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Abstract: Debris flows have been always a serious problem in the mountain areas. Research on the
assessment of debris flows susceptibility (DFS) is useful for preventing and mitigating debris flow
risks. The main purpose of this work is to study the DFS in the Shigatse area of Tibet, by using
machine learning methods, after assessing the main triggering factors of debris flows. Remote sensing
and geographic information system (GIS) are used to obtain datasets of topography, vegetation,
human activities and soil factors for local debris flows. The problem of debris flow susceptibility
level imbalances in datasets is addressed by the Borderline-SMOTE method. Five machine learning
methods, i.e., back propagation neural network (BPNN), one-dimensional convolutional neural
network (1D-CNN), decision tree (DT), random forest (RF), and extreme gradient boosting (XGBoost)
have been used to analyze and fit the relationship between debris flow triggering factors and
occurrence, and to evaluate the weight of each triggering factor. The ANOVA and Tukey HSD
tests have revealed that the XGBoost model exhibited the best mean accuracy (0.924) on ten-fold
cross-validation and the performance was significantly better than that of the BPNN (0.871), DT (0.816),
and RF (0.901). However, the performance of the XGBoost did not significantly differ from that of
the 1D-CNN (0.914). This is also the first comparison experiment between XGBoost and 1D-CNN
methods in the DFS study. The DFS maps have been verified by five evaluation methods: Precision,
Recall, F1 score, Accuracy and area under the curve (AUC). Experiments show that the XGBoost has
the best score, and the factors that have a greater impact on debris flows are aspect, annual average
rainfall, profile curvature, and elevation.

Keywords: debris flow susceptibility; remote sensing; GIS; oversampling methods; back propagation
neural network; one-dimensional convolutional neural network; decision tree; random forest; extreme
gradient boosting

1. Introduction

Debris flows involve gravity-driven motion of solid-fluid mixtures with abrupt surge fronts,
free upper surfaces, variably erodible basal surfaces, and compositions that may change with position
and time [1]. They can cause great damage to the safety of people’s lives and property, public facilities
and ecological environment. Due to the harsh natural environment and deforestation caused by
over-exploitation of human beings, Shigatse is a typical area with active debris flows in the Tibet
Autonomous Region. Debris flows can cause very high damages because the study area is densely
populated. Therefore, mitigating and reducing the disasters caused by debris flows are critical to
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the local authorities. Most of Shigatse mountainous area is inaccessible and characterized by very
steep slope such that it is very difficult to carry out field surveys. The installation and maintenance
of sufficient monitoring facilities in these areas are also very challenging. Therefore, zoning debris
flow susceptibility (DFS) maps through spatial data can be used to prevent and mitigate casualties and
economic losses caused by debris flow events.

Susceptibility mapping of debris flow is prominent for early warning and treatments of regional
debris flows. DFS assessment is based on the spatial characteristics of debris flow events and relevant
factors (topography, soil, vegetation, human activities and climate). It aims to estimate the spatial
distribution of future debris flow probability in a given area [2]. Some studies have discussed and
analyzed debris flows in the study area [3,4], focusing on the residential settlements and vicinity of
roads. Assessing the susceptibility of debris flows in the whole study area is difficult due to the vast
size of land (exceeding 180,000 square kilometers). The detailed spatial information on the debris
flow triggering factors is also quite limited. In this case, satellite remote sensing has good application
prospects because it can describe the characteristics of a large area, such as terrain, vegetation, and
climate of the place where debris flow events occur. Therefore, compared with the traditional field
geological survey, which requires a lot of work and resources, data from remote sensing represented in
a GIS environment can fill the gap of on-site monitoring data. That is, it can be applied for the DFS
researches in a more effective and economical way.

In recent years, GIS and remote sensing data have been used to conduct many studies of disasters
in mountains. Researchers built their methodology analyzing data of known occurred debris flows
and tested it through unknown debris flow events. Gregoretti et al. [5] proposed a GIS-based model
tested against field measurements for a rapid hazard mapping. Kim et al. [6] used a high-resolution
light detection and ranging (LiDAR) digital elevation model to calculate the volume of debris flows.
Kim et al. [7] developed a GIS-based real-time debris flow susceptibility assessment framework for
highway sections. Alharbi et al. [8] presented a GIS-based methodology for determining initiation area
and characteristics of debris flow by using remote sensing data. At present, the DFS assessment methods
can be mainly divided into two categories: qualitative and quantitative models. The qualitative model
assigns a weight (0–1) to each debris flow triggering factor based on expert experience and knowledge
or heuristics to assess the DFS [9]. Common qualitative analysis methods include fuzzy logic [10],
analytic hierarchy [11] and network analysis [12] and so on. While these models have achieved a lot in
the study of debris flows, they still suffer for some shortcomings, such as a high degree of subjectivity
and limited applicability to specific areas [13].

Quantitative methods usually include two types: deterministic and statistical models based on
physical mechanisms. Deterministic methods are used to study the physical laws of debris flows and
establish the corresponding models to simulate the DFS [14]. The disadvantages of these models are in
that they require detailed inspection data for each slope. Thus, they are only suitable for smaller areas.
Statistical models are data-driven. The DFS assessment from them combines the past debris flow events
with environmental characteristics. It is assumed that the environmental characteristics of the past debris
flows events will lead to debris flows in the future. The models for the DFS quantitative assessment
include information model [15], evidence weight method [16], frequency ratio [17] and so on.

In recent years, data mining and machine learning techniques have also received extensive
attention because they can more accurately describe the nonlinear relationship between DFS and
triggering factors [18], and there is no special requirement for the distribution of triggering factors.
Machine learning algorithms are often superior to traditional statistical models [19] for the following
reasons. First of all, machine learning can adapt to larger datasets, while traditional statistical learning
methods are more suitable for small datasets. Secondly, machine learning has better controllability
and extensibility than traditional statistical models. Moreover, traditional statistical models are in
general limited to certain requirements and assumptions on data, whereas machine learning methods
are not. In the past three decades, common machine learning methods used for studying DFS mapping
include back propagation neural network (BPNN) [20], decision tree (DT) [21], Bayesian network [22],
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and support vector machine [23]. With the advancement of researches, more and more models have
been developed with better fitting performance. Under such circumstances, continuous verification
and evaluation are still necessary for constructing and selecting a DFS evaluation model. Therefore,
comparisons among various models to investigate DFS have become hot topics in academia. Since
the information about debris flow occurrence is very limited and different, stability and accurate
predictive power are the primary requirements for selecting the appropriate method to achieve better
modeling results.

Among machine learning methods, BPNN is widely used because it carries the excellent nonlinear
fitting and complex learning abilities to extract the complex relationship between debris flow triggering
factors and DFS [24]. Convolutional neural network, a classical deep learning method, has been
rapidly developed in the past decade and is widely used in pattern recognition and medicine It is
generally used for classification and recognition of two-dimensional images. In recent years, artificial
intelligence scholars have made the convolutional neural network one-dimensional, so as to perform
the speech recognition [25], fault diagnosis [26] and data classification [27]. As an end-to-end model,
the one-dimensional convolutional neural network can extract and classify different characteristics of
debris flows directly from raw data without expert guidance. DT is another powerful prediction model
with three major advantages: the model is easy to build; the final model is easy to interpret; and the
model provides clear information about the relative importance of input factors [28]. These advantages
have motivated researchers to develop new DT models to better utilize the debris flow information.
At the same time, integrated learning algorithms based on decision trees have also been widely
concerned. Among them, the more representative ones are bagging and boosting. Kadavi et al. [29]
used four integrated algorithms: Adaboost, Bagging, LogitBoost, and Multiclass classifier to calculate
and plot the DFS map. They proved that the Multiclass classifier had the best performance by verifying
the AUC value of the test set.

Due to the complex terrain, geology and other mountain conditions in the study area,
the multi-source and multi-data are used as much as possible to characterize the terrain and geological
conditions of debris flows. Although machine learning methods have been demonstrated to achieve
results with satisfactory to some extent, this paper further discusses whether they can be applied to
examine the DFS. Its most important contributions are described as follows. (a) We collected debris
flow events data and a variety of original remote sensing data related to topographic factors, such as
soil factors, human factors and vegetation factors, and performed pre-processing operations, including
projection, registration and sampling based on remote sensing and GIS technology (ArcGIS v.10.2
software). (b) We obtained the characteristics of the study area where debris flow occurred and used
the data generation algorithm to merge the collected debris flow events data. (c) Based on the Python
language, using the keras framework and the scikit-learn module, five DFS models (BPNN, 1D-CNN,
DT, RF, and XGBoost) were constructed for the training set. The applicability of these models was
examined for the Shigatse region. It is notable that this is the first comparative experiment of XGBoost
and 1D-CNN in the study of DFS. (d) Cross-validation methods were used to compare the performance
of artificial neural networks and tree-based models to reduce the bias and variance. (e) Statistical
analyses of the comparative algorithm were done to verify whether the performance is significantly
different. (f) The test set was used to evaluate the models’ prediction ability in combination with the
five evaluation methods of classical Recall, Precision, F1 score, Accuracy, and AUC [30]. (g) At the end
of the study, the tree-based “feature importance” ranking was used to evaluate the main characteristic
factors affecting the DFS.

2. Material and Methods

2.1. Study Area

The study area covers an area of 182,000 square kilometers in the southwestern part of China.
It is located in the southwest of the Tibet Autonomous Region (27◦23′~31◦49′N, and 82◦00′~90◦20′E).
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As shown in Figure 1, the Shigatse area is mainly located between the central Himalayas and central
part of the Gangdise-Nyqinqin Tanggula Mountains. Its elevation is high in the northern part and
southern part, including the southern Tibetan Plateau and Yarlung Zangbo River basin. The overall
terrain of the Shigatse region is complex and diverse, mainly consisting of mountains, wide valleys
and lake basins with a maximum elevation of over 8700 m. The study area belongs to semi-arid
monsoon climate zone of inland plateau. It is featured with dry climate, less precipitation, rainy season
coincident with hot season, and annual average sunshine hours of 3240 h.

The transportation mainly includes three main lines: China-Nepal (Zhongni) Highway, 318 National
Road and Largo Railway passing through the study area. The geological disasters in the study area are
serious, mainly including debris flows, rock collapses, and landslides. Among them, the debris flow is
the most common one. A large number of debris flows exist in many parts of the study region. They
directly threaten the safety of the three major transportation lines and residents’ lives and properties.
According to the collected data and previous studies [31], the debris flows in the study area are mostly
caused by heavy rain.
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2.1.1. Debris Flow Dataset

Collection and analysis of debris flow event datasets are prerequisites for the DFS assessment.
There are 1944 debris flow sites in the study area from 1998 to 2008. Each case includes information
obtained from field disaster investigation, such as time, debris flow susceptibility level, and geographic
location. The information on debris flows is provided by the Tibet Meteorological Bureau. These
events can be viewed through the geological cloud portal [32].
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2.1.2. Debris Flow Triggering Factors

It is significant to analyze the environmental characteristics of the debris flow events for the DFS
estimation. Due to the complexity of the environment and various development stages of debris flows,
the causes of debris flows are controversial. Researchers have done a lot of studies on the relationship
between debris flows and triggering factors, such as topography, soil, climate, and human activities.
Therefore, we have classified 15 environmental factors into five categories as shown in Table 1.

Table 1. Data layer related to debris flows susceptibility (DFS) in the study area.

Category Factor Scale Data

Topography

Slope

30 m SRTM DEM

Aspect
Elevation

Plan curvature
Profile curvature
Total curvature

Anthropogenic Land cover
30 m

Land cover map
Distance to road Road vector

Soil
Soil type

1000 m
Spatial distribution data of soil texture

Soil texture Spatial distribution data of soil erosion
Soil Erosion Spatial distribution data of soil types

Vegetation NDVI 500 m MODIS

Climate Rainfall 25,000 m TRMM

Topographic factors that include elevation, slope, aspect, and curvature are extracted from
the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) using the ArcGIS
platform [33]. The vegetation coverage is represented by the normalized difference vegetation index
(NDVI), calculated from the obtained 2000–2008 MODIS images and averaged to generate the thematic
layer of the annual average NDVI. Rainfall data are collected from the Tropical Rainfall Measurement
Task (TRMM) [34]. We use a rainfall dataset (No: 3B42v7) with a time interval of three hours
and a spatial resolution of 0.25 degree during 1998–2008 to construct a thematic layer of annual
average precipitation. The 15 types of land use information layers are provided by National Earth
System Science Data Sharing Infrastructure, National Science & Technology Infrastructure of China
(http://www.geodata.cn) [35,36]. In addition, the road vector data provided by OpenStreetMap (OSM)
(https://www.openstreetmap.org/#map=11/22.3349/113.76000) is used to calculate the distance from
the road. Soil factors are provided by the Resource and Environmental Science Data Center (RESDC)
of the Chinese Academy of Sciences.

Higher resolution is conducive to the topographic analysis of single-ditch debris flow, but in this
work, our research focuses on the use of multiple attribute factors to analyze the disaster susceptibility
of the entire study area. Golovko [2] and Ahmed [9] believe that 30M resolution Digital Elevation
Model (DEM) can be used for the analysis of the susceptibility to mountain disasters. Therefore, DEM
data with a pixel size of 30 m is used (Figure 2a). The slope angle is a fundamental factor calculated
by the DEM data and the range of it obtained by statistics is wide (0–89◦) (Figure 2b). The aspect of
the slope is another key factor affecting the DFS. Because the slope surface in different directions is
exposed to the wind and rain in different degrees. The aspect thematic layers are reclassified into nine
categories: flat (−1), north (337.5–360◦, 0–22.5◦), north-east (22.5–67.5◦), east (67.5–112.5◦), south-east
(112.5–157.5◦), south (157.5–202.5◦), south-west (202.5–247.5◦), west (247.5–292.5◦), and north-west
(292.5–337.5◦) (Figure 2c). The second derivative of the slope, i.e., the curvature, helps us understand
the characteristics of the basin runoff and erosion processes. In this study, three curvature functions are
used to show the shape of the terrain (Figure 2d–f). They are the curvature of the profile, the curvature

http://www.geodata.cn
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of the plane, and the total curvature of the surface defined as the curvature of the maximum slope,
the curvature of the contour, and the combination of the curvatures, respectively.

Human activities affect the geographical environment, which in turn influences the occurrence of
debris flows. The land cover thematic map shows how human production can change natural land,
and 14 land use types including farmland and forest can be identified (Figure 2g). The DFS assessment
often takes the distance from the road into account, because the road construction and maintenance
cause certain change and damage to the local morphology. This variable is calculated by using the
Euclidean distance calculation technique in the spatial analysis tool of ArcGIS 10.2 (Figure 2h).

The vegetation coverage is one of the important parameters to evaluate the DFS. NDVI extracted
from remote sensing images is a commonly used vegetation index for inferring the vegetation density.
It is very sensitive to the presence of chlorophyll on vegetation surface (Figure 2i). We calculated the
NDVI value using the following formula:

NDVI = (NIR − RED)/(NIR + RED) (1)

where NIR and RED represent the near-infrared and red-band, respectively, and they are the second
and first channels of the MODIS image. The NDVI value ranges between −1 and 1. The negative value
indicates that the ground cover is an object highly reflective to visible light such as clouds, snow, water,
etc. 0 means bare land. A positive value represents a vegetation coverage area and it increases with the
vegetation coverage density.

Debris flows are usually influenced by changes in humidity caused by rainfall infiltration.
Permeability can be expressed by soil type (Figure 2j), soil texture (Figure 2k–m) and soil erosion
(Figure 2n). Since the particle distribution determines the shape of soil water characteristic curve and
affects the soil hydraulic characteristics, the soil type and texture have a great influence on the DFS.
Most of the study area is covered by alpine soil, including grass mat soil, cold soil, and frozen soil.
According to statistics, most of the alpine soil is brown and has a strong acidity. The alpine soil is
mainly composed of silt, sand and clay fine sand, and has fast permeable and low moisturized ability.
Soil erosion is sometimes used as a synonym for soil and water loss, and areas with severe erosion are
susceptible to debris flows. The external causes of soil erosion are mainly hydro, wind, and freeze-thaw.
Clearly, fragile soil characteristics accompanied by concentrated rainfall usually result in debris flows.

Rainfall is the main factor leading to debris flows. The study area is affected by the monsoon climate
with rare precipitation and an annual average precipitation less than 1300 mm (Figure 2o). However,
statistical analyses of the geological hazard points occurring in the study area show that heavy rain and
continuous rainfall are important external factors leading to geological disasters in the Shigatse area.
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2.2. Methods

The main purpose of our research is to fit the relationship between the triggering factors and
occurrence of debris flows. The problem can be expressed as a multi-class classification. Given a set of
input quantities, the classification model attempts to label the DFS level for each pixel in the study
area. The input quantities to the models are the triggering factors of the debris flow events that were
collected by the local Chinese Geological Survey researchers after many years of field investigation.
According to the researchers’ investigation of the debris flow sites, we obtain the values of 15 triggering
factors at the corresponding positions through the value extraction function of ArcGIS v10.2 software.
That is, the input of the model is a one-dimensional vector form [×1, ×2, . . . , ×15]. The output value of
the model is the DFS level, indicating the occurrence probability of debris flows. The division criteria
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of regional DFS are based on the detailed survey and specification of landslide collapse debris flows by
the China Geological Survey as shown in Table 2.

Table 2. DFS level classification.

DFS Level Frequency of Debris Flow

Very low No debris flow occurs within 100 years
Low Debris flow occurs once within 10–100 years

Medium Debris flow occurs once in within1–10 years
High 1-10 debris flow events occurred with a year

According to statistics, the number of moderately susceptible units in the study area is much
higher than that of the other susceptible grades (Figure 3). Therefore, before constructing a debris
flow assessment model, the oversampling technique Borderline-SMOTE algorithm should be used to
eliminate the classification imbalance in the dataset. The number of each debris flow susceptibility
level after oversampling is shown in Figure 3. The original dataset is divided into training sets and
test sets according to a percentage of 75 and 25%, respectively. The training set of the debris flow
triggering factors is used to learn the ability to fit the actual DFS classification, and the validation set is
used for adjusting the model parameters to prevent over-fitting or under-fitting. In this study, five DFS
models have been established using DT, BPNN, 1D-CNN, RF, and XGBoost. Among them, the DT
and BPNN have been the most commonly used machine learning models in the past few decades.
The one-dimensional convolutional neural network (1D-CNN) has achieved remarkable results in
one-dimensional signal processing, such as fault diagnosis and speech recognition. RF is based on
the DT. It is a typical integrated algorithm in machine learning algorithms. The XGBoost is also a
tree-based integration model, which counts on the residuals generated by the last iteration. To the best
of our knowledge, the XGBoost and 1D-CNN have not been used for the DFS. Based on the above
introductions, the research framework for the DFS in Shigatse is shown in Figure 4.
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In addition, we have also implemented other traditional machine learning algorithms, such as
support vector machine, logistic regression, and naive Bayesian model, but the results are disappointing.
Therefore, these methods are not introduced here. The following part is a brief introduction to the data
sampling generation algorithm and five classifiers used in this paper.

2.2.1. Borderline-SMOTE

It is well known that in the model training process, when a certain class in the classified data
set is of a high proportion, the classifier performance will be seriously affected. Synthetic Minority
Oversampling Technique is often referred to as SMOTE that has been improved for its application
in solving data imbalance problems [37]. It is used to artificially generate vector data to achieve the
consistency among each category in the dataset. In the study, it is common that most units are with
moderate susceptibility. In the classification process, the scarcity of the category data with fewer
samples (the minority class) is one of the main factors for over-fitting and inaccuracy. This paper
chooses the boundary-based SOMTE algorithm (Borderline-SMOTE) to handle the imbalance of the
data. Specifically, the k-nearest neighbor algorithm is used to calculate the nearest neighbor sample
in the minority sample set in the training set. The boundary sample set is constructed according to
whether the majority class in the nearest neighbor sample set is dominant. The k-nearest neighbors
of the sample Ti in the boundary sample set are calculated, and the sample Tj is randomly selected.
The SMOTE algorithm is used to randomly insert the feature vector between the selected neighbor
samples and the initial vector. The SMOTE algorithm is shown in Equation (2),

Tnew = Ti + random(0, 1) ∗
∣∣∣Ti − T j

∣∣∣ (2)

Finally, the generated new sample is added to the original sample set.

2.2.2. Back Propagation Neural Network

Back propagation neural network (BPNN) is a mathematical model that simulates the processing
information of the biological nervous system. The BPNN, as the most classic part of artificial neural
network, usually has three or more network structures, including input layer, output layer and hidden
layer. The main structural functions of the BPNN are the forward propagation of the signal and the
back propagation of the error. The neurons between the layers are fully connected, while the neurons
of each layer are not connected to each other. The network is a gradient descent method, using gradient
search technology to minimize the cost function of the network. It has strong nonlinear mapping ability
and is especially suitable for dealing with the intricate relationship between debris flow triggering
factors and DFS susceptibility. The general operation of the network is as follows. The input sample
leaves the input layer and enters the hidden layer. After being activated by the transfer function (such
as Tanh, Relu, Sigmoid and Tanh used in this article.), it passes to the next hidden layer until the output
layer. The output formula for each layer is as follows:

zi = fθ(
∑

j

wi jx j − bi) (3)

where f (θ) represents the transfer function; θ = {w, b} represents the network parameter; w is the
weight; and b is the threshold.

2.2.3. One-Dimensional Convolutional Neural Network

As a feedforward neural network, one-dimensional neural network (1D-CNN) is inspired by the
mammalian visual cortex receptive field. The network perceives the local features and integrates the
local features in high-dimensional space, and finally obtains global information. The basic structure
of the convolutional neural network includes an input layer, alternating convolution layers, pooling
layers, and a fully connected layer. The convolutional layer captures the information of the local
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connections in the input features through the convolution kernel and reduces the parameters of the
model using the weight sharing principle. The convolution formula is:

x j
l = f (

M∑
i=1

xi
l−1
∗ ki j

l + b j
l) (4)

where f () represents the transfer function, x j
l represents the j-th feature map of convolutional layer l,

M represents the number of feature maps, xi
l−1 represents the ith feature map of the l-1 layer, ∗ represents

convolution operation, ki j
l represents trainable convolution kernel, and b j

l represents bias. The shape
and number of one-dimensional convolution kernels can largely determine the feature-extraction ability
of the overall network. The shape of the convolution kernel affects the fineness of feature extraction.
The number of convolution kernels corresponds to the size of the feature layer, affecting multiple ways
of feature extraction and the computational scale of the network. The pooling layer combines multiple
adjacent nodes to merge similar features and performs down-sampling operation on the feature layer
extracted by the convolutional layer, thereby reducing training parameters and preventing network
over-fitting to enhance the generalization ability of the network. At present, the main pooling methods
include maximum pooling, mean pooling, and L2-norm pooling. After the convolutional layer and
pooling layer are located, the fully connected layer trains the weights and biases of the convolution
kernels in the entire convolutional neural network based on the back-propagation principle. The fully
connected layer structure is similar to the BP neural network mentioned in the previous section, which
has a hidden layer and uses the Softmax activation function to complete the classification. The structure
of the entire network is shown in Figure 5.
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2.2.4. Decision Tree

DT is a common machine learning algorithm similar to the tree structure, often used to find
pattern structures in data. It aims to establish correct decision rules and determine the relationship
between feature attributes and target variables without expert experience. Usually DT contains a root
node, multiple internal nodes, and a set of leaf nodes from top to bottom. The leaf node corresponds
to the prediction result, and the node contains all samples. The key to DT learning is to divide the
best attributes. At present, the algorithms for constructing DT mainly include CART, C4.5 and ID3.
This study uses a CART algorithm with better performance and efficiency [38]. CART uses the Gini
coefficient to divide the node properties and establish a DT by selecting the attributes that minimize the
Gini coefficient after dividing the nodes. The Gini index is shown in Equation (5) where k is the category
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and t is the node. Finally, pruning techniques are used to deal with the over-fitting problem of the
model. Upon completing the entire algorithm, we can clearly understand the internal decision-making
mechanism and thus get a more objective knowledge of debris flow triggering factors.

Gini(t) = 1−
∑

k

[p(ck
∣∣∣t)] 2

(5)

2.2.5. Random Forest

As an integrated classification algorithm of machine learning, RF aims to improve the flexibility
and accuracy of classification trees. In RF, a large number of trees are generated by constructing a base
DT on multiple bootstrap sample sets of data during the running of the algorithm. Because the feature
attributes of each node are randomly selected, the node characteristics are effectively reduced without
increasing the deviation. Each feature subset is much smaller than the total number of features in the
input space so that each DT is decorrelated. Finally, the output of the classification task is predicted by
a simple voting method. RF has been constructed with a number of DTs. It has been greatly improved
compared with a single DT. However, RF is as complex as the single basic DT. Therefore, RF is also a
fairly effective integrated learning algorithm.

2.2.6. XGBoost

XGBoost, also known as extreme Gradient Boosting, is a gradient-enhanced integration algorithm
based on classification trees or regression trees. It works the same way as Gradient Boosting, but adds
features similar to Adaboost. The algorithm combines multiple DT models in an iterative way to form
a classification model with a better structure and higher precision. It has achieved impressive results
in many international data mining competitions and won more than two championships in the Kaggle
competition. In the DFS analysis experiment, the XGBoost can classify the DFS level according to the
environmental characteristics of the Shigatse region and rank the importance of the triggering factors.

The XGBoost uses both the first and second derivatives to perform Taylor expansion on the loss
function and adds a regular term to it. Therefore, while considering the model accuracy, the model
complexity is also well controlled. Finally, the predictive power of the model is trained by minimizing
the total loss function [39]. The objective function of the model can be expressed as Equation (6):

J( ft) =
n∑

i=1

L
(
yi, ŷi

(t−1) + ft(xi)
)
+ Ω( ft) + C (6)

where i represents the ith sample, ŷi
(t−1) represents the predicted value of the (t − 1)th model for the

sample i, ft(xi) represents the newly added tth model, Ω( ft) represents the regular term, C represents
some constant terms, and the outermost L() represents the error.

The optimizer aims to calculate the structure and the leaf score of the CART tree. XGBoost
accelerates existing lifting tree enhancement algorithms through the cache-aware read-ahead technology,
distributed external memory computing technology and AllReduce fault-tolerant tools. It can also be
trained by using a graphics processing unit to provide a very high speed boost.

In this work, we can import the XGBoost toolkit in Python. The training process controls the
establishment of DT by adjusting five hyper-parameters: the number of iterations, the number of trees
generated, the learning rate, the maximum depth of each tree, and the L2 regularization. The Gamma
hyper-parameter limits the gain amount required for segmentation.

2.3. Evaluation Measures

DFS mapping should have the ability to effectively predict the probability of future debris flows
in the study area. In order to evaluate the predictive power of several machine learning algorithms,
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five common evaluation methods are used to quantify model performances, including Precision, Recall,
F1 score, Accuracy and AUC. Finally, 293 debris flow events are applied as a test set.

In the case of the binary classification problem, four elements, i.e., TP, TN, FP and FN, are defined
as follows.

TP: True Positive. Samples belonging to the TRUE class are correctly marked as positive by the model.
TN: True Negative. Samples belonging to the TRUE class are incorrectly marked as negative by

the model.
FP: False Positive. Samples belonging to the FALSE class are incorrectly marked as positive by

the model.
FN: False Negative. Samples belonging to the FALSE class are correctly marked as negative by

the model.

2.3.1. Precision

In the binary classification task, precision represents the ratio of the correct labeled True class
samples to the total number of predicted values labeled true. The formula is as follows:

Precision = TP/(TP + FP) (7)

Precision is expressed as a weighted average of the precision of each class in a multivariate
classification task.

2.3.2. Recall

The Recall rate is the ratio of the correct labeled True sample to the total number of True samples,
expressed as Equation (8) in the binary classification task.

Recall = TP/(TP + FN) (8)

The Recall rate represents the weighted average of the Recall rates for each category in a
multivariate classification task.

2.3.3. F1 Score

The F1 score is represented by Precision and Recall, with values between 0 and 1, which represent
the worst and best, respectively. The relative contributions of accuracy and recall to the F1 score are
equal. The formula is defined as follows:

F1 score = 2 * (Precision * Recall)/(Precision + Recall) (9)

In a multivariate classification task, the F1 score represents a weighted average of F1 scores for
each category.

2.3.4. Accuracy

In a multivariate classification task, accuracy represents the ratio of correctly classified samples to
the total number of samples.

2.3.5. Area Under the Curve (AUC)

The AUC method is defined as the area under the receiver operating characteristic curve (ROC),
which can give different distributions of each class. It can be used to judge classifiers’ performance.
The ROC curve is plotted as the relationship between the true positive rate (TPR) and false positive
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rate (FPR). TPR represents the ratio of the positive instance correctly classified to the total number of
all the positive instances, as represented by Equation (10):

TPR = TP/(TP+ FN) (10)

FPR is the ratio of the positive instance misclassified to the total number of all the negative
instances, as represented by Equation (11):

FPR = FP/(FP + TN) (11)

The AUC method is also designed to evaluate the binary classification. First, we need to convert
the multivariate classification task into multiple binary classification, and then separately calculate the
AUC values of the respective categories. Finally, the multivariate classification result is obtained by
obtaining the average of the total AUC values [40].

2.4. Cross-Validation

In this paper, the cross-validation method is used to complete the parameter optimization.
Specifically, based on the error-based verification evaluation index, the training set is divided into
k pairs of mutually equal exclusion subsets, where k − 1 pairs are used as the training sets and the
remaining subset are used as the verification set. The experiment is performed by rotating the subset k
times in turn, and the k verification results are averaged. In this paper, the GridSearchCV module via
the scikit-learn and the cv function via the XGBoost library are used to optimize the parameters of the
decision tree, random forest and the XGBoost model. In the Keras framework, the cross-validation
method based on the GridSearchCV module is also used to search in the parameter space, and the
optimal parameter estimation of the model in the data set is given.

2.5. Statistical Analysis

In order to compare the performance differences between the models, we conducted a statistical
analysis. One-way ANOVA can be used to test whether there is a statistically significant difference in
two or more unrelated groups [41]. Model performance is evaluated by the accuracy of test results
during the model training. Therefore, the accuracy group obtained by cross-validation of different
algorithms is used for one-way ANOVA. The null hypothesis given by H0 tested by One-way ANOVA
is as follows.

H0: The accuracy of all algorithms is not significantly different.
H1: There are significant differences in the accuracy of at least two or more algorithms.
The One-way ANOVA results in a P-value, and the P-value is the risk of rejecting the hypothesis H0.
The results can only determine whether there is a significant difference between at least one

group of samples and other groups, but it is impossible to judge whether there is a difference between
the two groups. Therefore, comparisons between specific groups are often performed after one-way
ANOVA. The honestly significant difference (HSD) method was developed by Tukey and is favored by
researchers as a simple and practical pairwise comparison technique. The main idea of HSD is to use
the statistical distribution to calculate the true significant difference between two mean values and call
it q-distribution [42]. This distribution gives an exact sampling distribution of the largest difference
between a set of mean values in the same population. All pairwise differences were evaluated by
using this distribution. This paper uses HSD as a post-hoc analysis to test the variance homogeneity of
performance indicators from different algorithms.

All statistical analyses were completed by using the Statistical Package for Social Sciences (IBM
SPSS Statistics for Windows Version 22.0).
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2.6. Feature Importance

The tree-based machine learning approach in this study provides a “feature importance” toolkit
for ordering index factors based on the function strength of a particular problem [43]. In the basic
decision tree, feature attributes are selected for the node segmentation, and the number of times
measures the importance of the attribute. For a single decision tree T, Equation (12) represents the
score of importance for each predictor feature xl, and the decision tree has J − 1 internal nodes.

w2
l (T) =

J−1∑
t=1

τ̂2
t (12)

The selected feature is the one that provides maximal estimated improvement τ̂2
t in the squared

error risk over that for a constant fit over the entire region. The following formula represents the
importance calculation over the additive M trees.

w2
l (T) =

1
M

M∑
m=1

τ̂2
t (Tm) (13)

In reality, a frequently used attribute often has a good distinguishing ability. In this study,
the importance of the factors affecting the debris flows occurrences is ranked from high to low
according to the characteristic attribute of the decision-making process of DFS.

3. Results

In this section, a specific implementation of five machine learning algorithms is introduced. Using
Python as the development language, the BPNN and the 1D-CNN are constructed based on the Keras
learning framework. The DT and the RF are implemented by API provided by the scikit-learn module,
and the XGBoost algorithm is implemented by the Python-based code provided by its official website.
The performance of DFS model depends largely on the choice, adjustment and optimization of its
parameters. Therefore, the optimization of the model structure and parameters requires multiple
experiments. The cross-validation method is used to complete the parameter optimization. After many
experiments, the optimal parameters of the five DFS models are obtained as shown in Table 3.

Table 3. Calculated parameters of the algorithms.

Algorithm Parameter

BPNN

Number of iterations: 3000;
Learning rate: 0.01;
Activation function: tanh, softmax;
Number of nodes: input layer = 15, hidden layer = (30,30),
output layer = 4;
Optimization function: Adam;
Loss: Logarithmic Loss Function;
Alpha:0.005

DT

Criterion: gini;
Min_samples_split = 2;
Mat_depyh: 38;
Splitter: random

1D-CNN

Convolutional Layer: Filter = 8, Kernel_size = 3, Stride = 1,
activation = Relu;
Pooling Layer: max_pooling;
Fully connected layer: node =15, activation = Relu;
Output layer: node = 4, activation = Softmax
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Table 3. Cont.

Algorithm Parameter

RF

Number of iterations: 30;
Max_feature = sprt
Max_depth: 20;
Criterion:gini;
Min_samples_split = 0.8;
Min_samples_leaf = 1

XGBoost

Number of iterations: 39;
Max_depth:15;
colsample_bytree: 0.5;
subsample: 0.9;
Eval_metric: mlogloss;
Objective:multi: softmax;
Eta: 0.1;
Lamda:0.2
Alpha = 0.005
Min_child_weight: 0.6;
Num_class: 4

3.1. Performance Metrics Evaluation

Cross-validation produces a list of accuracy, which can be seen from the first row in Table 4.
The poor accuracy value in the second line indicates the performance of the model under the non-SMOTE
data set.

Table 4. Performance metrics.

Model BPNN 1D-CNN DT RF XGBoost

Accuracy 0.871 ± 0.017 0.914 ± 0.01 0.816 ± 0.023 0.901 ± 0.011 0.924 ± 0.011
Accuracy(non-SMOTE) 0.664 ± 0.011 0.683 ± 0.023 0.671+0.005 0.684 ± 0.013 0.695 ± 0.01

In order to obtain robust verification results, we use the One-way ANOVA method to test whether
there is a significant difference between the methods. The ANOVA method is used according to the
five groups of accuracy, and the results are shown in Table 5.

Table 5. ANOVA results for five groups of accuracy.

Sum of Squares df Mean Square F Sig

Between Groups 0.076 4 0.019 167.683 0
Within Groups 0.005 45 0

Total 0.081 49

The F value in the table indicates the ratio of the mean square between the groups to the mean
square within the group. The corresponding P value is found according to the F value through the
lookup table. Sig represents the P value, which is 0 and less than 0.05, indicating that we can reject
the null hypothesis H0. We can think that there are significant differences between at least two sets
of models. Significant differences are calculated according to post-hoc Tukey’s HSD for all pairwise
comparisons between accuracies as shown in Table 6.
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Table 6. Means for groups in homogeneous subsets.

Model N
Subset for Alpha = 0.05

1 2 3 4

DT 10 0.817
BPNN 10 0.871

RF 10 0.901
1D-CNN 10 0.914 0.914
XGBoost 10 0.924

According to statistics, XGBoost performs best in terms of accuracy, and there is a significant
difference (p < 0.005) from BPNN, DT and RF. There is no significant difference between XGBoost and
CNN, but the average accuracy of XGBoost is higher than that of 1D-CNN.

3.2. DFS Map Construction

In this study, the relationships between the debris flow triggering factors and the DFS levels are
fitted by training the BPNN, CNN, DT, RF and XGBoost models to predict the susceptibility index of
each pixel in the study area, and to establish a pixel-based DFS classification map (Figure 6). The result
is a raster map with each raster pixel assigned a unique susceptibility index value. The susceptibility
index values are divided into four categories: 0, 1, 2 and 3, indicating very low, low, medium and high
debris flow levels, respectively.

In the debris flow map constructed by the BPNN model, about 2% of the study area is not
susceptible to debris flow, and the other 19.8%, 68.1%, and 9.6% are low, medium and high probability
DFS levels, respectively, as shown in Figure 6a.

The debris flow susceptibility map predicted by 1D-CNN is shown in Figure 6c. Among them,
the medium-prone area accounts for the vast majority of the study area. The other 11.12%, 21.02% and
3.35% are very low, Low and high probability DFS levels, respectively.

The DFS map generated by the DT model is shown in Figure 6b. 11.2% of the study area is not
susceptible to debris flows, 21.8% is seldom affected by debris flows, while the medium probability
debris flow area accounts for 56.5%, and the remaining 10.3% is high-probability area (Figure 6b).

The proportion of each RF susceptibility level in the DFS map fitted by the RF model is very low
(2.1%), low (34.5%), medium (62.8%), and high (0.27%), as shown in Figure 6d.

Finally, based on the XGBoost model, a DFS map is generated as shown in Figure 6e. The results
of DFS level distribution are very similar to those based on the random forest model. The medium
susceptibility is the main debris flow level, which accounts for 52.5%; the second large area corresponds
to the low susceptibility level, 37.2%. Very low and highly susceptible areas are small, accounting for
6.6% and 3%, respectively (Figure 7).
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3.3. Model Evaluation

After successfully constructing the DFS model, we evaluated its performance using five traditional
evaluation methods, i.e., Recall, Precision, F1 score, Accuracy, and AUC. We also calculated the
time required to forecast the entire study area. The results of each model are shown in Table 7.
In particular, because the ROC curve corresponding to the AUC index of each model can directly reflect
the advantages and disadvantages of the model, it is drawn in Figure 8. As seen from Table 7 and
Figure 8, the following findings are listed.

(1) The values of the Recall, Precision, F1 score, Accuracy, and AUC evaluation score of the five
algorithms are quite different. That is, the performances of different algorithms show great
differences in the test set.

(2) Despite large differences in the evaluation index values, their differences show the same trend.
That is, the algorithm is superior when each evaluation index is superior to the other algorithms.

(3) The AUC evaluation scores of the five algorithms are very high, indicating that they are excellent
for evaluating the DFS in our study area. The AUC values of the BPNN, 1D-CNN, DT, RF and
XGBoost are 0.946, 0.976, 0.911, 0.976 and 0.988, respectively. It can be seen that XGBoost has the
best performance.

(4) From the results of the five indicators, the evaluation scores of the BPNN and DT models are
similar, and the 1D-CNN, RF and XGBoost models also take approximate scores, but the former
has a large gap with the latter.

(5) The models in this manuscript are all operated on Intel (R) Core (TM) i7-6800K CPU @ 3.4 GHz
with 64 RAM servers. In terms of predicting the time of the entire area, the DT model takes the
shortest time. XGBoost and 1D-CNN models take about the same time, and the calculation time
is at a medium level. The prediction speed of the BPNN model is slow, which takes about 20 min
for a single prediction. Finally, it can be seen that the RF calculation takes the longest time.

Table 7. Various assessment scores for five debris flow-prone models.

Model F1 Score AUC Precision Accuracy Recall Prediction Time/min

BPNN 0.783 0.946 0.723 0.795 0.914 20
DT 0.77 0.855 0.709 0.782 0.911 1.2
RF 0.859 0.976 0.813 0.852 0.934 28

XGBoost 0.9124 0.988 0.878 0.912 0.955 12
1D-CNN 0.901 0.976 0.914 0.906 0.906 11.2Remote Sens. 2018, 10, x FOR PEER REVIEW  20 of 26 
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3.4. Importance of Triggering Factors

After successfully implementing the five evaluation algorithms, it is concluded that the XGBoost
model performs the best in the DFS mapping, and the model can be used to fit the relationship between
the debris flow triggering factors and the susceptibility. However, not all selected debris flow triggering
factors have a good predictive power. Different triggering factors have different contributions to the
model. Therefore, it is necessary to understand the contribution of each triggering factor. The practical
significance of this research is that we can provide suggestions and references for local governments
and researchers on site selection for public facilities by studying the importance of different debris flow
triggering factors characteristics.

As shown in Figure 9, the ordinate represents fifteen index factors for evaluating the DFS, and the
abscissa is expressed as the ratio of the number of times each feature attribute used for DT node
segmentation to that all attributes used for node segmentation. It can be clearly seen that the aspect is the
most important factor affecting the occurrence of debris flows, closely followed by the rainfall, and the
impacts of elevation and slope curvature are ranked the third and fourth, respectively. According
to these main characteristics, topographic and climatic factors are the main triggering factors for the
occurrence of debris flows in Shigatse. The last few debris flow triggering factors ranked by feature
importance have relatively little impact on debris flow events especially soil factors.
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4. Discussion

This study aims to estimate the regional DFS by using five highly representative machine learning
models, i.e., BPNN, 1D-CNN, DT, RF, and XGBoost. According to literature, such investigations are
rare in Shigatse, particularly based on 1D-CNN and XGBoost.

4.1. Model Performance

First, as seen from Table 4, category imbalances have caused over-fitting problems on all of the
above machine learning models, resulting in poor model performance. The data generated by the
interpolation method is close to the original data, and we will adopt better interpolation methods to
obtain more reasonable data and use other methods to alleviate the over-fitting problem of machine
learning for unbalanced data [44] in the future studies.

As shown in Table 7, among the five evaluation methods (Recall, Precision, F1 score, Accuracy and
AUC), the results show that there is a gap in performance among different algorithms. The performance
rankings of the five models from high to low are XGBoost, 1D-CNN, RF, BPNN and DT. In addition,
ANOVA and Tukey HSD test results show that XGBoost is significantly different from the RF, BPNN,
and DT models. This also shows that XGBoost’s generalization performance and predictive ability are
significantly better than RF, BPNN and DT.
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In the early days, BPNN showed excellent performance in a variety of classification tasks. However,
this research only demonstrates its accuracy to outperform a single DT. XGBoost is not only better than
BPNN in terms of accuracy, but also in terms of speed, because BPNN has too many parameters to be
adjusted. Especially, XGBoost can generate “feature importance” that allows researchers to analyze the
data and BPNN is a black box model, for which much research has been done to explain the internal
structure. Although XGBoost has not been used for debris flow susceptibility analysis, some scholars
in the field of mountain disaster study have similar conclusions that the boost model exceeds the
accuracy of BPNN by 8% [18].

RF and XGBoost are integrated machine learning algorithms based on DT. The corresponding
evaluation scores are higher than that of a single DT. Such a result shows that the integrated algorithm
can make up the lack of fitting ability of a single DT. Although RF and XGBoost are both integrated
machine learning algorithms, XGBoost’s overall performance is better than the RF algorithm. The RF
algorithm focuses on the final voting results of all DTs, which can reduce variance, while XGBoost
focuses on the residuals generated by the last iteration which can reduce both variance and bias.
Performance comparisons between XGBoost and RF have been commonly obtained in many research
areas. Usually, XGBoost is in the leading position [39,45].

Like XGoost, 1D-CNN has not been used in debris flow susceptibility, and little literature is
concerned about them. The cross-validation results show that the accuracies of XGBoost and 1D-CNN
are not significantly different, but the average accuracy of XGBoost is better than that of 1D-CNN.
The test performance of the two models is also led by XGBoost. The main reason for this result is
that CNN can capture things like image, audio and possibly text quite well by modeling the spatial
temporal locality, while tree-based models solve tabular data very well.

When considering the model classification performance comprehensively, we can find that
XGBoost has the best comprehensive performance with high classification accuracy, good prediction
effect and less calculation time. Therefore, the XGBoost research method should attract more attention
in the future evaluation of DFS.

4.2. Feature Importance

Based on the selected model to construct the DFS map, the following conclusions can be drawn
from Figure 4. The DFS in the study area is mainly medium and low, accounting for more than 50% of
the entire study area. The feature attribute scores provided by the tree-based machine learning method
are important for analyzing the cause of debris flows. The results have shown that the aspect, profile
curvature, annual average rainfall and DEM are the main factors affecting the occurrence of debris
flows in the study area. The other triggering factors such as vegetation cover and human activities also
have a certain impact on debris flow, while the contribution of soil factors to the modeling is relatively
weak. According to the evaluation results of the model feature attributes, the targeted analysis and
investigation of the debris flow triggering factors in the study area can be carried out. Based on
historical data statistics, analysis of the main triggering factors is conducted.

In the study area, different slope directions lead to differences in hydrothermal conditions, which in
turn affect the geographical element distributions such as vegetation, hydrology, soil, and topography.
Some Chinese scholars have also examined the relationship between vegetation and debris flow
erosion and suggested that the slope direction largely determines the vegetation type and soil type [46].
Feature selection show that the slope aspect has the greatest impact on the distribution of debris flows.
According to the actual debris flow events statistics (Figure 10a), the distribution of debris flow events
in each aspect is given, and the number of debris flows on the southwest slope and the east slope are
relatively large. Among them, the debris flow events on the southwest slope are the densest as well as
the distribution location of highly occurrence-prone debris flow events.

The curvature of the slope describes its shape, which controls the formation of debris flow events
by affecting the gravitational potential energy and water collection conditions. The feature selection
results show that the profile curvature can be better used to estimate the DFS than the plane curvature
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and total curvature. The shape of the slope is usually linear, concave or convex, indicating the mid-term
evolution of the landscape, the maturity of the landscape and the period of violence of the landscape,
respectively. According to the statistic (Figure 10b), the debris flows are mainly concentrated in the
area where the curvature is negative, i.e., the surface of the pixel is convex. This statistical result is
consistent with the results of Guo et al. [47] on mountain debris flow events.

The overall elevation of the Shigatse region is very high and the valley is deep. Statistics on the
distribution of debris flow events at different altitudes indicate that debris flow events are mainly
distributed at altitudes between 3600–4600 m (Figure 10c). High-susceptibility and medium-susceptibility
levels are distributed at the altitude of about 4000 m. The reason is that the region at the altitude
between 3600 and 4600 m is very steep and densely populated. As a result, human activities have a huge
impact on it. In addition, the area within this altitude is mainly eroded by flowing water with serious
accumulation of loose materials and debris flow events particularly develop. Tang et al. [31] also got
similar conclusions for the investigation of the study area.

Rainfall is the main triggering factor for debris flows. It mainly promotes the mountain debris
flows by increasing soil bulk density and reducing cohesion and internal friction. The study area is
mainly a rain-sparing region with annual average rainfall less than 1350 mm (Figure 10d). However,
the debris flow has a very significant correlation with the rainfall season in Shigatse. Although the
annual precipitation is not high, the temporal distribution is concentrated. That is, heavy rain season is
also the season when debris flows frequently occur. According to statistics, debris flows in the flood
season in Shigatse accounts for more than 70% of the total debris flows.
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Figure 10. Major triggering factors data obtained from the initial region of the debris flow: (a) Aspect;
(b) Profile curvature; (c) Rainfall; and (d) Elevation.

Machine learning algorithms can handle large-scale data. In addition, they are more objective than
the traditional qualitative evaluation methods and can support making decisions without expert system
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support. However, there are some inherent problems. For example, the data preprocessing workload
is large and time-consuming, and the data processing results have a great impact on the classifier.

5. Conclusions

In this study, multi-source satellite data and GIS are used to characterize the gestation environment
of debris flows in the study area, and then input these environmental characteristics into the machine
learning methods to establish the DFS model. The role and weight of the triggering factors shown by
the training process are analyzed for the purpose of further studying the main causes of debris flow.
In the entire research process described above, the four main findings are described as follows:

(1) Satellite remote sensing can provide data for regional DFS analysis, especially for mountainous
areas such as the southwestern Tibet with steep terrain where the sites are not always accessible
for investigation. Higher resolution does allow the image to better describe the terrain where the
debris flow occurs [48] and potentially improve further analysis. It is important and necessary to
use topographical factors, human activities, vegetation cover, climatic and soil elements provided
by satellite remote sensing to estimate regional debris flow susceptibility.

(2) Five machine learning algorithms were used to construct DFS map in Shigatse. The results
confirm that all five methods can be used to analyze the susceptibility of debris flows. According
to the performance, XGBoost ranks the first, and 1D-CNN is the second, followed by RF, BPNN,
and DT. XGBoost has the best predictive performance with the highest score among the five
evaluation methods. The ANOVA method and the Tukey’s HSD test showed that the accuracy of
XGBoost is significantly better than those of RF, BPNN, and DT, but it is not significantly different
from 1D-CNN. In terms of the time required for prediction, DT takes the least time, and the time
required for 1D-CNN is moderate and close to XGBoost. RF and BPNN are slower to calculate.
It is notable that this is the first comparative experiment of XGBoost and 1D-CNN in the study of
DFS. The ranking of the model based on the “feature importance” indicates that the slope aspect,
rainfall, profile curvature and DEM have a greater impact on the debris flows. The results of
this study are significant for the local public facility construction and the residential property
protection. Therefore, the XGBoost method has good prospects in estimating the DFS.

(3) By comparing the debris flow susceptibility maps of the five prediction algorithms, it is found that
the prediction results of five models all show that the moderately susceptible areas account for a
large proportion. This experiment has not yet explained the reasons for the different prediction
results. The causes will be explored in the subsequent studies. There may be some shortcomings
in the use of susceptibility in statistics as a label in experiments. In the follow-up study, we are
going to use the clustering algorithm first to obtain the location where the debris flow is not easy
to occur and use it together with the existing debris flow data for the classification of debris flow
susceptibility. With the development of machine learning technology, we will strive to further
improve the performance of the model for DFS by modifying and optimizing the algorithm.

(4) Debris flows are common in mountain areas. Five machine learning models are used to analyze
the debris flow events in the study. The results show that the XGBoost model has the best
predictive performance, which can be used to prevent casualties and economic losses caused by
debris flows. For local land planning and land use, relevant departments can use the XGBoost
model in combination with satellite remote sensing and GIS spatial data processing to create
feature maps and high-precision area-sensitive maps to provide guidance and preparation for
debris flow prevention and mitigation.
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