-system characteristics will then determine the level of generalization associated with recording the RTC. Empirical ARC methods do not formally account for all of the radiation-transfer components that are caused by multi-scale topographic effects, especially the BRDF. It has yet to be conclusively determined to what degree the BRDF accounts for spectral variation in imagery. In such dynamic environments, areal and intimate mixtures of matter must also be accounted for, and is another factor governing the BRDF.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ARC | Anisotropic reflectance correction |
BRDF | Bidirectional reflectance distribution function |
RTC | Radiation-transfer cascade |
DEM | Digital elevation model |
SEC | Statistical Empirical Correction method |
BLC | B correction (linear form) |
BNC | B correction (non-linear form) |
VECA | Variable empirical coefficient algorithm |
COSC | Cosine Correction |
CCOR | C-Correction |
SCS | Sun–canopy–sensor correction |
SCS+C | Sun–canopy–sensor plus C correction |
GMC | Global Minnaert Correction |
PMC | Pixel-based Minnaert Correction |
Appendix A. Atmospheric Constituents and Properties
Description | Symbol | Value | Source |
---|---|---|---|
Earth–Sun Distance | R | 1.005711546525589 AU | Computed |
Earth–Sun Distance Correction Factor | D | 0.988674032 | Computed |
U.S. Standard Air Pressure at Sea Level | 1013.25 mbar | Jacobson [22] | |
U.S. Standard Air Temperature at Sea Level | 288 K | Jacobson [22] | |
Average mass of one air molecule | Jacobson [22] | ||
Precipitable Water Vapor | W | 3.4 cm | Interpolated from Leckner [89] |
Ozone Standard Midlatitude | 0.3434 atm cm | Gueymard [24] | |
Height of Maximum Ozone Concentration | 22 km | Bird and Riordan [25] | |
Turbidity Coefficient | 0.1 | Gueymard [24] | |
Turbidity Coefficient | 1.0274 | Bird and Riordan [25] | |
Turbidity Coefficient | 1.206 | Bird and Riordan [25] | |
Aerosol Single-Scattering Albedo at | 0.945 | Bird and Riordan [25] | |
Aerosol Wavelength Variation Factor | 0.095 | Bird and Riordan [25] | |
Aerosol Asymmetry Coefficient | 0.75141 | Gueymard [24] | |
Aerosol Asymmetry Coefficient | −0.35648 | Gueymard [24] | |
Aerosol Asymmetry Coefficient | 0.29982 | Gueymard [24] | |
Aerosol Asymmetry Coefficient | −0.081346 | Gueymard [24] | |
Aerosol Asymmetry Coefficient | 0.0073038 | Gueymard [24] |
Appendix B. Symbol Notation
Symbol | Unit | Description |
---|---|---|
[radians] | Solar elevation angle | |
unitless | Weighted sensor response surface reflectance | |
[radians] | Solar declination | |
m] | Wavelength of light | |
[radians] | True longitude of the Earth relative to the vernal equinox | |
unitless | Single-scattering albedo | |
[radians] | Hemisphere azimuth angle of incident energy | |
[radians] | Solar-azimuth angle | |
[radians] | Terrain slope-azimuth angle | |
[radians] | Effective slope-azimuth angle incident energy accounting for topographic correction | |
[radians] | Effective slope-azimuth viewing angle accounting for topographic correction | |
unitless | Composite surface reflectance | |
unitless | Surface BRDF | |
unitless | Spectral sky reflectance of the atmosphere | |
unitless | Reflectance of end-member j | |
unitless | Normalized surface reflectance after topographic correction | |
[radians] | Maximum relief angle | |
[radians] | Hemisphere zenith angle of incident energy | |
[radians] | Solar-zenith angle | |
[radians] | Terrain slope angle | |
[radians] | Viewing zenith angle | |
[radians] | Effective zenith angle of incident energy accounting for topographic correction | |
[radians] | Effective viewing zenith angle accounting for topographic correction | |
[radians] | Latitude | |
b | unitless | Snow scattering asymmetry factor |
c | unitless | Contrast variance parameter for |
d | [km] | Earth–Sun distance |
E | [W m | Surface irradiance |
e | [radians] | Exitance angle |
[W mm | Exoatmospheric irradiance | |
[W m | Aerosol scattering irradiance component | |
[W m | Direct-beam irradiance from the Sun | |
[W m | Diffuse-skylight irradiance | |
[W m | Ground/sky backscattering irradiance component | |
unitless | Error term | |
[W m | Irradiance due to Rayleigh scattering | |
[W m | Adjacent-terrain irradiance | |
unitless | Fraction of end-member j | |
unitless | Earth–Sun distance-correction factor | |
H | [radians] | Hour angle of the Sun |
i | [radians] | Incidence angle |
I | [radians] | Hemisphere incidence angle |
[radians] | Adjacent terrain-incidence angle | |
k | unitless | Minnaert coefficient |
l | unitless | Collective influence of reflectance magnitude for |
L | [W m sr m | Surface radiance |
[W m | Hemispherical downward diffuse irradiance | |
[W m sr m | At-satellite radiance | |
[W m sr m | Surface radiance after topographic normalization | |
[W m sr m | Additive path radiance | |
r | unitless | Pearson-Product Moment correlation coefficient |
S | unitless | Binary coefficient for cast shadows |
unitless | Structural-similarity index | |
unitless | Binary coefficient for terrain blocking | |
unitless | Transmittance due to aerosol scattering | |
unitless | Transmittance due to primary gas absorption | |
unitless | Transmittance due to ozone absorption | |
unitless | Transmittance due to Rayleigh scattering | |
unitless | Transmittance due to water vapor absorption | |
unitless | Total downward transmittance | |
unitless | Total upward transmittance | |
unitless | Total downward/upward transmittance | |
unitless | Total atmospheric transmittance due to terrain relief |
Appendix C. Spectral Files
Spectrum | USGS Spectral Library v7 File |
---|---|
Illite | Illite_IMt-1.b_lt2um_BECKa_AREF |
Hematite | Hematite_GDS27_BECKa_AREF |
Calcite | Calcite_WS272_BECKa_AREF |
Hornblende | Hornblende_Mg_NMNH117329_BECKb_AREF |
Quartz | Quartz_HS32.4B_BECKa_AREF |
Oligoclase | Oligoclase_HS110.3B_BECKc_AREF |
Orthoclase | Orthoclase_NMNH113188_BECKb_AREF |
Desert Varnish | Desert_Varnish_GDS78A_Rhy_BECKa_AREF |
Lodgepole Pine | Lodgepole-Pine_YNP-LP2-A_AVIRISb_RTGC |
References
- Zhang, Y.; Li, X.; Wen, J.; Liu, Q.; Yan, G. Improved Topographic Normalization for Landsat TM Images by Introducing the MODIS Surface BRDF. Remote Sens. 2015, 7, 6558–6575. [Google Scholar] [CrossRef]
- Schaepman, M.E.; Ustin, S.L.; Plaza, A.J.; Painter, T.H.; Verrelst, J.; Liang, S. Earth system science related imaging spectroscopy-An assessment. Remote Sens. Environ. 2009, 113, S123–S137. [Google Scholar] [CrossRef]
- Bishop, M.P.; Shroder, J.F., Jr.; Bonk, R.; Olsenholler, J. Geomorphic Change in High Mountains: A Western Himalayan Perspective. Glob. Planet. Chang. 2002, 32, 311–329. [Google Scholar] [CrossRef]
- Bishop, M.P.; Bush, A.B.G.; Copland, L.; Kamp, U.; Owen, L.A.; Seong, Y.B.; Shroder, J.F., Jr. Climate Change and Mountain Topographic Evolution in the Central Karakoram, Pakistan. Ann. Assoc. Am. Geogr. 2010, 100, 772–793. [Google Scholar] [CrossRef]
- Bishop, M.P.; James, L.A.; Shroder, J.F., Jr.; Walsh, S.J. Geospatial Technologies and Digital Geomorphological Mapping: Concepts, Issues and Research. Geomorphology 2012, 137, 5–26. [Google Scholar] [CrossRef]
- Kargel, J.S.; Leonard, G.J.; Shugar, D.H.; Haritashya, U.K.; Bevington, A.; Fielding, E.J.; Fujita, K.; Geertsema, M.; Miles, E.S.; Steiner, J.; et al. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science 2016, 351. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.J.; Walsh, S.J. Remote Sensing of Mountain Environments. Geogr. Compass 2009, 3, 1–21. [Google Scholar] [CrossRef]
- Proy, C.; Tanré, D.; Deschamps, P.Y. Evaluation of topographic effects in remotely sensed data. Remote Sens. Environ. 1989, 30, 21–32. [Google Scholar] [CrossRef]
- Justice, C.; Holben, B.N. Examination of Larnbertian and Non-Lambertian Models for Simulating the Topographic Effect on Remotely Sensed Data; Technical Report; NASA: Washington, DC, USA, 1979.
- Justice, C.O.; Wharton, S.W.; Holben, B.N. Application of Digital Terrain Data to Quantify and Reduce the Topographic Effect on Landsat Data; Technical Report; National Aeronautics and Space Administration: Washington, DC, USA, 1980.
- Colby, J.D. Topographic normalization in rugged terrain. Photogramm. Eng. Remote Sens. 1991, 57, 531–537. [Google Scholar]
- Gupta, S.K.; Shukla, D.P. Evaluation of topographic correction methods for LULC preparation based on multi-source DEMs and Landsat-8 imagery. Spat. Inf. Res. 2019. [Google Scholar] [CrossRef]
- Hurni, K.; Hoek, J.V.D.; Fox, J. Assessing the spatial, spectral, and temporal consistency of topographically corrected Landsat time series composites across the mountainous forests of Nepal. Remote Sens. Environ. 2019, 231, 111225. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, W. A simple empirical topographic correction method for ETM+ imagery. Int. J. Remote Sens. 2009, 30, 2259–2275. [Google Scholar] [CrossRef]
- Bishop, M.P.; Colby, J.D. Topographic normalization of multispectral satellite imagery. In Encyclopedia of Snow, Ice and Glaciers; Springer: Dordrecht, The Netherlands, 2011; pp. 1187–1196. [Google Scholar] [CrossRef]
- Richter, R.; Kellenberger, T.; Kaufmann, H. Comparison of Topographic Correction Methods. Remote Sens. 2009, 1, 184–196. [Google Scholar] [CrossRef]
- Goslee, S.C. Topographic corrections of satellite data for regional monitoring. Photogramm. Eng. Remote Sens. 2012, 78, 973–981. [Google Scholar] [CrossRef]
- Wu, Q.; Jin, Y.; Fan, H. Evaluating and comparing performances of topographic correction methods based on multi-source DEMs and Landsat-8 OLI data. Int. J. Remote Sens. 2016, 37, 4712–4730. [Google Scholar] [CrossRef]
- Bishop, M.P.; Colby, J.D. Anisotropic reflectance correction of SPOT-3 HRV imagery. Int. J. Remote Sens. 2002, 23, 2125–2131. [Google Scholar] [CrossRef]
- Bishop, M.P.; Shroder, J.F., Jr. Remote Sensing and Geomorphometric Assessment of Topographic Complexity and Erosion Dynamics in the Nanga Parbat Massif. In Tectonics of the Nanga Parbat Syntaxis and the Western Himalaya; The Geological Society of London: London, UK, 2000; pp. 181–199. [Google Scholar]
- Berger, A. Long-Term Variations of Daily Insolation and Quaternary Climatic Changes. J. Atmos. Sci. 1978, 35, 2362–2367. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Fundamentals of Atmospheric Modeling, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Chavez, J. Image-based atmospheric correction—Revisted and improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1036. [Google Scholar]
- Gueymard, C. SMARTS2, a Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment; Florida Solar Energy Center: Cocoa, FL, USA, 1995. [Google Scholar]
- Bird, R.E.; Riordan, C. Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth’s Surface for Cloudless Atmospheres. J. Clim. Appl. Meteorol. 1986, 25, 87–97. [Google Scholar] [CrossRef]
- Vanonckelen, S.; Lhermitte, S.; Rompaey, A.V. The effect of atmospheric and topographic correction methods on land cover classification accuracy. Int. J. Appl. Earth Obs. Geoinf. 2013, 24, 9–21. [Google Scholar] [CrossRef]
- Dozier, J.; Bruno, J.; Downey, P. A faster solution to the horizon problem. Comput. Geosci. 1981, 7, 145–151. [Google Scholar] [CrossRef]
- Rossi, R.E.; Dungan, J.L.; Beck, L.R. Kriging in the shadows: Geostatistical interpolation for remote sensing. Remote Sens. Environ. 1994, 49, 32–40. [Google Scholar] [CrossRef]
- Dubayah, R.; Rich, P.M. Topographic solar radiation models for GIS. Int. J. Geogr. Inf. Syst. 1995, 9, 405–419. [Google Scholar] [CrossRef]
- Giles, P.T. Remote sensing and cast shadows in mountainous terrain. Photogramm. Eng. Remote Sens. 2001, 67, 833–839. [Google Scholar]
- Perez, R.; Stewart, R.; Arbogast, C.; Seals, R.; Scott, J. An anisotropic hourly diffuse radiation model for sloping surfaces: Description, performance validation, site dependency evaluation. Sol. Energy 1986, 36, 481–497. [Google Scholar] [CrossRef]
- Wilson, J.P.; Bishop, M.P. Geomorphometry. In Remote Sensing and GIScience in Geomorphology; Bishop, M.P., Shroder, J.F., Eds.; Academic Press: Waltham, MA, USA, 2013; pp. 162–186. [Google Scholar]
- Kondratyev, K.Y.; Fedorova, M.P. Radiation Regime of Inclined Surfaces; Technical Report; World Meteorological Organization: Geneva, Switzerland, 1977. [Google Scholar]
- Temps, R.C.; Coulson, K.L. Solar radiation incident upon slopes of different orientations. Sol. Energy 1977, 19, 179–184. [Google Scholar] [CrossRef]
- Kimes, D.S.; Kirchner, J.A. Modeling the effects of various radiant transfers in mountainous terrain on sensor response. IEEE Trans. Geosci. Remote Sens. 1981, GE-19, 100–108. [Google Scholar] [CrossRef]
- Roberts, G. A review of the application of BRDF models to infer land cover parameters at regional and global scales. Prog. Phys. Geogr. 2001, 25, 483–511. [Google Scholar] [CrossRef]
- Li, F.; Jupp, D.L.B.; Thankappan, M.; Lymburner, L.; Mueller, N.; Lewis, A.; Held, A. A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain. Remote Sens. Environ. 2012, 124, 756–770. [Google Scholar] [CrossRef]
- Brook, A.; Polinova, M.; Ben-Dor, E. Fine tuning of the SVC method for airborne hyperspectral sensors: The BRDF correction of the calibration nets targets. Remote Sens. Environ. 2018, 204, 861–871. [Google Scholar] [CrossRef]
- Smith, J.A.; Lin, T.L.; Ranson, K.J. The Lambertian Assumption and LANDSAT Data. Photogramm. Eng. Remote Sens. 1980, 46, 1183–1189. [Google Scholar]
- Hugli, H.; Frei, W. Understanding anisotropic reflectance in mountainous terrain. Photogramm. Eng. Remote Sens. 1983, 49, 671–683. [Google Scholar]
- Hall, D.K.; Chang, A.T.C. Reflectance of glaciers as calculated using Landsat-5 Thematic Mapper data. Remote Sens. Environ. 1988, 25, 311–321. [Google Scholar] [CrossRef]
- Dozier, J. Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Aniya, M.; Sato, H.; Naruse, R.; Skvarca, P.; Casassa, G. The use of satellite and airborne imagery to inventory outlet glaciers of the southern Patagonia Icefield, South America. Photogramm. Eng. Remote Sens. 1996, 62, 1361–1369. [Google Scholar]
- Greuell, W.; de Ruyter de Wildt, M. Anisotropic reflection by melting glacier ice: Measurements and parametrizations in Landsat TM bands 2 and 4. Remote Sens. Environ. 1999, 70, 265–277. [Google Scholar] [CrossRef]
- Bishop, M.P.; Colby, J.D.; Luvall, J.C.; Quattrochi, D.; Rickman, D.L. Remote-sensing science and technology for studying mountain environments. In Geographic Information Science and Mountain Geomorphology; Bishop, M.P., Shroder, J.F., Jr., Eds.; Springer: Chichester, UK, 2004; pp. 147–187. [Google Scholar]
- Iqbal, M. An Introduction to Solar Radiation; Academic Press: Toronto, ON, Canada, 1983. [Google Scholar]
- Liang, S. Quantitative Remote Sensing of Land Surfaces; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Hoffer, R.M. Natural Resource Mapping in Mountainous Terrain by Computer Analysis of ERTS-1 Satellite Data; Purdue University Laboratory for Applications of Remote Sensing, LARS Research Bulletin 919; Purdue University: West Lafayette, Indiana, 1975; 124p. [Google Scholar]
- Riaño, D.; Chuvieco, E.; Salas, J.; Aguado, I. Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1056–1061. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, N.; Mohammadzadeh, A.; Sahebi, M.R. Assessment of different topographic correction methods in ALOS AVNIR-2 data over a forest area. Int. J. Digit. Earth 2013, 6, 504–520. [Google Scholar] [CrossRef]
- Li, H.; Xu, L.; Shen, H.; Zhang, L. A general variational framework considering cast shadows for the topographic correction of remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2016, 117, 161–171. [Google Scholar] [CrossRef]
- Holben, B.N.; Justice, C.O. The topographic effects on spectral response fromnadir-point sensors. Photogramm. Eng. Remote Sens. 1980, 46, 1191–1200. [Google Scholar]
- Franklin, S.E. Image transformations in mountainous terrain and the relationship to surface patterns. Comput. Geosci. 1991, 17, 1137–1149. [Google Scholar] [CrossRef]
- Zhang, Z.; Wulf, R.R.D.; Coillie, F.M.B.V.; Verbeke, L.P.C.; Clercq, E.M.D.; Ou, X. Influence of different topographic correction strategies on mountain vegetation classification accuracy in the Lancang Watershed, China. J. Appl. Remote Sens. 2011, 5, 1–21. [Google Scholar] [CrossRef]
- Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the Slope-Aspect Correction of Multispectral Scanner Data. Can. J. Remote Sens. 1982, 8, 84–106. [Google Scholar] [CrossRef] [Green Version]
- Meyer, P.; Itten, K.I.; Kellenberger, T.; Sandmeier, S.; Sandmeier, R. Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment. ISPRS J. Photogramm. Remote Sens. 1993, 48, 17–28. [Google Scholar] [CrossRef]
- Fan, W.; Li, J.; Liu, Q.; Zhang, Q.; Yin, G.; Li, A.; Zeng, Y.; Xu, B.; Xu, X.; Zhou, G.; et al. Topographic Correction of Forest Image Data Based on the Canopy Reflectance Model for Sloping Terrains in Multiple Forward Mode. Remote Sens. 2018, 10, 717. [Google Scholar] [CrossRef] [Green Version]
- McDonald, E.R.; Wu, X.; Caccetta, P.A.; Campbell, N.A. Illumination correction of Landsat TM data in South East NSW. In Proceedings of the Tenth Australasian Remote Sensing and Photogrammetry Conference, Adelaide, Australia, 21–25 August 2000. [Google Scholar]
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A.; Hall, R.J.; Hall, F.G. Improved topographic correction of forest image data using a 3-D canopy reflectance model in multiple forward mode. Int. J. Remote Sens. 2008, 29, 1007–1027. [Google Scholar] [CrossRef]
- Wu, J.; Bauer, M.E.; Wang, D.; Manson, S.M. A comparison of illumination geometry-based methods for topographic correction of QuickBird images of an undulant area. ISPRS J. Photogramm. Remote Sens. 2008, 63, 223–236. [Google Scholar] [CrossRef]
- Hantson, S.; Chuvieco, E. Evaluation of different topographic correction methods for Landsat imagery. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 691–700. [Google Scholar] [CrossRef]
- Pimple, U.; Sitthi, A.; Simonetti, D.; Pungkul, S.; Leadprathom, K.; Chidthaisong, A. Topographic Correction of Landsat TM-5 and Landsat OLI-8 Imagery to Improve the Performance of Forest Classification in the Mountainous Terrain of Northeast Thailand. Sustainability 2017, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Sola, I.; González-Audícana, M.; Álvarez-Mozos, J. Multi-criteria evaluation of topographic correction methods. Remote Sens. Environ. 2016, 184, 247–262. [Google Scholar] [CrossRef] [Green Version]
- Vincini, M.; Reeder, D.; Frazzi, E. An empirical topographic normalization method for forest TM data. IEEE Int. Geosci. Remote Sens. Symp. 2002, 4, 2091–2093. [Google Scholar]
- Justice, C.O.; Wharton, S.W.; Holben, B.N. Application of digital terrain data to quantify and reduce the topographic effect on Landsat data. Int. J. Remote Sens. 1981, 2, 213–230. [Google Scholar] [CrossRef] [Green Version]
- Civco, D.L. Topographic normalization of Landsat Thematic Mapper digital imagery. Photogramm. Eng. Remote Sens. 1989, 55, 1303–1309. [Google Scholar]
- Ekstrand, S. Landsat TM-based forest damage assessment: Correction for topographic effects. Photogramm. Eng. Remote Sens. 1996, 62, 151–161. [Google Scholar]
- Karathanassi, V.; Andronis, V.; Rokos, D. Evaluation of the topographic normalization methods for a Mediterranean forest area. Int. Achives Photogramm. Remote Sens. 2000, 33, 654–661. [Google Scholar]
- Ediriweera, S.; Pathirana, S.; Danaher, T.; Nichols, D.; Moffiet, T. Evaluation of Different Topographic Corrections for Landsat TM Data by Prediction of Foliage Projective Cover (FPC) in Topographically Complex Landscapes. Remote Sens. 2013, 5, 6767–6789. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.D.; Sharma, J.K.; Khanna, R. Review of topographic analysis methods for the western Himalaya using AWiFS and MODIS satellite imagery. Ann. Glaciol. 2010, 51, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Gu, D.; Gillespie, A. Topographic Normalization of Landsat TM Images of Forest Based on Subpixel Sun–Canopy–Sensor Geometry. Remote Sens. Environ. 1998, 64, 166–175. [Google Scholar] [CrossRef]
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A. SCS+C: A modified Sun-canopy-sensor topographic correction in forested terrain. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2148–2159. [Google Scholar] [CrossRef]
- Moreira, E.P.; Valeriano, M.M. Application and evaluation of topographic correction methods to improve land cover mapping using object-based classification. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 208–217. [Google Scholar] [CrossRef]
- Minnaert, J.L. The reciprocity principle in lunar photometry. Astrophys. J. 1941, 93, 403–410. [Google Scholar] [CrossRef]
- Colby, J.D.; Keating, P.L. Land cover classification using Landsat TM imagery in the tropical highlands: The influence of anisotropic reflectance. Int. J. Remote Sens. 1998, 19, 1479–1500. [Google Scholar] [CrossRef]
- Lu, D.; Ge, H.; He, S.; Xu, A.; Zhou, G.; Du, H. Pixel-based Minnaert Correction Method for Reducing Topographic Effects on a Landsat 7 ETM+ Image. Photogramm. Eng. Remote Sens. 2008, 74, 1343–1350. [Google Scholar] [CrossRef] [Green Version]
- Conese, C.; Gilabert, M.A.; Maselli, F.; Bottai, L. Topographic normalization of TM scenes through the use of an atmospheric correction method and digital terrain models. Photogramm. Eng. Remote Sens. 1993, 59, 1745–1753. [Google Scholar]
- Gitas, I.Z.; Devereux, B.J. The role of topographic correction in mapping recently burned Mediterranean forest areas from LANDSAT TM images. Int. J. Remote Sens. 2006, 27, 41–54. [Google Scholar] [CrossRef]
- Sola, I.; González-Audícana, M.; Álvarez-Mozos, J.; Torres, J.L. Synthetic images for evaluating topographic correction algorithms. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1799–1810. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error measurement to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Jung, H.; Choi, J.; Jeon, S. A quantitative method to evaluate the performance of topographic correction models used to improve land cover identification. Adv. Space Res. 2017, 60, 1488–1503. [Google Scholar] [CrossRef]
- Shroder, J.F., Jr.; Bishop, M.P. Unroofing of the Nanga Parbat Himalaya. In Tectonics of the Nanga Parbat Syntaxis and the Western Himalaya; The Geological Society of London: London, UK, 2000; pp. 163–179. [Google Scholar]
- Zeitler, P.K.; Koons, P.O.; Bishop, M.P.; Chamberlain, C.P.; Craw, D.; Edwards, M.A.; Hamidullah, S.; Jan, M.Q.; Khan, M.A.; Khattak, M.U.K.; et al. Crustal Reworking at Nanga Parbat, Pakistan: Metamorphic Consequences of Thermal-Mechanical Coupling Facilitated by Erosion. Tectonics 2001, 20, 712–728. [Google Scholar] [CrossRef]
- NASA/METI/AIST/Japan Spacesystems; U.S./Japan ASTER Science Team. ASTER GDEM, Version 2; Data Set; NASA: Washington, DC, USA, 2009. [CrossRef]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7; Technical Report; U.S. Geological Survey: Reston, VA, USA, 2017. [CrossRef]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- U.S. Naval Observatory; Nautical Alamanc Office. The Astronomical Almanac; U.S. Naval Observatory; Nautical Almanac Office: Washington, DC, USA, 2013. [Google Scholar]
- NOAA; U.S. Air Force. U.S. Standard Atmosphere; Technical Report; NOAA: Silver Spring, MA, USA, 1976.
- Leckner, B. The spectral distribution of solar radiation at the Earth’s surface—Elements of a model. Sol. Energy 1978, 20, 143–150. [Google Scholar] [CrossRef]
- Kasten, F. A new table and approximation formula for the relative optical air mass. Archiv für Meteorol. Geophys. Bioklimatol. Ser. B 1965, 14, 206–223. [Google Scholar] [CrossRef]
- Dozier, J. A clear-sky spectral solar radiation model for snow-covered mountainous terrain. Water Resour. Res. 1980, 16, 709–718. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Wessels, R.; Haeberli, W.; Huggle, C.; Kargel, J.S.; Jodha, S.; Khalsa, S. Rapid ASTER imaging facilitates timely assessment of glacier hazards and disasters. EOS 2003, 84, 117–124. [Google Scholar] [CrossRef]
- Gjermundsen, E.F.; Mathieu, R.; Kääb, A.; Chinn, T.; Fitzharris, B.; Hagen, J.O. Assessment of multispectral glacier mapping methods and derivation of glacier area changes, 1978–2002, in the central Southern Alps, New Zealand, from ASTER satellite data, field survey and existing inventory data. J. Glaciol. 2011, 57, 667–683. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.; Gupta, R.P.; Arora, M.K. Delineation of debris-covered glacier boundaries using optical and thermal remote sensing data. Remote Sens. Lett. 2010, 1, 11–17. [Google Scholar] [CrossRef]
- Yüksel, A.; Akay, A.E.; Gundogan, R. Using ASTER imagery in land use/cover classification of eastern Mediterranean landscapes according to CORINE land cover project. Sensors 2008, 8, 1237–1251. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Weng, Q. Estimating impervious surfaces from medium spatial resolution imagery: A comparison between fuzzy classification and LSMA. Int. J. Remote Sens. 2011, 32, 5645–5663. [Google Scholar] [CrossRef]
- Butler, R.W.H.; George, M.; Harris, N.B.W.; Jones, C.; Prior, D.J.; Treloar, P.J.; Wheeler, J. Geology of the northern part of the Nanga Parbat massif, northern Pakistan, and its implications for Himalayan tectonics. J. Geol. Soc. 1992, 149, 557–567. [Google Scholar] [CrossRef]
- Garzanti, E.; Vezzoli, G.; Andò, S.; Paparella, P.; Clift, P.D. Petrology of Indus River sands: A key to interpret erosion history of the Western Himalayan Syntaxis. Earth Planet. Sci. Lett. 2005, 229, 287–302. [Google Scholar] [CrossRef]
- Vance, D.; Bickle, M.; Ivy-Ochs, S.; Kubik, P.W. Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments. Earth Planet. Sci. Lett. 2003, 206, 273–288. [Google Scholar] [CrossRef]
- Sarmast, M.; Farpoor, M.H.; Boroujeni, I.E. Soil and desert varnish developments as indicators of landform evolution in central Iranian deserts. Catena 2017, 149, 98–109. [Google Scholar] [CrossRef]
- Potter, R.M.; Rossman, G.R. The manganese- and iron-oxide mineralogy of desert varnish. Chem. Geol. 1979, 25, 79–94. [Google Scholar] [CrossRef]
- Hapke, B. Bidirection reflectance spectroscopy. 1. Theory. J. Geophys. Res. 1981, 86, 3039–3054. [Google Scholar] [CrossRef]
- Wiscombe, W.J. Improved Mie scattering algorithms. Appl. Opt. 1980, 19, 1505–1509. [Google Scholar] [CrossRef] [PubMed]
- Thome, K.J.; Biggar, S.F.; Slater, P.N. Effects of assumed solar spectral irradiance on intercomparisons of earth-observing sensors. In Proceedings of SPIE; Fujisada, H., Lurie, J.B., Weber, K., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2001; Volume 4540, pp. 260–269. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E. Multitemporal evaluation of topographic normalization methods on deciduous forest TM data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2586–2590. [Google Scholar] [CrossRef]
- Perez, R.; Seals, R.; Ineichen, P.; Steward, R.; Menicucci, D. A new simplified version of the perez diffuse irradiance model for tilted surfaces. Sol. Energy 1987, 39, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Bishop, M.P.; Dobreva, I.D. Geomorphometry and Mountain Geodynamics: Issues of Scale and Complexity. In Integrating Scale in Remote Sensing and GIS; Quattrochi, D.A., Wentz, E., Lam, N.S.N., Emerson, C.W., Eds.; Taylor and Francis: Boca Raton, FL, USA, 2017; Chapter 7; pp. 189–228. [Google Scholar] [CrossRef]
- Singh, M.; Mishra, V.D.; Thakur, N.K. Expansion of empirical-statistical based topographic correction algorithm for reflectance modeling on Himalayan terrain using AWiFS and MODIS sensor. J. Indian Soc. Remote Sens. 2015, 43, 379–393. [Google Scholar] [CrossRef]
End-Member | Rocks and Sediment | Desert Varnish |
---|---|---|
Illite | 5–10% | 14–23% |
Hematite | 15–30% | 11–24% |
Calcite | 0–5% | 0% |
Hornblende | 10–25% | 0% |
Quartz | 51% of remainder | 18–29% |
Oligoclase | 25% of remainder | 0% |
Orthoclase | 24% of remainder | 0% |
Birnessite | 0% | remainder |
Band | Wmm | m] | Spectral Bandwidth m] |
---|---|---|---|
1 | 1848 | 0.532 | 0.484–0.644 |
2 | 1549 | 0.638 | 0.590–0.731 |
3 | 1114 | 0.760 | 0.720–0.908 |
5 | 225.4 | 1.658 | 2.120–2.284 |
Metric | L | ||||||
---|---|---|---|---|---|---|---|
ASTER Band 1 (Green) | |||||||
min | 0.6440 | 0.0000 | 29.5013 | 3.3221 | 0.7231 | 7.9265 | 15.7990 |
max | 0.6961 | 1267.8566 | 167.4728 | 400.6594 | 0.7640 | 20.3858 | 313.9171 |
0.6684 | 732.1280 | 130.6835 | 122.2610 | 0.7418 | 14.8229 | 105.3889 | |
0.0082 | 344.5620 | 18.1674 | 70.1319 | 0.0065 | 2.0040 | 51.8866 | |
ASTER Band 2 (Red) | |||||||
min | 0.7238 | 0.0000 | 19.8067 | 2.2747 | 0.7872 | 3.6063 | 8.2398 |
max | 0.7565 | 1145.0496 | 113.7054 | 351.3746 | 0.8124 | 8.7427 | 288.0417 |
0.7392 | 672.3432 | 88.3678 | 114.2206 | 0.7986 | 6.4451 | 97.5879 | |
0.0052 | 316.2554 | 12.4042 | 63.5359 | 0.0040 | 0.8287 | 50.7565 | |
ASTER Band 3 (Near-Infrared, Nadir-Looking) | |||||||
min | 0.7573 | 0.0000 | 10.7359 | 1.7075 | 0.8081 | 1.4800 | 4.3511 |
max | 0.7785 | 858.5727 | 62.4444 | 257.8122 | 0.8247 | 3.0548 | 214.2705 |
0.7671 | 507.8256 | 48.2940 | 98.6470 | 0.8153 | 2.3621 | 83.2604 | |
0.0033 | 238.8220 | 6.8563 | 46.0054 | 0.0026 | 0.2543 | 37.7731 | |
ASTER Band 5 (Shortwave Infrared) | |||||||
min | 0.9035 | 0.0000 | 0.8501 | 0.1057 | 0.9259 | 0.1739 | 0.2948 |
max | 0.9085 | 206.6123 | 5.0140 | 109.7754 | 0.9295 | 0.2169 | 102.1068 |
0.9058 | 123.6449 | 3.8577 | 25.3510 | 0.9274 | 0.1942 | 23.7404 | |
0.0008 | 58.1338 | 0.5542 | 13.7359 | 0.0006 | 0.0086 | 12.7587 |
Method | Band | RMSE | ssi | RMSE | ssi | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No Atmospheric Correction | Atmospheric Correction | ||||||||||||||
SEC | 1 | 121.4288 | 419.5435 | 211.0166 | 51.8859 | 0.9166 | 0.0492 | 0.0119 | 125.3453 | 522.8466 | 244.2519 | 70.1432 | 1.0069 | 0.0778 | 0.0155 |
2 | 106.0620 | 385.8600 | 195.4078 | 50.7557 | 1.1405 | 0.0374 | 0.0065 | 116.4851 | 465.6465 | 228.3897 | 63.5503 | 1.3131 | 0.0457 | 0.0059 | |
3 | 87.6831 | 297.6006 | 166.5930 | 37.7716 | 1.6603 | 0.0125 | 0.0008 | 100.9714 | 358.5722 | 198.5007 | 46.2872 | 1.9868 | 0.0134 | 0.0006 | |
5 | 24.2230 | 126.0190 | 47.6594 | 12.7547 | 5.7374 | 0.0001 | 0.0000 | 25.6837 | 135.3490 | 50.9608 | 13.7520 | 6.1018 | 0.0001 | 0.0000 | |
BLC | 1 | 15.4761 | 249.9005 | 109.7295 | 43.1162 | 0.2329 | 0.3141 | 0.2799 | 3.5475 | 317.3839 | 125.2436 | 60.6536 | 0.1461 | 0.7170 | 0.6662 |
2 | 7.8863 | 227.9336 | 100.4218 | 42.0368 | 0.1874 | 0.4185 | 0.3865 | 2.8053 | 276.5488 | 116.5728 | 53.7447 | 0.1517 | 0.6774 | 0.6243 | |
3 | 3.7387 | 167.2680 | 85.0010 | 28.3033 | 0.1732 | 0.2439 | 0.1914 | 1.6250 | 201.4939 | 100.9668 | 35.2306 | 0.1698 | 0.3765 | 0.2975 | |
5 | 0.3527 | 78.6198 | 23.9415 | 10.3031 | 0.1911 | 0.4517 | 0.4141 | 0.0546 | 84.5305 | 25.5800 | 11.1444 | 0.1739 | 0.5777 | 0.5325 | |
BNC | 1 | 17.6215 | 284.3933 | 107.5298 | 47.2864 | 0.1522 | 0.4693 | 0.4624 | 3.7155 | 372.1765 | 123.1868 | 66.4462 | 0.0454 | 0.9547 | 0.9497 |
2 | 9.1067 | 264.8636 | 98.8073 | 46.9938 | 0.1082 | 0.6558 | 0.6522 | 2.5919 | 327.1211 | 114.9786 | 59.9968 | 0.0450 | 0.9502 | 0.9456 | |
3 | 4.3305 | 197.0356 | 84.0492 | 33.9627 | 0.0994 | 0.5129 | 0.4953 | 1.6954 | 240.3360 | 99.9268 | 42.2900 | 0.0534 | 0.8257 | 0.8132 | |
5 | 0.3356 | 97.1306 | 23.8060 | 12.1413 | 0.0730 | 0.8254 | 0.8248 | 0.1166 | 104.8507 | 25.4470 | 13.1514 | 0.0358 | 0.9651 | 0.9639 | |
VECA | 1 | 6910.8232 | 13,5382.1875 | 45,645.3504 | 22,377.8885 | 191.5456 | 0.6596 | 0.0000 | 1267.0876 | 163,968.6562 | 50,052.4672 | 28,726.4287 | 196.1364 | 1.0000 | 0.0000 |
2 | 3432.5625 | 11,8064.6562 | 40,186.5106 | 20,809.4872 | 184.0312 | 0.8269 | 0.0000 | 948.3248 | 152,607.8594 | 49,711.2010 | 27,618.7049 | 218.1850 | 0.9999 | 0.0000 | |
3 | 4499.1143 | 21,6434.1719 | 85,997.7968 | 37,947.9996 | 510.2392 | 0.7324 | 0.0000 | 1766.3146 | 26,8510.7812 | 104,329.7950 | 47,799.2669 | 599.3130 | 0.9922 | 0.0000 | |
5 | 36.6951 | 11,724.8564 | 2789.3086 | 1464.8304 | 72.3405 | 0.8896 | 0.0000 | 13.5308 | 13,345.3564 | 3151.5529 | 1672.4001 | 79.8865 | 0.9930 | 0.0000 | |
COSC | 1 | 15.0438 | 2941.4138 | 162.6748 | 234.3781 | 7.1156 | 0.0152 | 0.0002 | 3.3901 | 2654.2244 | 166.9583 | 174.2551 | 5.0594 | 0.0339 | 0.0009 |
2 | 7.6556 | 1829.7859 | 136.2113 | 140.2343 | 6.2686 | 0.0174 | 0.0003 | 2.6761 | 1796.4314 | 149.3772 | 120.8023 | 5.1768 | 0.0291 | 0.0007 | |
3 | 3.6169 | 947.5345 | 107.5871 | 68.1463 | 5.8571 | 0.0119 | 0.0002 | 1.5613 | 984.4984 | 124.3286 | 63.5167 | 5.3933 | 0.0166 | 0.0002 | |
5 | 0.3183 | 148.2510 | 27.8217 | 9.7837 | 6.6391 | 0.0030 | 0.0001 | 0.1754 | 144.0357 | 29.4369 | 10.2294 | 5.4759 | 0.0065 | 0.0002 | |
No Atmospheric Correction | Atmospheric Correction | ||||||||||||||
CCOR | 1 | 15.9660 | 312.7744 | 105.4528 | 51.6993 | 0.1070 | 0.6596 | 0.6537 | 3.0886 | 399.6947 | 122.0080 | 70.0239 | 0.0013 | 1.0000 | 1.0000 |
2 | 8.3396 | 286.8495 | 97.6356 | 50.5584 | 0.0843 | 0.8270 | 0.8115 | 2.1766 | 350.2657 | 114.0964 | 63.3904 | 0.0018 | 0.9999 | 0.9999 | |
3 | 4.3634 | 209.9650 | 83.4242 | 36.8142 | 0.0883 | 0.7326 | 0.7187 | 1.6812 | 255.6206 | 99.3188 | 45.5049 | 0.0097 | 0.9922 | 0.9920 | |
5 | 0.3127 | 99.9152 | 23.7681 | 12.4823 | 0.0591 | 0.8896 | 0.8885 | 0.1091 | 107.6200 | 25.4134 | 13.4861 | 0.0156 | 0.9930 | 0.9928 | |
SCS | 1 | 7.2744 | 1968.7629 | 128.1732 | 137.7535 | 4.1202 | 0.0179 | 0.0007 | 1.6482 | 1784.8512 | 134.9606 | 107.4268 | 2.9371 | 0.0417 | 0.0030 |
2 | 3.5878 | 1226.2263 | 109.6218 | 84.0441 | 3.6292 | 0.0208 | 0.0011 | 1.2167 | 1206.5087 | 121.9616 | 76.5587 | 3.0044 | 0.0358 | 0.0024 | |
3 | 1.8233 | 634.2099 | 88.1997 | 41.0922 | 3.3939 | 0.0137 | 0.0005 | 0.9842 | 659.8121 | 102.6753 | 40.5396 | 3.1340 | 0.0193 | 0.0008 | |
5 | 0.1532 | 99.0919 | 23.3436 | 8.4348 | 3.8411 | 0.0046 | 0.0003 | 0.0896 | 96.4141 | 24.7673 | 9.1094 | 3.1756 | 0.0096 | 0.0007 | |
SCS+C | 1 | 15.9117 | 312.1077 | 105.2834 | 51.6205 | 0.1069 | 0.6610 | 0.6547 | 3.0768 | 399.1813 | 121.8911 | 69.9566 | 0.0011 | 1.0000 | 1.0000 |
2 | 8.2875 | 286.0567 | 97.4600 | 50.4690 | 0.0846 | 0.8283 | 0.8122 | 2.1653 | 349.5909 | 113.9490 | 63.3078 | 0.0015 | 0.9999 | 0.9999 | |
3 | 4.2623 | 207.1155 | 82.6973 | 36.5041 | 0.0914 | 0.7437 | 0.7272 | 1.6540 | 253.1986 | 98.7162 | 45.2310 | 0.0081 | 0.9929 | 0.9929 | |
5 | 0.2975 | 98.5728 | 23.5423 | 12.3672 | 0.0598 | 0.8967 | 0.8945 | 0.1043 | 106.2768 | 25.1924 | 13.3716 | 0.0132 | 0.9937 | 0.9937 | |
GMC | 1 | 4.1864 | 280.1595 | 89.4138 | 46.3242 | 0.1422 | 0.7086 | 0.6230 | 1.0210 | 356.8810 | 103.6839 | 61.6958 | 0.0988 | 0.8570 | 0.8223 |
2 | 2.4318 | 256.3222 | 82.9185 | 44.9469 | 0.1456 | 0.8006 | 0.6971 | 0.7351 | 311.4137 | 97.0110 | 55.9102 | 0.1026 | 0.8360 | 0.8036 | |
3 | 1.2549 | 189.2264 | 70.8722 | 33.6154 | 0.1693 | 0.6016 | 0.5317 | 0.7256 | 228.7896 | 84.4852 | 41.0439 | 0.1129 | 0.5871 | 0.5686 | |
5 | 0.0737 | 90.1524 | 20.2470 | 11.2294 | 0.1444 | 0.8166 | 0.7675 | 0.0258 | 96.8096 | 21.6563 | 12.0971 | 0.1240 | 0.8076 | 0.7815 | |
PMC | 1 | 13.9944 | 377.0860 | 141.4583 | 49.2648 | 0.8309 | 0.0894 | 0.0284 | 3.7449 | 1671.5723 | 186.4410 | 81.8467 | 1.4444 | 0.1198 | 0.0163 |
2 | 7.8235 | 681.3319 | 144.2308 | 51.4382 | 1.3933 | 0.0640 | 0.0099 | 3.0041 | 1955.2770 | 182.9376 | 76.4928 | 2.1539 | 0.0744 | 0.0053 | |
3 | 4.4720 | 848.9163 | 134.6564 | 36.3948 | 2.4773 | 0.0218 | 0.0009 | 1.8724 | 1847.4973 | 167.8268 | 52.2413 | 3.4374 | 0.0255 | 0.0005 | |
5 | 0.4382 | 504.4774 | 47.1432 | 22.9189 | 12.6902 | 0.0033 | 0.0000 | 0.2458 | 838.8116 | 52.9906 | 29.7166 | 17.2102 | 0.0045 | 0.0000 |
Method | Band | Min | Max | ||
---|---|---|---|---|---|
SEC | 1 | 0.0000 | 0.9264 | 0.2977 | 0.2856 |
2 | 0.0000 | 0.9173 | 0.2894 | 0.2854 | |
3 | 0.0000 | 0.8858 | 0.2160 | 0.2662 | |
5 | 0.0000 | 0.8521 | 0.2167 | 0.2667 | |
BLC | 1 | 0.0000 | 0.9997 | 0.6382 | 0.2745 |
2 | 0.0000 | 0.9997 | 0.6168 | 0.2807 | |
3 | 0.0000 | 0.9988 | 0.4007 | 0.2844 | |
5 | 0.0000 | 0.9999 | 0.4838 | 0.3343 | |
BNC | 1 | 0.0000 | 1.0000 | 0.8924 | 0.2027 |
2 | 0.0000 | 1.0000 | 0.8967 | 0.1803 | |
3 | 0.0000 | 0.9999 | 0.7842 | 0.2231 | |
5 | 0.0000 | 1.0000 | 0.8522 | 0.2396 | |
VECA | 1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
5 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | |
COSC | 1 | 0.0000 | 0.9996 | 0.3829 | 0.3571 |
2 | 0.0000 | 0.9996 | 0.3681 | 0.3534 | |
3 | 0.0000 | 0.9971 | 0.2347 | 0.2969 | |
5 | 0.0000 | 0.9996 | 0.2803 | 0.3384 | |
CCOR | 1 | 0.0000 | 1.0000 | 0.9987 | 0.0131 |
2 | 0.0000 | 1.0000 | 0.9969 | 0.0501 | |
3 | 0.0000 | 1.0000 | 0.9856 | 0.0274 | |
5 | 0.0000 | 1.0000 | 0.9409 | 0.1408 | |
SCS | 1 | 0.0000 | 0.9996 | 0.3672 | 0.3163 |
2 | 0.0000 | 0.9997 | 0.3501 | 0.3130 | |
3 | 0.0000 | 0.9965 | 0.1969 | 0.2428 | |
5 | 0.0000 | 0.9997 | 0.2536 | 0.2989 | |
SCS+C | 1 | 0.0001 | 1.0000 | 0.9989 | 0.0122 |
2 | 0.0000 | 1.0000 | 0.9970 | 0.0500 | |
3 | 0.0000 | 1.0000 | 0.9878 | 0.0248 | |
5 | 0.0000 | 1.0000 | 0.9468 | 0.1303 | |
GMC | 1 | 0.0000 | 1.0000 | 0.7425 | 0.2576 |
2 | 0.0000 | 1.0000 | 0.7264 | 0.2636 | |
3 | 0.0000 | 1.0000 | 0.5297 | 0.2947 | |
5 | 0.0000 | 1.0000 | 0.5783 | 0.3327 | |
PMC | 1 | 0.0000 | 0.9999 | 0.3593 | 0.3609 |
2 | 0.0000 | 0.9999 | 0.3240 | 0.3539 | |
3 | 0.0000 | 0.9997 | 0.1925 | 0.2802 | |
5 | 0.0000 | 0.9977 | 0.1734 | 0.2821 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bishop, M.P.; Young, B.W.; Colby, J.D.; Furfaro, R.; Schiassi, E.; Chi, Z. Theoretical Evaluation of Anisotropic Reflectance Correction Approaches for Addressing Multi-Scale Topographic Effects on the Radiation-Transfer Cascade in Mountain Environments. Remote Sens. 2019, 11, 2728. https://doi.org/10.3390/rs11232728
Bishop MP, Young BW, Colby JD, Furfaro R, Schiassi E, Chi Z. Theoretical Evaluation of Anisotropic Reflectance Correction Approaches for Addressing Multi-Scale Topographic Effects on the Radiation-Transfer Cascade in Mountain Environments. Remote Sensing. 2019; 11(23):2728. https://doi.org/10.3390/rs11232728
Chicago/Turabian StyleBishop, Michael P., Brennan W. Young, Jeffrey D. Colby, Roberto Furfaro, Enrico Schiassi, and Zhaohui Chi. 2019. "Theoretical Evaluation of Anisotropic Reflectance Correction Approaches for Addressing Multi-Scale Topographic Effects on the Radiation-Transfer Cascade in Mountain Environments" Remote Sensing 11, no. 23: 2728. https://doi.org/10.3390/rs11232728
APA StyleBishop, M. P., Young, B. W., Colby, J. D., Furfaro, R., Schiassi, E., & Chi, Z. (2019). Theoretical Evaluation of Anisotropic Reflectance Correction Approaches for Addressing Multi-Scale Topographic Effects on the Radiation-Transfer Cascade in Mountain Environments. Remote Sensing, 11(23), 2728. https://doi.org/10.3390/rs11232728