A Review of the Application of Remote Sensing Data for Abandoned Agricultural Land Identification with Focus on Central and Eastern Europe
Abstract
:1. Introduction
2. Background of Literature Database Processing
3. Results
3.1. Location of Analyzed Studies
3.2. Survey of Specified AAL Classes and Their Definition and Abandonment Process
- Land covered by successional vegetation at the time when satellite data were recorded [70];
- Areas with proven phenology changes by the moderate resolution imaging spectroradiometer (MODIS) imagery [69];
- Arable land or managed grassland converted to permanently unmanaged grasslands [55];
- Arable land barren for two or more years to be abandoned, while arable land barren for less than one year (including) was defined as fallow [71];
- Short-term-fallow land [76];
- Arable land and pastures covered by early successional shrubs and trees [46];
- Croplands and managed grasslands in use during the late 1980s, but converted to fallow land later (shrublands or young forests) [39];
- Degraded land [73];
- Unmanaged grasslands [77].
- Disappeared vineyards (densely overgrown by shrubs and trees, and linear structures of grapevines are not recognizable any more) and abandoned vineyards (partially identifiable linear structures of grapevines) [32];
- Fallow agricultural land (crops or managed grasslands replaced by unmanaged grasslands or shrublands) and afforested areas (crops and managed grassland that had a closed forest canopy) [10];
- Arable land potentially abandoned, meadows and pastures potentially abandoned, mixed LU potentially abandoned, and permanent crops potentially abandoned [29];
- AAL abandoned managed grasslands, non-managed grasslands, and shrubs [75].
3.3. Satellite Data and Various Parts of the Electromagnetic Spectrum Used for AAL Identification
3.4. Methods for Identification of AAL Classes
4. Discussion
- Enrichment of information potential of optical and radar data fusion by the data obtained from a detailed field survey;
- The exact identification of AAL areas containing relevant characteristics about the nature of the overgrowing vegetation may contribute to the simulation of biomass volume in such areas;
- Determination of suitable phenological season for AAL identification;
- Biomass estimation;
- Identification of driving forces causing the process of abandonment;
- Determination of AAL classification rules;
- Analysis of specific spectral, textural, and biophysical characteristics of AAL;
- Verification of the exploitation of new Sentinel-1 (C-band) and ALOS-2 (L-band) radar sensors in various combinations of polarizations and combination with optical Sentinel-2 data in the AAL classification;
- Verification of the chances to improve the resolution or pixel size working with the single look complex (SLC) data.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ustaoglu, E.; Collier, M.J. Farmland abandonment in Europe: An overview of drivers, consequences, and assessment of the sustainability implications. Environ. Rev. 2018, 26, 396–416. [Google Scholar] [CrossRef]
- Rey Benayas, J.; Martins, A.; Nicolau, J.M.; Schulz, J.J. Abandonment of agricultural land: An overview of drivers and consequences. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2. [Google Scholar] [CrossRef]
- Suziedelyte Visockiene, J.; Tumeliene, E.; Maliene, V. Analysis and identification of abandoned agricultural land using remote sensing methodology. Land Use Policy 2019, 82, 709–715. [Google Scholar] [CrossRef]
- Baumann, M.; Kuemmerle, T.; Elbakidze, M.; Ozdogan, M.; Radeloff, V.C.; Keuler, N.S.; Prishchepov, A.V.; Kruhlov, I.; Hostert, P. Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy 2011, 28, 552–562. [Google Scholar] [CrossRef]
- Müller, D.; Kuemmerle, T.; Rusu, M.; Griffiths, P. Lost in transition: Determinants of post-socialist cropland abandonment in Romania. J. Land Use Sci. 2009, 4, 109–129. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Müller, D.; Griffiths, P.; Rusu, M. Land use change in Southern Romania after the collapse of socialism. Reg. Environ. Chang. 2009, 9, 1–12. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Schierhorn, F.; Prishchepov, A.V.; Müller, D.; Kuemmerle, T. Drivers, constraints and trade-offs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan. Glob. Environ. Chang. 2016, 37, 1–15. [Google Scholar] [CrossRef]
- Ioffe, G.; Nefedova, T.; Zaslavsky, I. From spatial continuity to fragmentation: The case of Russian farming. Ann. Assoc. Am. Geogr. 2004, 94, 913–943. [Google Scholar] [CrossRef]
- Renwick, A.; Jansson, T.; Verburg, P.H.; Revoredo-Giha, C.; Britz, W.; Gocht, A.; McCracken, D. Policy reform and agricultural land abandonment in the EU. Land Use Policy 2013, 30, 446–457. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Hostert, P.; Radeloff, V.C.; Linden, S.; Perzanowski, K.; Kruhlov, I. Cross-border Comparison of Post-socialist Farmland Abandonment in the Carpathians. Ecosystems 2008, 11, 614–628. [Google Scholar] [CrossRef]
- Estel, S.; Kuemmerle, T.; Alcántara, C.; Levers, C.; Prishchepov, A.V.; Hostert, P. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 2015, 163, 312–325. [Google Scholar] [CrossRef]
- Lasanta, T.; Arnáez, J.; Pascual, N.; Ruiz-Flaño, P.; Errea, M.P.; Lana-Renault, N. Space–time process and drivers of land abandonment in Europe. CATENA 2017, 149, 810–823. [Google Scholar] [CrossRef]
- Pointereau, P.; Coulon, F.; Girard, P.; Lambotte, M.; Stuczynski, T.; Sanchez Ortega, V.; Del Rio, A. Analysis of Farmland Abandonment and the Extent and Location of Agricultural Areas that are Actually Abandoned or are in Risk to be Abandoned. In JCR Scientific and Technical Reports; European Commission Joint Research Centre, Institute for Environment and Sustainability Press: Luxembourg, 2008. [Google Scholar]
- FAO. FAOSTAT, Methods & Standards. Available online: http://www.fao.org/ag/agn/nutrition/Indicatorsfiles/Agriculture.pdf (accessed on 17 November 2019).
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Digital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Feranec, J.; Hazeu, G.; Soukup, T. Interpretation of Satellite Images. In European Landscape Dynamics; Feranec, J., Soukup, T., Hazeu, G., Jaffrain, G., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 33–40. [Google Scholar]
- Feranec, J.; Szatmári, D.; Rusnák, M.; Pazúr, R.; Kopecká, M.; Oťaheľ, J.; Goga, T. Theoretical Base of Mapping an Abandoned Agricultural Land (Deliverable TN2). Available online: http://atbiomap.nlcsk.org/files/Deliverable_TN2-SK2-04 4000123812_ATBIOMAP.pdf (accessed on 17 November 2019).
- Feranec, J.; Kopecká, M.; Štych, P.; Bičík, I.; Soukup, T.; Jindrová, M.; Jupová, K. Changes of agricultural landscape in Central and Eastern Europe in 1990–2012. In Land Use/Cover Changes in Selected Regions in the World; Himiyama, Y., Bičík, I., Eds.; International Geographical Union Commission on Land Use/Land Cover Change: Asahikava, Japan, 2017; pp. 3–11. ISBN 978-4-907651-13-8. [Google Scholar]
- Taff, G.N.; Müller, D.; Kuemmerle, T.; Ozdeneral, E.; Walsh, S.J. Reforestation in Central and Eastern Europe After the Breakdown of Socialism. In Reforesting Landscapes; Nagendra, H., Southworth, J., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 121–147. ISBN 978-1-4020-9656-3. [Google Scholar]
- Angelstam, P.; Boresjö-Bronge, L.; Mikusiński, G.; Sporrong, U.; Wästfelt, A. Assessing Village Authenticity with Satellite Images: A Method to Identify Intact Cultural Landscapes in Europe. AMBIO A J. Hum. Environ. 2003, 32, 594–604. [Google Scholar] [CrossRef]
- Kozak, J.; Estreguil, C.; Troll, M. Forest cover changes in the northern Carpathians in the 20th century: A slow transition. J. Land Use Sci. 2007, 2, 127–146. [Google Scholar] [CrossRef]
- Bičík, I.; Jeleček, L.; Kabrda, J.; Kupková, L.; Lipský, Z.; Mareš, P.; Šefrna, L.; Štych, P.; Winklerová, J. Vývoj Využití Ploch v Česku; Edice Geographica: Praha, Czech Republic, 2012; ISBN 978-80-904521-3-8. [Google Scholar]
- Gabrovec, M.; Kladnik, D. Some new aspects of land use in Slovenia. Geogr. Slov. 1997, 37, 7–64. [Google Scholar]
- Pazúr, R.; Lieskovský, J.; Feranec, J.; Oťaheľ, J. Spatial determinants of abandonment of large-scale arable lands and managed grasslands in Slovakia during the periods of post-socialist transition and European Union accession. Appl. Geogr. 2014, 54, 118–128. [Google Scholar] [CrossRef]
- Levers, C.; Schneider, M.; Prishchepov, A.V.; Estel, S.; Kuemmerle, T. Spatial variation in determinants of agricultural land abandonment in Europe. Sci. Total Environ. 2018, 644, 95–111. [Google Scholar] [CrossRef]
- Li, W.; Wang, S.; Zhou, Y.; Xu, Q.; Wang, F.; Han, Y. Remote sensing methods for surveying and extracting abandoned farmlands. In Proceedings of the 2012 5th International Congress on Image and Signal Processing, Chongqing, China, 16–18 October 2012; pp. 1086–1090. [Google Scholar]
- Regulation (EU) 2018/841 of the European Parliament and of the Council of 30 May 2018 on the Inclusion of Greenhouse Gas Emissions and Removals from Land Use, Land Use Change and Forestry in the 2030 Climate and Energy Framework, and Amending Regulation. Available online: http://data.europa.eu/eli/reg/2018/841/oj (accessed on 17 November 2019).
- Wang, C.; Gao, Q.; Wang, X.; Yu, M. Spatially differentiated trends in urbanization, agricultural land abandonment and reclamation, and woodland recovery in Northern China. Sci. Rep. 2016, 6, 37658. [Google Scholar] [CrossRef]
- Milenov, P.; Vassilev, V.; Vassileva, A.; Radkov, R.; Samoungi, V.; Dimitrov, Z.; Vichev, N. Monitoring of the risk of farmland abandonment as an efficient tool to assess the environmental and socio-economic impact of the Common Agriculture Policy. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 218–227. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, C. Historical cropland expansion and abandonment in the continental U.S. during 1850 to 2016. Glob. Ecol. Biogeogr. 2018, 27, 322–333. [Google Scholar] [CrossRef]
- Schweers, W.; Bai, Z.; Campbell, E.; Hennenberg, K.; Fritsche, U.; Mang, H.-P.; Lucas, M.; Li, Z.; Scanlon, A.; Chen, H.; et al. Identification of potential areas for biomass production in China: Discussion of a recent approach and future challenges. Biomass Bioenergy 2011, 35, 2268–2279. [Google Scholar] [CrossRef]
- Karlík, L.; Gábor, M.; Falťan, V.; Lauko, V. Monitoring využívania vinohradníckych plôch: Prípadová štúdia Modra (Slovensko). Geogr. Cassoviensis 2017, 11, 22–32. [Google Scholar]
- Ioffe, G.; Nefedova, T.; Kirsten, D.B. Land Abandonment in Russia. Eurasian Geogr. Econ. 2012, 53, 527–549. [Google Scholar] [CrossRef]
- Löw, F.; Fliemann, E.; Abdullaev, I.; Conrad, C.; Lamers, J.P.A. Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing. Appl. Geogr. 2015, 62, 377–390. [Google Scholar] [CrossRef]
- Cvitanović, M.; Lučev, I.; Fürst-Bjeliš, B.; Borčić, L.S.; Horvat, S.; Valožić, L. Analyzing post-socialist grassland conversion in a traditional agricultural landscape—Case study Croatia. J. Rural Stud. 2017, 51, 53–63. [Google Scholar] [CrossRef]
- Hellesen, T.; Matikainen, L. An Object-Based Approach for Mapping Shrub and Tree Cover on Grassland Habitats by Use of LiDAR and CIR Orthoimages. Remote Sens. 2013, 5, 558–583. [Google Scholar] [CrossRef]
- Estel, S.; Kuemmerle, T.; Levers, C.; Baumann, M.; Hostert, P. Mapping cropland-use intensity across Europe using MODIS NDVI time series. Environ. Res. Lett. 2016, 11, 024015. [Google Scholar] [CrossRef]
- Campbell, J.E.; Lobell, D.B.; Genova, R.C.; Field, C.B. The Global Potential of Bioenergy on Abandoned Agriculture Lands. Environ. Sci. Technol. 2008, 42, 5791–5794. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Olofsson, P.; Chaskovskyy, O.; Baumann, M.; Ostapowicz, K.; Woodcock, C.E.; Houghton, R.A.; Hostert, P.; Keeton, W.S.; Radeloff, V.C. Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine. Glob. Chang. Biol. 2011, 17, 1335–1349. [Google Scholar] [CrossRef]
- Zomeni, M.; Tzanopoulos, J.; Pantis, J.D. Historical analysis of landscape change using remote sensing techniques: An explanatory tool for agricultural transformation in Greek rural areas. Landsc. Urban Plan. 2008, 86, 38–46. [Google Scholar] [CrossRef]
- Löw, F.; Prishchepov, A.V.; Waldner, F.; Dubovyk, O.; Akramkhanov, A.; Biradar, C.; Lamers, J. Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series. Remote Sens. 2018, 10, 159. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Radeloff, V.C.; Perzanowski, K.; Hostert, P. Cross-border comparison of land cover and landscape pattern in Eastern Europe using a hybrid classification technique. Remote Sens. Environ. 2006, 103, 449–464. [Google Scholar] [CrossRef]
- Terekhin, E.A. Recognition of abandoned agricultural lands using seasonal NDVI values. Comput. Opt. 2017, 41, 719–725. [Google Scholar] [CrossRef] [Green Version]
- Yusoff, N.M.; Muharam, F.M.; Khairunniza-Bejo, S. Towards the use of remote-sensing data for monitoring of abandoned oil palm lands in Malaysia: A semi-automatic approach. Int. J. Remote Sens. 2017, 38, 432–449. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Radeloff, V.C.; Baumann, M.; Kuemmerle, T.; Müller, D. Effects of institutional changes on land use: Agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe. Environ. Res. Lett. 2012, 7, 024021. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Müller, D.; Dubinin, M.; Baumann, M.; Radeloff, V.C. Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 2013, 30, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.; Munroe, D.K. Changing Rural Landscapes in Albania: Cropland Abandonment and Forest Clearing in the Postsocialist Transition. Ann. Assoc. Am. Geogr. 2008, 98, 855–876. [Google Scholar] [CrossRef]
- Peterson, U.; Aunap, R. Changes in agricultural land use in Estonia in the 1990s detected with multitemporal Landsat MSS imagery. Landsc. Urban Plan. 1998, 41, 193–201. [Google Scholar] [CrossRef]
- Stefanski, J.; Chaskovskyy, O.; Waske, B. Mapping and monitoring of land use changes in post-Soviet western Ukraine using remote sensing data. Appl. Geogr. 2014, 55, 155–164. [Google Scholar] [CrossRef]
- Szostak, M.; Hawryło, P.; Piela, D. Using of Sentinel-2 images for automation of the forest succession detection. Eur. J. Remote Sens. 2018, 51, 142–149. [Google Scholar] [CrossRef]
- Liu, N.; Harper, R.; Handcock, R.; Evans, B.; Sochacki, S.; Dell, B.; Walden, L.; Liu, S. Seasonal Timing for Estimating Carbon Mitigation in Revegetation of Abandoned Agricultural Land with High Spatial Resolution Remote Sensing. Remote Sens. 2017, 9, 545. [Google Scholar] [CrossRef] [Green Version]
- Kanianska, R.; Kizeková, M.; Nováček, J.; Zeman, M. Land-use and land-cover changes in rural areas during different political systems: A case study of Slovakia from 1782 to 2006. Land Use Policy 2014, 36, 554–566. [Google Scholar] [CrossRef]
- Goodin, D.G.; Anibas, K.L.; Bezymennyi, M. Mapping land cover and land use from object-based classification: An example from a complex agricultural landscape. Int. J. Remote Sens. 2015, 36, 4702–4723. [Google Scholar] [CrossRef]
- Wang, S.X.; Li, W.J.; Zhou, Y.; Wang, F.T.; Xu, Q.L. Object-oriented Classification Technique for Extracting Abandoned Farmlands by Using Remote Sensing Images. In Proceedings of the 3rd International Conference on Multimedia Technology, Guangzhou, China, 29 November–1 December 2013; pp. 1497–1504. [Google Scholar]
- Alix-Garcia, J.; Kuemmerle, T.; Radeloff, V.C. Prices, Land Tenure Institutions, and Geography: A Matching Analysis of Farmland Abandonment in Post-Socialist Eastern Europe. Land Econ. 2012, 88, 425–443. [Google Scholar] [CrossRef]
- Yusoff, N.M.; Muharam, F.M.; Takeuchi, W.; Darmawan, S.; Abd Razak, M.H. Phenology and classification of abandoned agricultural land based on ALOS-1 and 2 PALSAR multi-temporal measurements. Int. J. Digit. Earth 2017, 10, 155–174. [Google Scholar] [CrossRef]
- Witmer, F.D.W. Detecting war-induced abandoned agricultural land in northeast Bosnia using multispectral, multitemporal Landsat TM imagery. Int. J. Remote Sens. 2008, 29, 3805–3831. [Google Scholar] [CrossRef]
- Baxter, R.E.; Calvert, K.E. Estimating Available Abandoned Cropland in the United States: Possibilities for Energy Crop Production. Ann. Am. Assoc. Geogr. 2017, 107, 1162–1178. [Google Scholar] [CrossRef]
- Müller, D.; Leitão, P.J.; Sikor, T. Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees. Agric. Syst. 2013, 117, 66–77. [Google Scholar] [CrossRef]
- Campbell, J.E.; Lobell, D.B.; Genova, R.C.; Zumkehr, A.; Field, C.B. Seasonal energy storage using bioenergy production from abandoned croplands. Environ. Res. Lett. 2013, 8, 035012. [Google Scholar] [CrossRef]
- Wang, H.; Qiu, F.; Ruan, X. Loss or gain: A spatial regression analysis of switching land conversions between agriculture and natural land. Agric. Ecosyst. Environ. 2016, 221, 222–234. [Google Scholar] [CrossRef]
- Sedlar, Z.; Alegro, A.; Radović, A.; Brigić, A.; Hršak, V. Extreme land-cover and biodiversity change as an outcome of land abandonment on a Mediterranean island (eastern Adriatic). Plant Biosyst. 2018, 152, 728–737. [Google Scholar] [CrossRef]
- Kolecka, N.; Kozak, J.; Kaim, D.; Dobosz, M.; Ginzler, C.; Psomas, A. Mapping Secondary Forest Succession on Abandoned Agricultural Land in the Polish Carpathians. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 931–935. [Google Scholar] [CrossRef]
- Yin, H.; Prishchepov, A.V.; Kuemmerle, T.; Bleyhl, B.; Buchner, J.; Radeloff, V.C. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 2018, 210, 12–24. [Google Scholar] [CrossRef]
- Griffiths, P.; Müller, D.; Kuemmerle, T.; Hostert, P. Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environ. Res. Lett. 2013, 8, 045024. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Salmon, J.M. Mapping the world’s degraded lands. Appl. Geogr. 2015, 57, 12–21. [Google Scholar] [CrossRef]
- Castillo, J.A.A.; Apan, A.A.; Maraseni, T.N.; Salmo, S.G. Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS J. Photogramm. Remote Sens. 2017, 134, 70–85. [Google Scholar] [CrossRef]
- Ray, T.W.; Farr, T.G.; van Zyl, J.J. Detection of land degradation with polarimetric SAR. Geophys. Res. Lett. 1992, 19, 1587–1590. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Prishchepov, A.V.; Radeloff, V.C. Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sens. Environ. 2012, 124, 334–347. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Baumann, M.; Bragina, E.V.; Griffiths, P.; Hostert, P.; Knorn, J.; Müller, D.; Prishchepov, A.V.; Schierhorn, F.; et al. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environ. Res. Lett. 2013, 8, 035035. [Google Scholar] [CrossRef]
- Xiao, G.; Zhu, X.; Hou, C.; Xia, X. Extraction and analysis of abandoned farmland: A case study of Qingyun and Wudi counties in Shandong Province. J. Geogr. Sci. 2019, 29, 581–597. [Google Scholar] [CrossRef] [Green Version]
- Lesiv, M.; Schepaschenko, D.; Moltchanova, E.; Bun, R.; Dürauer, M.; Prishchepov, A.V.; Schierhorn, F.; Estel, S.; Kuemmerle, T.; Alcántara, C.; et al. Spatial distribution of arable and abandoned land across former Soviet Union countries. Sci. Data 2018, 5, 180056. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Brandt, M.; Hiernaux, P.; Herrmann, S.M.; Tian, F.; Prishchepov, A.V.; Fensholt, R. Revisiting the coupling between NDVI trends and cropland changes in the Sahel drylands: A case study in western Niger. Remote Sens. Environ. 2017, 191, 286–296. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.; Sikor, T. Effects of postsocialist reforms on land cover and land use in South-Eastern Albania. Appl. Geogr. 2006, 26, 175–191. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Radeloff, V.C.; Dubinin, M.; Alcantara, C. The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 2012, 126, 195–209. [Google Scholar] [CrossRef]
- Guenthert, S.; Siegmund, A.; Thunig, H.; Michel, U. Object-based detection of LUCC with special regard to agricultural abandonment on Tenerife (Canary Islands). Earth Resour. Environ. Remote Sens./GIS Appl. II 2011, 8181, 1–7. [Google Scholar] [CrossRef]
- Dusseux, P.; Gong, X.; Corpetti, T.; Hubert-Moy, L.; Corgne, S. Contribution of radar images for grassland management identification. In Proceedings of the SPIE Remote Sensing, Edinburgh, UK, 24–27 September 2012; Volume 8531. [Google Scholar]
- Forkuor, G.; Conrad, C.; Thiel, M.; Landmann, T.; Barry, B. Evaluating the sequential masking classification approach for improving crop discrimination in the Sudanian Savanna of West Africa. Comput. Electron. Agric. 2015, 118, 380–389. [Google Scholar] [CrossRef]
- Ozdarici, O.A.; Akyurek, Z.A. segment-based approach to classify agricultural lands by using multi-temporal optical and microwave data. Int. J. Remote Sens. 2012, 33, 7184–7204. [Google Scholar] [CrossRef]
- Hajj, M.E.; Baghdadi, N.; Cheviron, B.; Belaud, G.; Zribi, M. Integration of remote sensing derived parameters in a crop model: Case of hay. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 7149–7152. [Google Scholar]
- Surek, G.; Nádor, G.; Fényes, D.; Vasas, L. Monitoring of western corn rootworm damage in maize fields by using integrated radar (ALOS PALSAR) and optical (IRS LISS, AWiFS) satellite data. Geocarto Int. 2013, 28, 63–79. [Google Scholar] [CrossRef]
- Abdikan, S.; Sanli, F.B.; Esetlili, M.T.; Kurucu, Y. Land use/cover mapping using multisensor image fusion technique. Remote Sens. Chang. Eur. 2009, 157–164. [Google Scholar] [CrossRef]
- Koppe, W.; Gnyp, M.L.; Hennig, S.D.; Li, F.; Miao, Y.; Chen, X.; Jia, L.; Bareth, G. Multi-Temporal Hyperspectral and Radar Remote Sensing for Estimating Winter Wheat Biomass in the North China Plain. Photogramm. Fernerkund. Geoinf. 2012, 2012, 281–298. [Google Scholar] [CrossRef]
- Hütt, C.; Koppe, W.; Miao, Y.; Bareth, G. Best accuracy land use/land cover (LULC) classification to derive crop types using multitemporal, multisensor, and multi-polarization SAR satellite images. Remote Sens. 2016, 8, 684. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.C.; Feng, C.C.; Vu Duc, H. Integrating Multi-Sensor Remote Sensing Data for Land Use/Cover Mapping in a Tropical Mountainous Area in Northern Thailand. Geogr. Res. 2012, 50, 320–331. [Google Scholar] [CrossRef]
- Laurila, H.; Karjalainen, M.; Hyyppä, J.; Kleemola, J. Integrating Vegetation Indices Models and Phenological Classification with Composite SAR and Optical Data for Cereal Yield Estimation in Finland (Part I). Remote Sens. 2009, 2, 76–114. [Google Scholar] [CrossRef] [Green Version]
- Pal, M.; Mather, P.M. The use of InSAR texture features in land use classification. In Proceedings of the 22nd EARSeL Symposium, Prague, Czech Republic, 4–6 June 2002; pp. 49–56. [Google Scholar]
- Mosleh, M.; Hassan, Q.; Chowdhury, E. Application of Remote Sensors in Mapping Rice Area and Forecasting Its Production: A Review. Sensors 2015, 15, 769–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, X.; Yang, G.; Xu, X.; Yang, H.; Feng, H.; Li, Z.; Shen, J.; Zhao, C.; Lan, Y. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sens. 2015, 7, 13251–13272. [Google Scholar] [CrossRef] [Green Version]
- Fieuzal, R.; Marais Sicre, C.; Baup, F. Estimation of corn yield using multi-temporal optical and radar satellite data and artificial neural networks. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 14–23. [Google Scholar] [CrossRef]
- Qi, J.; Wang, C.; Inoue, Y.; Zhang, R.; Gao, W. Synergy of optical and radar remote sensing in agricultural applications. In Proceedings of the Optical Science and Technology, SPIE’S 48th Annual Meeting, San Diego, CA, USA, 3–8 August 2003; Volume 5153, p. 153. [Google Scholar]
- Kussul, N.; Lemoine, G.; Gallego, F.J.; Skakun, S.V.; Lavreniuk, M.; Shelestov, A.Y. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2500–2508. [Google Scholar] [CrossRef]
- Kim, Y.; Kimball, J.S.; Didan, K.; Henebry, G.M. Response of vegetation growth and productivity to spring climate indicators in the conterminous United States derived from satellite remote sensing data fusion. Agric. For. Meteorol. 2014, 194, 132–143. [Google Scholar] [CrossRef]
- McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. Photogramm. Remote Sens. 2009, 64, 434–449. [Google Scholar] [CrossRef]
- Laurila, H.; Karjalainen, M.; Kleemola, J.; Hyyppä, J. Cereal Yield Modeling in Finland Using Optical and Radar Remote Sensing. Remote Sens. 2010, 2, 2185–2239. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Salas, W.A.; Skole, D.L. Mapping deforestation and secondary growth in Rondonia, Brazil, using imaging radar and thematic mapper data. Remote Sens. Environ. 1997, 59, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Salas, W.A.; Ducey, M.J.; Rignot, E.; Skole, D. Assessment of JERS-1 SAR for monitoring secondary vegetation in Amazonia: II. Spatial, temporal, and radiometric considerations for operational monitoring. Int. J. Remote Sens. 2002, 23, 1381–1399. [Google Scholar] [CrossRef]
- Sinha, S.; Jeganathan, C.; Sharma, L.K.; Nathawat, M.S. A review of radar remote sensing for biomass estimation. Int. J. Environ. Sci. Technol. 2015, 12, 1779–1792. [Google Scholar] [CrossRef] [Green Version]
Agricultural Land Use | Overgrown by |
---|---|
Arable land | Herbaceous formations |
Shrub and herbaceous formations | |
Tree, shrub, and herbaceous formations | |
Permanent crops | Herbaceous formations |
Shrub and herbaceous formations | |
Tree, shrub, and herbaceous formations | |
Pastures and meadows | Shrub formations |
Tree and shrub formations |
Subject | Search Query | Number of Studies | Study IDs |
---|---|---|---|
Agricultural abandonment using satellite remote sensing | TS = ((agricultur* OR crop* OR farm*) AND abandon* AND land AND (remote sensing OR satellite)) | 54 | [6,10,11,25,26,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76] |
Optical and radar remote sensing satellite data fusion according to agricultural abandonment | TS = ((radar OR microwave* OR SAR) AND optical AND remote sensing AND satellite AND (combin* OR fus* OR compar* OR integrat*) AND (agricult* OR crop* OR farm*)) | 19 | [77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95] |
General Task |
---|
Area |
Data |
Data resolution |
Classes |
Classification |
Classification validation |
Brief methodology |
Key analysis |
Specific Task |
ST1.1: Which AAL classes were specified? |
ST1.2: Based on which criteria were the AAL classes specified? |
ST2.1: What data obtained in the optical part of the spectra were used? |
ST2.2: What data obtained in the microwave part of the spectra were used? |
ST2.3: Was the fusion of optical and radar data used? |
ST3.1: What approaches to identification of AAL classes were used? |
ST3.2: What was the precision of identification of AAL classes? |
ST3.3: What were the benefits and drawbacks of applied approaches for the identification of AAL classes? |
ST3.4: Do the analyzed papers prove that identification of AAL classes by applying optical and radar data is viable? |
Classes AAL/LCLU | Number of Studies | Study IDs |
---|---|---|
AALs were not considered | 26 | [31,33,36,40,42,50,57,62,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95] |
Class not directly tagged as AAL is only a result of LC/LU class change | 7 | [6,28,35,51,52,66,67] |
One directly defined AAL class | 32 | [11,25,26,30,37,38,39,41,43,44,45,46,47,48,53,54,55,59,60,61,63,65,68,69,70,71,72,73,74,75,76,77] |
Two or more defined AAL classes | 8 | [10,29,32,34,49,56,58,75] |
Criteria Used in Analyzed Papers | Number of Studies | Study IDs |
---|---|---|
LC/LU changes According to LC/LU attribute table | 15 | [6,10,28,34,35,39,46,47,48,49,55,65,74,75,77] |
NDVI changes According to phenology change and time series analysis | 7 | [11,37,43,44,69,70,73] |
Specific time perspective horizon | 2 | [53,76] |
Identification of potential occurrence of AAL Secondary succession | 2 | [26,63] |
Changes of arable land in a long-time horizon | 4 | [30,38,58,60] |
Identification of AAL classes Taken over from agricultural census | 2 | [52,66] |
Fulfilled the following three basic conditions:
| 1 | [29] |
Indirectly considered AAL By assessment of biomass | 3 | [67,96,97] |
Not exactly specified criteria
| 5 | [28,51,54,56,68] |
Used Remote Sensing Data | Number of Studies | Study IDs |
---|---|---|
Optical remote sensing data | 42 | [6,10,11,26,28,29,30,31,32,33,34,35,37,39,40,41,43,44,45,46,47,48,50,51,52,53,54,57,59,61,62,64,65,66,69,70,71,72,73,74,75,76] |
Radar remote sensing data | 4 | [36,68,87,89] |
Optical and radar remote sensing data, although each was used independently | 4 | [42,63,67,95] |
Combination of optical and radar remote sensing data | 18 | [49,56,77,78,79,80,81,82,83,84,85,86,88,90,91,92,93,94] |
Compilation of classic statistical data | 5 | [25,38,55,58,60] |
Analytical Findings/Advantages | Sample References |
---|---|
Combining multiseasonal RS data improve AAL classification | [69] |
Combining phenological profiles improve AAL classification | [11] |
Minimum NDVI values are more effective against mean NDVI values | [43] |
Shrub formations are an indicator for AAL identification (because shrub formations are not natural vegetation formations in the agriculture area) | [42] |
High-resolution statistical databases improve the estimation of AAL | [38] |
Integration of RS data with in situ data and the use of biophysical parameters improve AAL classification | [29] |
Carbon stocks correlate with canopy coverage and spectrally based vegetation indices | [51] |
Object-oriented classification rules contribute to AAL feature extraction | [56] |
General definition | Abandoned agricultural land (AAL) is land void of any activities associated with agricultural production until this land becomes overgrown by other than agricultural vegetation. |
AAL1 | AAL overgrown by low vegetation(herbaceous formations): Originally agricultural land (arable land, vineyards, and orchards) overgrown by low to tall grasses and broad-leaved herbs. It develops without human intervention for more than three years, while it is not part of a fallow. Overgrowth of land by herbaceous formations >90% and their tallness oscillates between 0.5–1.5 m. |
AAL2 | AAL overgrown by medium-sized vegetation (shrub formations): Originally agricultural land (arable land, meadows and pastures, vineyards and orchards) fully overgrown by grasses and broad-leaved herbs and shrubs with a canopy closure >20%, tallness of which is maximum 1.6–3.0 m. Sporadic trees are not identifiable on the Sentinel images (picture element 10 × 10 m). |
AAL3 | AAL overgrown by tall vegetation (tree formations): Originally agricultural land (arable land, meadows and pastures, vineyards and orchards) fully overgrown by grasses and broad-leaved herbs and shrubs with a varied canopy closure and >20% trees; canopy taller than 3 m. |
AAL1 | AAL11 | Arable land with herbaceous formations |
AAL12 | Orchards = S and vineyards = V with herbaceous formations | |
AAL2 | AAL21 | Arable land with herbaceous/shrub formations |
AAL22 | Meadows and pastures with shrub formations | |
AAL23 | Orchards = S and vineyards = V with shrub formations | |
AAL3 | AAL31 | Arable land with tree formations |
AAL32 | Meadows and pastures with tree formations | |
AAL33 | Orchards = S and vineyards = V with tree formations |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goga, T.; Feranec, J.; Bucha, T.; Rusnák, M.; Sačkov, I.; Barka, I.; Kopecká, M.; Papčo, J.; Oťaheľ, J.; Szatmári, D.; et al. A Review of the Application of Remote Sensing Data for Abandoned Agricultural Land Identification with Focus on Central and Eastern Europe. Remote Sens. 2019, 11, 2759. https://doi.org/10.3390/rs11232759
Goga T, Feranec J, Bucha T, Rusnák M, Sačkov I, Barka I, Kopecká M, Papčo J, Oťaheľ J, Szatmári D, et al. A Review of the Application of Remote Sensing Data for Abandoned Agricultural Land Identification with Focus on Central and Eastern Europe. Remote Sensing. 2019; 11(23):2759. https://doi.org/10.3390/rs11232759
Chicago/Turabian StyleGoga, Tomáš, Ján Feranec, Tomáš Bucha, Miloš Rusnák, Ivan Sačkov, Ivan Barka, Monika Kopecká, Juraj Papčo, Ján Oťaheľ, Daniel Szatmári, and et al. 2019. "A Review of the Application of Remote Sensing Data for Abandoned Agricultural Land Identification with Focus on Central and Eastern Europe" Remote Sensing 11, no. 23: 2759. https://doi.org/10.3390/rs11232759
APA StyleGoga, T., Feranec, J., Bucha, T., Rusnák, M., Sačkov, I., Barka, I., Kopecká, M., Papčo, J., Oťaheľ, J., Szatmári, D., Pazúr, R., Sedliak, M., Pajtík, J., & Vladovič, J. (2019). A Review of the Application of Remote Sensing Data for Abandoned Agricultural Land Identification with Focus on Central and Eastern Europe. Remote Sensing, 11(23), 2759. https://doi.org/10.3390/rs11232759