Retrieval and Validation of Cloud Top Temperature from the Geostationary Satellite INSAT-3D
Abstract
:1. Introduction
2. Data
3. Methods
3.1. Cloud Detection Scheme: Algorithm Overview
3.1.1. Cloud identification tests in the algorithm
Primary Test: Dynamic Threshold Test
Secondary Tests
Detection of STC Clouds
3.2. Retrieval of Cloud Top Temperature
3.2.1. Retrieval of Cloud Top Temperature of STC and Partial Clouds
3.3. Cloud Mask from CALIPSO and MODIS for Validation
3.4. Implementation of INSAT-3D Algorithm on MODIS Channels
3.5. Cloud Classes and CTT from CALIOP
3.6. Cloud Layer Identification and CTT Retrieval from Radiosonde Profiles
4. Results and Discussion
4.1. Retrieval of Cloud Mask from INSAT-3D
4.2. Comparison of the Cloud Detection Scheme
4.2.1. Comparison of INSAT-3D Retrieved Cloud Mask with CALIPSO Cloud Data
4.2.2. Comparison of INSAT-3D Retrieved Cloud Mask with MODIS Cloud Data
4.2.3. Implementation of the Algorithm on MODIS
4.3. Cloud Classification from INSAT-3D and Inter-Comparison with CALIPSO
4.4. Retrieval of CTT
4.5. Validation of INSAT-3D Retrieved CTT
4.6. Comparison of INSAT-3D Retrieved CTT using CALIPSO
4.7. Sensitivity of CTT Retrieval to Cloud Classification Scheme
4.8. Sensitivity of CTT to the Retrieval Criteria
- (i)
- At least one high level opaque cloud, STC cloud and clear sky pixel.
- (ii)
- At least one pixel of high level opaque cloud.
- (iii)
- At least 25 cloud pixels irrespective of any of the conditions.
- (iv)
- At least one opaque cloud (high/low), partial and clear sky pixel.
- (v)
- At least one pixel of opaque cloud (high/low).
- (vi)
- At least 25 cloud pixels, irrespective of any of the conditions.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Hollmann, R.; Merchant, C.J.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.; Defourny, P.; de Leeuw, G.; Forsberg, R.; et al. The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables. Bull. Am. Meteorol. Soc. 2013, 94, 1541–1552. [Google Scholar] [CrossRef]
- Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P.N.; Heidinger, A.; Joro, S.; Kniffka, A.; et al. Remote sensing of cloud top pressure/height from SEVIRI: Analysis of ten current retrieval algorithms. Atmos. Meas. Tech. 2014, 7, 2839–2867. [Google Scholar] [CrossRef]
- Berry, E.; Mace, G.G. Cloud properties and radiative effects of the Asian summer monsoon derived from A-Train data. J. Geophys. Res. 2014, 119, 9492–9508. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Doelling, D. On the net radiative effectiveness of clouds. J. Geophys. Res. 1991, 96, 869–891. [Google Scholar] [CrossRef]
- Liou, K.-N.; Liou, K.-N. Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective. Mon. Weather Rev. 1986, 114, 1167–1199. [Google Scholar] [CrossRef]
- Lolli, S.; Campbell, J.R.; Lewis, J.R.; Gu, Y.; Marquis, J.W.; Chew, B.N.; Liew, S.C.; Salinas, S.V.; Welton, E.J. Daytime top-of-the-atmosphere cirrus cloud radiative forcing properties at Singapore. J. Appl. Meteorol. Climatol. 2017, 56, 1249–1257. [Google Scholar] [CrossRef]
- Ramanathan, V.; Inamdar, A. The radiative forcing due to clouds and water vapor. Front. Clim. Model. 2006, 119–151. [Google Scholar]
- Schumann, U.; Mayer, B.; Graf, K.; Mannstein, H. A parametric radiative forcing model for contrail cirrus. J. Appl. Meteorol. Climatol. 2012, 51, 1391–1406. [Google Scholar] [CrossRef]
- Kiehl, J.T. On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J. Clim. 1994, 7, 559–565. [Google Scholar] [CrossRef]
- Kiehl, J.T.; Ramanathan, V. Comparison of cloud forcing derived from the Earth Radiation Budget Experiment with that simulated by the NCAR community climate model. J. Geophys. Res. 1990, 95, 11679–11698. [Google Scholar] [CrossRef]
- Cess, R.D. Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res. 1990, 95, 16601–16615. [Google Scholar] [CrossRef]
- Hansen, J.E.; Sato, M.; Lacis, A.; Ruedy, R.; Tegen, I.; Matthews, E. Climate forcings in the Industrial era. Proc. Natl. Acad. Sci. USA 1998, 95, 12753–12758. [Google Scholar] [CrossRef] [PubMed]
- Soden, B.J.; Held, I.M. An assessment of climate feedbacks in coupled ocean-atmospheric models. J. Clim. 2006, 19, 3354–3360. [Google Scholar] [CrossRef]
- Jiang, J.H.; Su, H.; Zhai, C.; Perun, V.S.; Del Genio, A.; Nazarenko, L.S.; Donner, L.J.; Horowitz, L.; Seman, C.; Cole, J.; et al. Evaluation of cloud and water vapor simulations in CMIP5 climate models Using NASA “A-Train” satellite observations. J. Geophys. Res. Atmos. 2012, 117, D14105. [Google Scholar] [CrossRef]
- Taylor, P.C. The Role of Clouds: An Introduction and Rapporteur Report. Surv. Geophys. 2012, 33, 609–617. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneve, Switzerland, 2014; ISBN 9789291691432.
- Ignatov, A.; Minnis, P.; Loeb, N.; Wielicki, B.; Miller, W.; Sun-Mack, S.; Tanré, D.; Remer, L.; Laszlo, I.; Geier, E. Two MODIS aerosol products over ocean on the Terra and Aqua CERES SSF datasets. J. Atmos. Sci. 2005, 62, 1008–1031. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Koren, I.; Remer, L.A.; Rosenfeld, D.; Rudich, Y. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc. Natl. Acad. Sci. USA 2005, 102, 11207–11212. [Google Scholar] [CrossRef]
- Loeb, N.G.; Manalo-Smith, N. Top-of-atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations. J. Clim. 2005, 18, 3506–3526. [Google Scholar] [CrossRef]
- Matheson, M.A.; Coakley, J.A.; Tahnk, W.R. Multiyear Advanced Very High Resolution Radiometer observations of summertime stratocumulus collocated with aerosols in the northeastern Atlantic. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Koren, I.; Vanderlei Martins, J.; Remer, L.A.; Afargan, H. Smoke invigoration versus inhibition of clouds over the amazon. Science 2008, 321, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Koren, I.; Kaufman, Y.J.; Rosenfeld, D.; Remer, L.A.; Rudich, Y. Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Koren, I.; Feingold, G.; Remer, L.A. The invigoration of deep convective clouds over the Atlantic: Aerosol effect, meteorology or retrieval artifact? Atmos. Chem. Phys. 2010, 10, 8855–8872. [Google Scholar] [CrossRef]
- Yuan, T.; Remer, L.A.; Yu, H. Microphysical, macrophysical and radiative signatures of volcanic aerosols in trade wind cumulus observed by the A-Train. Atmos. Chem. Phys. 2011, 11, 7119–7132. [Google Scholar] [CrossRef]
- Andreae, M.O.; Rosenfeld, D.; Artaxo, P.; Costa, A.A.; Frank, G.P.; Longo, K.M.; Silva-Dias, M.A.F. Smoking Rain Clouds over the Amazon. Science 2004, 103, 32141–32157. [Google Scholar] [CrossRef] [PubMed]
- Bell, T.L.; Rosenfeld, D.; Kim, K.M.; Yoo, J.M.; Lee, M.I.; Hahnenberger, M. Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Jiang, J.H.; Su, H.; Huang, L.; Wang, Y.; Massie, S.; Zhao, B.; Omar, A.; Wang, Z. Contrasting effects on deep convective clouds by different types of aerosols. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef]
- Khain, A.; Rosenfeld, D.; Pokrovsky, A. Aerosol impact on the dynamics and microphysics of deep convective clouds. Q. J. R. Meteorol. Soc. 2005, 131, 2639–2663. [Google Scholar] [CrossRef]
- Lin, J.C.; Matsui, T.; Pielke, S.A.; Kummerow, C. Effects of biomass-burning-derived aerosols on precipitations and clouds in the Amazon Basin: A satellite-based empirical study. J. Geophys. Res. Atmos. 2006. [Google Scholar] [CrossRef]
- Niu, F.; Li, Z. Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmos. Chem. Phys. 2012, 12, 8491–8498. [Google Scholar] [CrossRef]
- Massie, S.T.; Heymsfield, A.; Schmitt, C.; Müller, D.; Seifert, P. Aerosol indirect effects as a function of cloud top pressure. J. Geophys. Res. Atmos. 2007. [Google Scholar] [CrossRef]
- Wonsick, M.M.; Pinker, R.T.; Govaerts, Y. Cloud variability over the Indian monsoon region as observed from satellites. J. Appl. Meteorol. Climatol. 2009, 48, 1803–1821. [Google Scholar] [CrossRef]
- Shang, H.; Letu, H.; Nakajima, T.Y.; Wang, Z.; Ma, R.; Wang, T.; Lei, Y.; Ji, D.; Li, S.; Shi, J. Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data. Sci. Rep. 2018. [Google Scholar] [CrossRef] [PubMed]
- Katti, V.R.; Pratap, V.R.; Dave, R.K.; Mankad, K.N. INSAT-3D: An advanced meteorological mission over Indian Ocean. GEOSS Next Gen. Sens. Mission. 2006, 6407, 640709. [Google Scholar]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Sassen, K.; Wang, Z.; Liu, D. Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res. 2008, 113, D00A12. [Google Scholar] [CrossRef]
- Sassen, K.; Wang, Z.; Liu, D. Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat. J. Geophys. Res. Atmos. 2009, 114, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.Y.; Francis, P.N.; Saunders, R.W.; Kim, J. Comparison of SEVIRI-derived cloud occurrence frequency and cloud-top height with a-train data. Remote Sens. 2017, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Stengel, M.; Mieruch, S.; Jerg, M.; Karlsson, K.G.; Scheirer, R.; Maddux, B.; Meirink, J.F.; Poulsen, C.; Siddans, R.; Walther, A.; et al. The Clouds Climate Change Initiative: Assessment of state-of-the-art cloud property retrieval schemes applied to AVHRR heritage measurements. Remote Sens. Environ. 2015, 162, 363–379. [Google Scholar] [CrossRef]
- Qin, Y.; Steven, A.D.L.; Schroeder, T.; McVicar, T.R.; Huang, J.; Cope, M.; Zhou, S. Cloud cover in the Australian region: Development and validation of a cloud masking, classification and optical depth retrieval algorithm for the advanced Himawari imager. Front. Environ. Sci. 2019, 7. [Google Scholar] [CrossRef]
- Liu, Z.; Vaughan, M.; Winker, D.; Kittaka, C.; Getzewich, B.; Kuehn, R.; Omar, A.; Powell, K.; Trepte, C.; Hostetler, C. The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance. J. Atmos. Ocean. Technol. 2009. [Google Scholar] [CrossRef]
- Getzewich, B.J.; Vaughan, M.A.; Hunt, W.H.; Avery, M.A.; Powell, K.A.; Tackett, J.L.; Winker, D.M.; Kar, J.; Lee, K.P.; Toth, T.D. CALIPSO lidar calibration at 532 nm: Version 4 daytime algorithm. Atmos. Meas. Tech. 2018, 11, 6309–6323. [Google Scholar] [CrossRef] [Green Version]
- Kar, J.; Vaughan, M.A.; Lee, K.P.; Tackett, J.L.; Avery, M.A.; Garnier, A.; Getzewich, B.J.; Hunt, W.H.; Josset, D.; Liu, Z.; et al. CALIPSO lidar calibration at 532 nm: Version 4 nighttime algorithm. Atmos. Meas. Tech. 2018, 11, 1459–1479. [Google Scholar] [CrossRef] [Green Version]
- Barnes, W.L.; Pagano, T.S.; Salomonson, V. V Prelaunch Characteristics of the Moderate Resolution. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1088–1100. [Google Scholar] [CrossRef] [Green Version]
- Guenther, B.; Godden, G.D.; Xiong, X.; Knight, E.J.; Qiu, S.-Y.; Montgomery, H.; Hopkins, M.M.; Khayat, M.G.; Hao, Z. Prelaunch algorithm and data format for the Level 1 calibration products for the EOS-AM1 Moderate Resolution Imaging Spectroradiometer (MODIS). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1142–1151. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, S.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeller, C.C.; Gumley, L.E. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. 1998, 103, 32141–32157. [Google Scholar] [CrossRef]
- Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riédi, J.C.; Frey, R.A. The MODIS cloud products: Algorithms and examples from terra. IEEE Trans. Geosci. Remote Sens. 2003, 41, 459–473. [Google Scholar] [CrossRef] [Green Version]
- Derrien, M.; Le Gléau, H. MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote Sens. 2005, 26, 4707–4732. [Google Scholar] [CrossRef]
- Dybbroe, A.; Karlsson, K.-G.; Thoss, A. NWCSAF AVHRR Cloud Detection and Analysis Using Dynamic Thresholds and Radiative Transfer Modeling. Part I: Algorithm Description. J. Appl. Meteorol. 2005, 44, 39–54. [Google Scholar] [CrossRef]
- Choi, Y.; Ho, C. Validation of cloud property retrievals from MTSAT-1R imagery using MODIS observations. Int. J. Remote Sens. 2009, 30, 5935–5958. [Google Scholar] [CrossRef]
- Frey, R.A.; Ackerman, S.A.; Liu, Y.; Strabala, K.I.; Zhang, H.; Key, J.R.; Wang, X. Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for Collection 5. J. Atmos. Ocean. Technol. 2008, 25, 1057–1072. [Google Scholar] [CrossRef]
- Rossow, W.B.; Garder, L.C. Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Clim. 1993, 6, 2341–2369. [Google Scholar] [CrossRef]
- Hunt, G.E. Radiative properties of terrestrial clouds at visible and infra-red thermal window wavelengths. Q. J. R. Meteorol. Soc. 1973, 99, 346–369. [Google Scholar] [CrossRef]
- Jedlovec, G.J.; Haines, S.L.; LaFontaine, F.J. Spatial and Temporal Varying Thresholds for Cloud Detection in GOES Imagery. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1705–1717. [Google Scholar] [CrossRef]
- Coakley, J.A.; Bretherton, F.P. Cloud cover from high-resolution scanner data: Detecting and allowing for partially filled fields of view. J. Geophys. Res. 1982, 87, 4917. [Google Scholar] [CrossRef]
- Borgne, P.L.; Legendre, G.; Marsouin, A. Ocean and sea ice SAF Product from MSG data. In Proceedings of the EUMETSAT Meteorological Satellite Conference, Weimar, Germany, 29 September–3 October 2003; pp. 512–519. [Google Scholar]
- Shang, H.; Chen, L.; Letu, H.; Zhao, M.; Li, S.; Bao, S. Development of a daytime cloud and haze detection algorithm for Himawari-8 satellite measurements over central and eastern China. J. Geophys. Res. 2017. [Google Scholar] [CrossRef]
- Berendes, T.A.; Kuo, K.S.; Logar, A.M.; Corwin, E.M.; Welch, R.M.; Baum, B.A.; Pretre, A.; Weger, R.C. A comparison of paired histogram, maximum likelihood, class elimination, and neural network approaches for daylight global cloud classification using AVHRR imagery. J. Geophys. Res. Atmos. 1999, 104, 6199–6213. [Google Scholar] [CrossRef]
- Platt, C.M.R.; Stephens, G.L. The interpretation of remotely sensed high cloud emittance. J. Atmos. Sci. 1980, 37, 2314–2322. [Google Scholar] [CrossRef]
- Inoue, T. On the Temperature Measurements and Effective Cirrus Emissivity Clouds by Window Determination Region of Semi-Transparent in the. J. Meteorol. Soc. Jpn. 1985, 63, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Inoue, T. A cloud type classification with NOAA 7 split-window measurements. J. Geophys. Res. 1987, 92, 3991–4000. [Google Scholar] [CrossRef]
- Roca, R.; Viollier, M.; Picon, L.; Desbois, M. A multisatellite analysis of deep convection and its moist environment over the Indian Ocean during the winter monsoon. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef]
- Rajeev, K.; Parameswaran, K.; Meenu, S.; Sunilkumar, S.V.; Thampi, B.V.; Raju, C.S.; Murthy, B.V.K.; Jagannath, K.S.; Mehta, S.K.; Rao, D.N.; et al. Observational assessment of the potential of satellite-based water vapor and thermal IR brightness temperatures in detecting semitransparent cirrus. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Wu, M.-L.C. A method for remote sensing emissivity, fractional cloud cover and cloud top temperature of high level, thin clouds. J. Clim. Appl. Meteorol. 1987, 26, 225–233. [Google Scholar] [CrossRef]
- Korpela, A.; Dybbroe, A.; Thoss, A. Nowcasting SAF- Retrieving Cloud Top Temperature and Height in Semi-Transparent and Fractional Cloudiness Using AVHRR. Reports Meteorol. 100. 2001. Available online: https://www.smhi.se/polopoly_fs/1.139622!/Meteorologi_100.pdf (accessed on 16 November 2019).
- NASA: CALIPSO. Data User’s Guide–Data Product Descriptions—Lidar Level 2 5 km Vertical Feature Mask (VFM) Version 4.10 Product. Available online: https//www-calipso.larc.nasa.gov/resources/calipso_users_guide/data_summaries/vfm/index_v410.php (accessed on 16 November 2019).
- Zhang, J.; Chen, H.; Li, Z.; Fan, X.; Peng, L.; Yu, Y.; Cribb, M. Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. J. Geophys. Res. Atmos. 2010, 115, 1–13. [Google Scholar] [CrossRef]
- Poore, K.D.; Junhong, W.; Rossow, W.B. Cloud layer thicknesses from a combination of surface and upper-air observations. J. Clim. 1995, 8, 550–568. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Rossow, W. Determination of Cloud Vertical Structure from Upper-Air Observations. J. Appl. Meteorol. 1995, 2243–2258. [Google Scholar] [CrossRef] [Green Version]
- Costa-Surós, M.; Calbó, J.; González, J.A.; Long, C.N. Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements. Atmos. Meas. Tech. 2014, 7, 2757–2773. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, Z.; Chen, H.; Cribb, M. Validation of a radiosonde-based cloud layer detection method against a ground-based remote sensing method at multiple arm sites. J. Geophys. Res. Atmos. 2013, 118, 846–858. [Google Scholar] [CrossRef] [Green Version]
- Narendra Reddy, N.; Venkat Ratnam, M.; Basha, G.; Ravikiran, V. Cloud vertical structure over a tropical station obtained using long-term high-resolution radiosonde measurements. Atmos. Chem. Phys. 2018, 18, 11709–11727. [Google Scholar] [CrossRef] [Green Version]
- Ramana, M.V.; Ramanathan, V. Abrupt transition from natural to anthropogenic aerosol radiative forcing: Observations at the ABC-Maldives Climate Observatory. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Benas, N.; Finkensieper, S.; Stengel, M.; Van Zadelhoff, G.J.; Hanschmann, T.; Hollmann, R.; Meirink, J.F. The MSG-SEVIRI-based cloud property data record CLAAS-2. Earth Syst. Sci. Data 2017, 9, 415–434. [Google Scholar] [CrossRef] [Green Version]
- Stengel, M.; Stapelberg, S.; Sus, O.; Schlundt, C.; Poulsen, C.; Thomas, G.; Christensen, M.; Henken, C.C.; Preusker, R.; Fischer, J.; et al. Cloud property datasets retrieved from AVHRR, MODIS, AATSR and MERIS in the framework of the Cloud-cci project. Earth Syst. Sci. Data 2017, 9, 881–904. [Google Scholar] [CrossRef] [Green Version]
- Wielicki, B.A.; Parker, L. On the determination of cloud cover from satellite sensors: The effect of sensor spatial resolution. J. Geophys. Res. 1992, 97, 12799–12823. [Google Scholar] [CrossRef]
- Chan, M.A.; Comiso, J.C. Cloud features detected by MODIS but not by CloudSat and CALIOP. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Kahn, B.H.; Chahine, M.T.; Stephens, G.L.; Mace, G.G.; Marchand, R.T.; Wang, Z.; Barnet, C.D.; Eldering, A.; Holz, R.E.; Kuehn, R.E.; et al. Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount. Atmos. Chem. Phys. 2008, 8, 1231–1248. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, S.; Frey, R.; Strabala, K.; Liu, Y.; Gumley, L.; Baum, B.; Menzel, P. Discriminating Clear-Sky from Cloud with MODIS Algorithm Theoretical Basis Document (MOD35); 2010. Available online: https://modis-images.gsfc.nasa.gov/_docs/MOD35_ATBD_Collection6.pdf (accessed on 16 November 2019).
- Wang, T.; Fetzer, E.J.; Wong, S.; Kahn, B.H.; Yue, Q. Validation of MODIS cloud mask and multilayer flag using CloudSat-CALIPSO cloud profiles and a cross-reference of their cloud classifications. J. Geophys. Res. 2016. [Google Scholar] [CrossRef]
- Hanna, J.W.; Schultz, D.M.; Irving, A.R. Cloud-top temperatures for precipitating winter clouds. J. Appl. Meteorol. Climatol. 2008, 47, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Sherwood, S.C.; Chae, J.H.; Minnis, P.; McGill, M. Underestimation of deep convective cloud tops by thermal imagery. Geophys. Res. Lett. 2004. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Huang, Y.; Siems, S.; Manton, M.; Protat, A.; Majewski, L.; Nguyen, H. Evaluating Himawari-8 Cloud Products Using Shipborne and CALIPSO Observations: Cloud-top Height and Cloud-top Temperature. J. Atmos. Ocean. Technol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.; Stier, P.; White, B.; Finkensieper, S.; Stengel, M. Evaluating the diurnal cycle in cloud top temperature from SEVIRI. Atmos. Chem. Phys. 2017, 17, 7035–7053. [Google Scholar] [CrossRef] [Green Version]
- Stubenrauch, C.J.; Cros, S.; Guignard, A.; Lamquin, N. A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat. Atmos. Chem. Phys. 2010, 10, 7197–7214. [Google Scholar] [CrossRef] [Green Version]
- Minnis, P.; Yost, C.R.; Sun-Mack, S.; Chen, Y. Estimating the top altitude of optically thick ice clouds from thermal infrared satellite observations using CALIPSO data. Geophys. Res. Lett. 2008. [Google Scholar] [CrossRef] [Green Version]
- Stubenrauch, C.J.; Rossow, W.B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Di Girolamo, L.; Getzewich, B.; Guignard, A.; Heidinger, A.; et al. Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel. Bull. Am. Meteorol. Soc. 2013. [Google Scholar] [CrossRef]
- Hamada, A.; Nishi, N.; Kida, H.; Shiotani, M.; Iwasaki, S.; Kamei, A.; Ohno, Y.; Kuroiwa, H.; Kumagai, H.; Okmoto, H. Cloud type classification by GMS-5 infrared split window measurements with millimeter-wave radar and TRMM observations in the tropics. In Proceedings of the 2nd TRMM International Science Conference, Nara, Japan, 6–10 September 2004. [Google Scholar]
- Lutz, H.-J.; Inoue, T.; Schmetz, J. Comparison of a Split-window and a Multi-spectral Cloud Classification for MODIS Observations. J. Meteorol. Soc. Jpn. 2003, 81, 623–631. [Google Scholar] [CrossRef] [Green Version]
Channels | Spectral Range (µm) | Central Wavelength (µm) | Resolution (km) |
---|---|---|---|
Visible (VIS) | 0.55–0.75 | 0.65 | 1.0 |
Short-wave Infrared (SWIR) | 1.55–1.70 | 1.62 | 1.0 |
Mid-wave Infrared (MIR) | 3.80–4.00 | 3.9 | 4.0 |
Water Vapor (WV) | 6.50–7.10 | 6.8 | 8.0 |
Thermal Infrared I (TIR1) | 10.3–11.3 | 10.8 | 4.0 |
Thermal Infrared II (TIR2) | 11.5–12.5 | 12.0 | 4.0 |
Hit Rate (%) | Cloudy Regions | Clear Regions | ||
---|---|---|---|---|
POD (%) | FAR (%) | POD (%) | FAR (%) | |
83.12 | 81.42 | 18.21 | 84.57 | 15.76 |
Score | INSAT-3D | Geostationary Satellite | Polar Orbiting | ||||
---|---|---|---|---|---|---|---|
Current Algorithm | SEVIRI (Chung et al. [39]) | SEVIRI (Benas et al. [75]) | AVHRR-AM (Stengel et al. [76]) | AVHRR-PM (Stengel et al. [76]) | MODIS- Terra (Stengel et al. [76]) | MODIS- Aqua (Stengel et al. [76]) | |
POD of cloudy (%) | 81.42 | 82.3 | 87.5 | 78.3 | 79.0 | 91.0 | 81.6 |
POD of clear (%) | 84.57 | 82.1 | 69.4 | 70.4 | 87.7 | 70.0 | 83.1 |
Hit rate (%) | 83.12 | 82.24 | 80.9 | 76.2 | 81.2 | 91.0 | 81.6 |
Period | Mar 2016 to Feb 2017 | May 2013 to Apr 2014 | 2006 to 2015 | 2006 to 2014 | 2006 to 2014 | 2006 to 2014 | 2006 to 2014 |
Region/Coverage | 45.5°E–105.5°E 10°S–45.5°N | 68°W–62°E 68°S–68°N | 60°W–60°E 90°S–90°N | Global | Global | Global | Global |
Number | 88,383 | 815,961 | 100 million | 42,119 | 16,675,575 | 19,118 | 16,494,437 |
Months | Algorithm Applied to | Hit Rate (%) | Cloudy Regions | Clear Regions | ||
---|---|---|---|---|---|---|
POD (%) | FAR (%) | POD (%) | FAR (%) | |||
January | INSAT-3D | 79.50 | 66.49 | 6.13 | 94.87 | 29.44 |
MODIS channels | 85.28 | 75.97 | 4.05 | 96.22 | 22.78 | |
June | INSAT-3D | 79.20 | 71.25 | 12.44 | 88.35 | 27.26 |
MODIS channels | 83.40 | 75.50 | 7.93 | 92.51 | 23.37 |
Score | MODIS | |||
---|---|---|---|---|
Current Algorithm | CLAVR-x (Stengel et al. [40]) | CM SAF (Stengel et al. [40]) | ORAC (Stengel et al. [40]) | |
POD of cloud (%) | 87.67 | 84 | 86 | 90 |
POD of clear-sky (%) | 83.24 | 85 | 69 | 62 |
HSS | 0.69 | 0.66 | 0.55 | 0.54 |
Hit rate (%) | 85.99 | - | - | - |
Cloud Categories | CALIPSO | ||||||||
---|---|---|---|---|---|---|---|---|---|
CODthreshold = 1 | CODthreshold = 2 | CODthreshold = 3 | CODthreshold = 3.6 | ||||||
Thick | Thin | Thick | Thin | Thick | Thin | Thick | Thin | ||
INSAT-3D | High level opaque | 95 | 5 | 92 | 8 | 81 | 19 | 69 | 31 |
Low level opaque | 90 | 10 | 86 | 14 | 83 | 17 | 81 | 19 | |
STC clouds | 53 | 47 | 44 | 56 | 38 | 62 | 31 | 69 | |
Partial clouds | 87 | 13 | 83 | 17 | 71 | 29 | 59 | 41 |
Cloud Category | CALIPSO | ||
---|---|---|---|
CODthreshold = 0.3 | CODthreshold = 0.5 | CODthreshold = 1 | |
STC Clouds | 84 | 85 | 86 |
Thresholds of COD | Mean Bias Error ML (SL) | Mean Absolute Error ML (SL) | RMSE ML (SL) | Correlation Coefficient ML (SL) |
---|---|---|---|---|
No threshold | 12.63 (9.07) | 16.27 (13.56) | 22.90 (19.40) | 0.62 (0.73) |
COD > 0.25 | 10.41 (8.07) | 13.93 (12.19) | 19.30 (16.91) | 0.73 (0.80) |
COD > 0.50 | 8.68 (6.87) | 12.38 (11.12) | 16.65 (14.99) | 0.81 (0.85) |
COD > 0.75 | 8.07 (6.65) | 11.80 (10.81) | 15.95 (14.51) | 0.83 (0.87) |
COD > 1.00 | 7.45 (6.31) | 11.23 (10.61) | 15.20 (14.32) | 0.85 (0.87) |
Conditions | Mean Bias Error ML (SL) | Mean Absolute Error ML (SL) | RMSE ML (SL) | Correlation Coefficient ML (SL) |
---|---|---|---|---|
High level thick clouds: BTTIR1 < 250 and 0 ≤ BTDTIR1,TIR2 ≤ 2.5 Low level thick clouds: BTTIR1 ≥ 250 and 0 ≤ BTDTIR1,TIR2 ≤ 1.0 | 11.60 (10.45) | 14.23 (13.40) | 18.52 (17.45) | 0.81 (0.84) |
High level thick clouds: BTTIR1 < 250 and 0 ≤ BTDTIR1,TIR2 ≤ 1.0 Low level thick clouds: BTTIR1 ≥ 250 and 0 ≤ BTDTIR1,TIR 2 ≤ 1.0 | 9.39 (8.23) | 12.33 (11.47) | 16.51 (15.36) | 0.84 (0.87) |
High level thick clouds: BTTIR1 < 250 and 0 ≤ BTDTIR1,TIR2 ≤ 0.5 Low level thick clouds: BTTIR1 ≥ 250 and 0 ≤ BTDTIR1,TIR2 ≤ 1.0 | 7.45 (6.31) | 11.23 (10.61) | 15.20 (14.32) | 0.85 (0.87) |
High level thick clouds: BTTIR1 < 250 and 0 ≤ BTDTIR1,TIR2 ≤ 0.5 Low level thick clouds: BTTIR1 ≥ 250 and 0 ≤ BTDTIR1,TIR2 ≤ 0.5 | 8.37 (7.24) | 11.69 (11.01) | 15.78 (14.79) | 0.83 (0.86) |
Condition Numbers | Mean Bias Error | Mean Absolute Error | RMSE | Correlation Coefficient |
---|---|---|---|---|
(i) | 8.14 | 11.59 | 15.27 | 0.84 |
(ii) | 9.64 | 12.43 | 16.56 | 0.82 |
(iii) | 7.11 | 13.51 | 19.78 | 0.76 |
(iv) | 6.15 | 9.59 | 12.94 | 0.91 |
(v) | 6.94 | 10.13 | 13.71 | 0.88 |
(vi) | 8.73 | 10.69 | 14.03 | 0.90 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, C.B.; Prijith, S.S.; Sesha Sai, M.V.R.; Rao, P.V.N.; Niranjan, K.; Ramana, M.V. Retrieval and Validation of Cloud Top Temperature from the Geostationary Satellite INSAT-3D. Remote Sens. 2019, 11, 2811. https://doi.org/10.3390/rs11232811
Lima CB, Prijith SS, Sesha Sai MVR, Rao PVN, Niranjan K, Ramana MV. Retrieval and Validation of Cloud Top Temperature from the Geostationary Satellite INSAT-3D. Remote Sensing. 2019; 11(23):2811. https://doi.org/10.3390/rs11232811
Chicago/Turabian StyleLima, Chaluparambil B., Sudhakaran S. Prijith, Mullapudi V. R. Sesha Sai, Pamaraju V. N. Rao, Kandula Niranjan, and Muvva V. Ramana. 2019. "Retrieval and Validation of Cloud Top Temperature from the Geostationary Satellite INSAT-3D" Remote Sensing 11, no. 23: 2811. https://doi.org/10.3390/rs11232811
APA StyleLima, C. B., Prijith, S. S., Sesha Sai, M. V. R., Rao, P. V. N., Niranjan, K., & Ramana, M. V. (2019). Retrieval and Validation of Cloud Top Temperature from the Geostationary Satellite INSAT-3D. Remote Sensing, 11(23), 2811. https://doi.org/10.3390/rs11232811