
remote sensing  

Article

Retrieval and Validation of Cloud Top Temperature
from the Geostationary Satellite INSAT-3D

Chaluparambil B. Lima 1, Sudhakaran S. Prijith 1, Mullapudi V. R. Sesha Sai 1,
Pamaraju V. N. Rao 1, Kandula Niranjan 2 and Muvva V. Ramana 1,*

1 National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad PIN-500037,
Telangana State, India; limabalan05@gmail.com (C.B.L.); prijith_ss@nrsc.gov.in (S.S.P.);
seshasai_mvr@nrsc.gov.in (M.V.R.S.S.); rao_pvn@nrsc.gov.in (P.V.N.R.)

2 Department of Physics, Andhra University, Visakhapatnam PIN-530003, Andhra Pradesh, India;
niranjankandula@hotmail.com

* Correspondence: ramana_mv@nrsc.gov.in; Tel.: +91-8542-225430

Received: 6 September 2019; Accepted: 7 November 2019; Published: 27 November 2019 ����������
�������

Abstract: Investigation of cloud top temperature (CTT) and its diurnal variation is highly reliant
on high spatial and temporal resolution satellite data, which is lacking over the Indian region.
An algorithm has been developed for detection of clouds and retrieval of CTT from the geostationary
satellite INSAT-3D. These retrievals are validated (inter-compared) with collocated in-situ (satellite)
measurements with specific intent to generate climate-quality data. The cloud detection algorithm
employs nine different tests, in accordance with solar illumination, satellite angle and surface type
conditions to generate pixel-resolution cloud mask. Validation of cloud mask with cloud-aerosol
lidar with orthogonal polarization (CALIOP) shows that probability of detection (POD) of cloudy
(clear) sky is 81% (85%), with 83% hit rate. The algorithm is also implemented on similar channels
of moderate resolution imaging spectroradiometer (MODIS), which provides 88% (83%) POD of
cloudy (clear) sky, with 86% hit rate. CTT retrieval is done at the pixel level, for all cloud pixels, by
employing appropriate methods for various types of clouds. Comparison of CTT with radiosonde and
cloud-aerosol lidar and infrared pathfinder satellite observations (CALIPSO) shows mean absolute
error less than 3%. The study also examines sensitivity of retrieved CTT to the cloud classification
scheme and retrieval criteria. Validation results and their close agreements with those of similar
satellites demonstrate the reliability of the retrieved product for climate studies.

Keywords: cloud detection; cloud top temperature; essential climate variable; INSAT-3D;
inter-comparison; validation

1. Introduction

Clouds play a vital role in determining and governing weather and climate as they influence solar
and terrestrial radiative transfer in the earth-atmosphere system, which makes cloud properties an
essential climate variable [1,2]. In general, spatial coverage and optical thickness of clouds influence
the radiative transfer and together with cloud top temperature (CTT) determine the thermal effect [3].
Contribution of optically thick low level clouds to net radiative forcing is, usually, strongly towards
negative due to large short-wave radiative forcing (as reflection of solar radiation dominates trapping
of terrestrial radiation), whereas that of high level clouds can be positive or negative (depending upon
the distribution of ice water path) due to large long-wave radiative forcing [4–9]. However, radiative
forcing due to cumulonimbus clouds is reported to be more or less neutral [10,11]. Thus, CTT is a
crucial parameter in estimating short-wave and long-wave radiative effects of clouds, by confidently
classifying clouds into different categories. A small change in abundance and distribution of clouds
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could change climate more than the anticipated changes caused by other factors associated with global
change [12–14]. Radiative impacts of different types of clouds vary, depending on their properties and
hence accurate representation of clouds in climate models is essential for realistic simulations of Earth’s
current and future climate [15,16]. Thus, continuous and detailed monitoring of cloud properties is
necessary to realistically represent them in models to understand the role of clouds in the weather and
climate system, apart from their inevitability in other applications such as nowcasting.

In addition, monitoring of cloud properties such as cloud cover and CTT is critical to examine the
aerosol–cloud interaction, which is a major source of uncertainty in radiative forcing estimates [17].
Satellite data analysis revealed strong correlations between cloud cover and aerosols globally [18–21],
whereas some studies showed decrease in cloud cover at high aerosol optical depths in regions of
strong aerosol absorption [22]. Cloud top height (cloud top pressure/temperature) is also reported
to be increasing (decreasing) globally with increase of aerosol optical depth [23–25], which leads to
the invigorating convection hypothesis [23,26–30]. However, Niu and Li [31] showed that CTT is
negatively correlated with aerosol optical depth over land (aerosol index over the ocean) for deep
mixed-phase clouds with warm bases (with liquid droplets) and cold tops (with ice crystals), but not
for completely liquid clouds. Massie et al. [32] have quantified aerosol indirect effect as a function of
cloud top pressure over India using moderate resolution imaging spectroradiometer (MODIS) data and
reported that the aerosol indirect effects are apparent for pressure levels associated with liquid droplets,
but not for those associated with tropospheric ice crystals. In order to examine the aerosol–cloud
interaction and associated processes, it is necessary to have concurrent measurements of aerosols
and cloud properties at sufficient temporal resolution and spatial coverage. Moreover, continuous
measurements of cloud parameters are necessary to validate climate models and improve climate
change assessments by alleviating the uncertainties associated with the aerosol–cloud interaction.

Surface-based observations of cloud parameters over India and surrounding regions are relatively
sparse. The reliability of the International Satellite Cloud Climatology Project (ISCCP) data over India
and Indian Ocean is affected by lack of continuous satellite measurements [33]. Observations from polar
orbiting satellites (example: advanced very high resolution radiometer (AVHRR), MODIS, etc.) are
available at poor temporal resolution (twice daily) over tropical latitudes. Shang et al. [34] have shown
inadequacy of this temporal resolution of twice per day of polar orbiting satellites to represent cloud
variability and properties. Incomplete diurnal sampling causes strong discontinuities in the ISCCP
products and introduces systematic errors in cloud properties [33]. Moreover, large heterogeneity and
dynamic nature of clouds over India and surrounding regions make it necessary to have continuous
observations over large spatial domain. This can be achieved only by retrieving cloud parameters
using geostationary satellites, which provide measurements over large domain continuously.

Over the Indian sub-continental region, continuous monitoring of clouds from geostationary
platform was initiated by the launch of KALPANA-1 in September, 2002. Very high resolution
radiometer (VHRR), on-board KALPANA-1, provided radiance/brightness temperature (BT) at three
channels: visible (0.55–0.75 µm), water vapor (5.7–7.1 µm) and thermal infrared (10.5–12.5 µm) at
30 min temporal resolution with 2 km spatial resolution for visible and 8 km for water vapor and
thermal infrared channels. However, limited number of channels of KALPANA-1 VHRR limits accuracy
of retrieval of cloud parameters such as CTT, especially of partial clouds. INSAT-3D (INSAT-3DR),
launched in 2013 (2016), carries an advanced version of VHRR (known as Imager) with more number
of channels and better spatial resolution (see data Section 2). Additional channels of INSAT-3D
(mid-wave infrared channel and extra channel in IR window) provide improved cloud detection, better
identification of thin clouds and more accurate retrieval of CTT over the Indian region. Methods for CTT
retrieval basically rely on cloud optical properties and hence proper classification of clouds is critical.
For optically thick clouds, satellite measured brightness temperature at thermal infrared channel
(10.3–11.3 µm) can be considered as CTT, however, for semi-transparent and partial clouds, satellite
measured brightness temperatures are contaminated by the transmitted radiation from underlying
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surfaces. More number of channels in INSAT-3D Imager facilitates better classification of clouds and
hence accurate retrieval of CTT.

In the present study, an algorithm has been developed based on the available channels of INSAT-3D
for detection of cloud pixels and retrieval of CTT. In order to provide weather and climate researchers
more confidence on quality of these retrievals, validation (comparison) of the products are carried
out and uncertainties are estimated with in-situ (satellite) measurements. Implementation of the
present algorithm on both INSAT-3D and 3DR will provide cloud mask and CTT at an interval of
15 min (as the former provides observations at HH:00, HH:30 and the latter does at HH:15 and HH:45,
where HH represents hour) over the Indian region. Generation of long term database of CTT at this
finer interval would improve the representation of cloud properties and their diurnal variations in
model simulations.

2. Data

Imager onboard the Indian geostationary satellite, INSAT-3D provides observations over the
Indian region at a temporal interval of 30 min (at HH:00 and HH:30) with visible (VIS), short-wave
infrared (SWIR), mid-wave infrared (MIR), water vapor (WV) and thermal infrared (TIR1 and TIR2)
channels [35]. Specifications of these channels are given in Table 1. Present study uses level 1C,
Asia sector product (ASIA_MER_L1C) from INSAT-3D Imager over India and surrounding regions
bounded by 44.5◦E–105.5◦E and 10◦S–45.5◦N with spatial resolution of 4 km, which is available through
the ISRO web portal, MOSDAC (https://www.mosdac.gov.in). The present study makes use of VIS,
MIR, WV, TIR1 and TIR2 channels to identify cloud pixels and retrieve CTT for the period of September,
2014 to February, 2017. Spatial resolutions of VIS and WV channels are 1 km and 8 km respectively,
whereas those of MIR and TIR channels are 4 km. In order to maintain uniformity, measurements
from VIS and WV channels are also provided at 4 km spatial resolution to match with that of MIR and
TIR channels.

Table 1. Specifications of INSAT-3D Imager channels.

Channels Spectral Range
(µm)

Central Wavelength
(µm)

Resolution
(km)

Visible (VIS) 0.55–0.75 0.65 1.0

Short-wave Infrared
(SWIR) 1.55–1.70 1.62 1.0

Mid-wave Infrared
(MIR) 3.80–4.00 3.9 4.0

Water Vapor (WV) 6.50–7.10 6.8 8.0

Thermal Infrared I (TIR1) 10.3–11.3 10.8 4.0

Thermal Infrared II
(TIR2) 11.5–12.5 12.0 4.0

Performance of cloud detection scheme employed in the algorithm has been examined by
comparing the cloud mask, generated by implementing the same on INSAT-3D, with cloud products
from the active space borne sensor, cloud-aerosol lidar with orthogonal polarization (CALIOP) and
the passive sensor, MODIS. CALIOP onboard cloud-aerosol lidar and infrared pathfinder satellite
observations (CALIPSO) provides measurements of clouds with the LIDAR operating at 532 nm and
1064 nm [36]. CALIOP retrieved cloud products are widely used for examining distribution of clouds
and also for verifying new cloud detection algorithms [37–41]. CALIOP provides information on
vertical distribution of clouds with along-track spatial interval of 333 m on earth’s surface, with a
foot print of 70 m diameter. Level-2 CALIPSO cloud layer products (version 4) are used in this study.
Since CALIPSO and INSAT-3D operate under different sampling schemes, only those INSAT-3D pixels
within which all CALIPSO measurements are cloudy (or clear) with cloud aerosol discrimination
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(CAD) score of 70–100 are retained for the comparison purpose. Basically, CAD score indicates a
numerical confidence level for CALIOP classification of features into clouds and aerosols [42]. Smaller
positive values of CAD score indicate less confidence on feature classification into clouds, whereas
value of 100 shows complete confidence. Thus, the CAD score of 70–100 ensures high confidence on
CALIOP identified cloud pixels and those pixels are used for comparison. INSAT-3D retrieved CTT is
also inter-compared with layer top temperature of topmost cloud layer from CALIPSO. Fundamental
data from CALIOP is the vertical position (altitude) of clouds. Conversion of cloud top height (CTH)
to CTT in version 4 cloud layer products of CALIPSO uses the Modern-Era Retrospective Analysis for
Research and Applications, Version 2 (MERRA-2) dataset [43,44].

MODIS, onboard the satellites Terra and Aqua, provides measurements at 36 spectral channels in
visible and IR regions [45,46]. Collection 6.1 level 2 cloud product (MYD06_L2) at a spatial resolution
of 5 km from MODIS onboard Aqua is used in the present study for the comparison. The data product
contains cloud mask generated over different surface types including land, water, snow/ice, desert and
coast for both day and night [47,48]. The dataset provides cloud mask with four levels of confidence;
(i) confident clear, (ii) probably clear, (iii) uncertain/probably cloudy and (iv) cloudy.

In addition, climatology of the monthly sea surface temperature (SST) at 4 km spatial resolution
for both day and night, during February 2000 to December 2015, from MODIS onboard Terra is used to
fix SST thresholds in one of the tests used in cloud detection scheme of the algorithm. The present
algorithm uses day time climatological monthly SST for cloud detection during day time/twilight
and night time climatological monthly SST for cloud detection during night time. The study also
uses global digital elevation model data (GTOPO30) at 30 arc second (~1 km) horizontal resolution to
incorporate continental topographic features in one of the tests employed to detect clouds over land
regions. In order to use this data set, it is re-gridded to 4 km × 4 km spatial resolution to match with
that of INSAT-3D data.

Validation of retrieved CTT from INSAT-3D, by employing the present algorithm, is carried out
by comparing the same with CTT estimates using radiosonde measurements. Radiosonde data during
September, 2014–December, 2016 from SHAR/ISRO Sriharikota (13.7◦N and 80.2◦E), the space port of
India situated on the east coast of southern peninsula, are used for the validation. Vertical profiles of
temperature, humidity and pressure from radiosonde measurements are used to identify cloud layers
and further to obtain CTT. Large horizontal drift of radiosonde, even more than 100 km, from launch
location to top of topmost cloud layer; is seen in several cases. This issue is addressed using the GPS
measurements along with the radiosondes. GPS measurements allow the exact collocation of cloud top
from radiosonde with that from INSAT-3D for the validation.

3. Methods

Accurate identification of cloud pixels from satellite imagery is fundamental and critical for
retrieval of any of the cloud properties. Any inaccuracy in determining cloud pixels will in turn cause
uncertainties in retrieval of cloud properties. Hence the algorithm developed and employed in the
present study has two parts: (i) cloud detection scheme and (ii) CTT retrieval scheme. The cloud
detection is carried out by an integrated approach in which nine different tests are performed by
grouping them into primary, secondary and semi-transparent cirrus (STC) identification tests. The
primary test employs stringent criteria to avoid any misclassification of clear pixel as cloudy, which
may lead to miss out of some cloud pixels. Such pixels are retrieved through a set of secondary tests.
In order to minimize probability of misclassification through secondary tests, a pixel is identified as
cloudy only if it is detected so by multiple secondary tests. STC clouds are detected by a combination
of two different tests using BT at TIR1, TIR2 and WV channels. Threshold values used in the primary
test are selected by considering possible variations of surface temperature over the study region during
a period of time used in the test. Identified cloud pixels are subjected to CTT retrieval scheme, which
categorizes cloud pixels into various cloud types (like opaque, semi-transparent cirrus and partial) and
chooses suitable methods for the retrieval of CTT. For low level and high level opaque clouds, BT at
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TIR1 channel is considered as CTT. For STC and partial clouds, a method based on two dimensional
scatter plot between BT at TIR1 and brightness temperature difference (BTD) of TIR1 and TIR2 is
used for CTT retrieval. Performance of cloud detection and CTT retrieval algorithms is examined
by comparing with ground based and satellite observations. The integrated approach employed in
this study is first of its kind for the retrieval of CTT from the geostationary satellite, INSAT-3D with a
specific intent to generate climate quality data.

3.1. Cloud Detection Scheme: Algorithm Overview

The detection scheme contains a series of hierarchical decision tree tests, which exploit differences in
spectral signatures of clouds and underlying surfaces. Each pixel undergoes a subroutine that provides
information of surface type (ocean and land) and solar illumination conditions (day, night, twilight
and sunglint). Solar elevation angle (δSun) is used to describe solar illumination conditions; where it is
considered as day time when δSun > 10, night when δSun = 0 and twilight when 0 < δSun ≤ 10 [49,50].
This classification is critical in defining proper thresholds for cloud detection, especially over the Indian
region where surface characteristics are highly heterogeneous in nature with different geo-spatial
features. The cloud detection algorithm involves three set of tests: a primary test (for all types of
surfaces and solar illumination conditions), a combination of four (three) secondary tests during
day/twilight (night) and a combination of two tests for identifying STC clouds. Successful performance
of this cloud detection algorithm relies on the selection of proper thresholds for various spectral tests.
The threshold values, which better suit to local atmospheric and surface conditions, used in this study
are either generated or adopted from previous studies. The primary test uses different criteria for the
thresholds over land and ocean and is, in general, capable of identifying most of the cloud pixels with
very high confidence. Secondary tests are applied only on those pixels, which are not identified as
cloudy by the primary test. In the secondary test, a pixel is considered as cloudy if it satisfies at least
three (two) out of four (three) tests during day time/twilight (night time) conditions. Though primary
and secondary tests are efficient enough to identify most of the clouds, these tests are observed to
fall short in detecting STC clouds due to high transparency at visible and IR wavelengths. Hence,
the present algorithm uses additional two tests for detecting STC clouds from the remaining pixels.

Algorithm for retrieval of clouds over ocean and land are detailed in the flowcharts given in
Figures 1 and 2 respectively. Most of the tests are similar for ocean and land, but differ in terms of
the thresholds applied. While the SST based threshold method is used for detecting cloud pixels
over ocean, another test based on topography is employed over land. One of the major challenges in
identifying cloud pixels over ocean arises due to specular reflection of intense solar radiation from
sunglint areas, which leads to misclassification of clear pixels as cloudy.

A major challenge over land in the detection of clouds by satellites is due to high albedo surfaces,
such as snow cover over Himalayas in the present study, due to their low BT in thermal and high
reflectance in visible wavelengths as those of clouds. In order to identify snow covered pixels, a set
of three tests, which uses day time BT from MIR (here after, BTMIR), TIR1 (here after, BTTIR1) and
TIR2 (here after, BTTIR2) channels, is used in the current algorithm [49]. If a pixel is identified as snow
covered under day time conditions, it is considered to be so for night time and twilight conditions also
and hence not considered for the cloud detection tests.
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Figure 1. Flow chart depicting series of tests employed in the algorithm for cloud detection by INSAT-3D
over ocean.
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Figure 2. Flow chart depicting series of tests employed in the algorithm for cloud detection by INSAT-3D
over land.

3.1.1. Cloud identification tests in the algorithm

Primary Test: Dynamic Threshold Test

A primary test, which uses dynamically varying threshold for BTTIR1, is employed on each
individual INSAT-3D pixel to segregate cloud pixels with very high confidence. Several studies have
used this test, by making use of the disparity in BTTIR1 between clouds and earth surfaces, with either
static or dynamic thresholds for bulk cloud detection [47,51–53]. In order to obtain dynamic thresholds
in the current algorithm, clear-sky BT corresponding to surface (BTS) for each pixel is estimated by
taking the highest BT in the same pixel during previous 30 days, for the same local time of observation,
assuming at least one clear sky condition during the period. The thresholds used in the present
algorithm are assigned by considering possible variations of surface temperature over the study
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region for a period of 30 days, even during gradually advancing winter season. Figures S1 and S2 in
Supplementary Materials show percentage decrease in two day mean SST and land surface temperature
(LST), from MODIS onboard Terra and Aqua, during the days December 30–31, 2016, compared to
those during December 1–2, 2016. Mean of two days is considered only to improve the data coverage.
During this period of 30 days, decrease of LST (SST) is observed to be 1.6% (0.3%). Since, the primary
test aims to identify cloud pixels with very high confidence; the present study implements threshold
values higher than the possible variation of surface temperature. Thus, a pixel is flagged as cloudy if
the satellite measured BTTIR1 is less than the corresponding BTS by more than 3% (5%) of BTS over
ocean (land). Similarly, Rossow and Garder [53] have used a threshold of 6 K over land and 1 K over
ocean, whereas Choi and Ho [51] have used 12 K and 3.5 K respectively. However, clouds persisting for
long days, which are possible during summer monsoon time, may limit the performance of this test.

Secondary Tests

Since dynamical threshold values of BTTIR1 used in the primary test of the cloud detection scheme
are to identify cloud pixels with very high confidence, some of the clouds such as low level warm
clouds may not be detected by this test. In order to detect remaining clouds, a series of secondary tests
is carried out on the pixels, which are not identified as cloudy by the primary test.

(a) Bi-spectral composite threshold (BCT) test:
The BCT test employed in the current algorithm makes use of the fact that emissivity of clouds is

higher at longer wavelengths, compared to that at shorter wavelengths, which leads to higher values
of BTTIR1 than BTMIR over cloud pixels [54]. The BCT composite test includes three different tests.
The first test examines variance of BTD of TIR1 and MIR (i.e., BTTIR1 – BTMIR; denoted as BTDTIR1,MIR)
in each pixel (i), with respect to previous one (i-1), and identifies it as cloudy if the variance is more
than the threshold, whereas the second test identifies cloud pixels by comparing BTDTIR1,MIR in each
pixel with that in the previous one. The third test makes use of dynamical thresholds of BTDTIR1,MIR, by
considering BTDTIR1,MIR values in each pixel for the past 30 days. If BTDTIR1,MIR is negative in a pixel,
it is compared with the highest negative value of BTDTIR1,MIR (HN) within the previous 30 days in that
pixel, whereas the comparison is with the lowest positive value of BTDTIR1,MIR (LP) if BTDTIR1,MIR in a
pixel is positive. The threshold values used in these tests are adopted from Jedlovec et al. [55] and are
provided in the flowcharts.

(b) Spatial variability test:
Clouds exhibit large spatial variability of BT at IR channels, compared to underlying homogeneous

surfaces and this fact is made use of in cloud detection schemes to delineate cloud pixels [56]. In addition,
spatial variability of BTDTIR1,MIR is also reported to be more over clouds [49]. In the present algorithm,
spatial variability of BTTIR1 and BTDTIR1,MIR are used to identify cloud pixels, by considering an area
of 12 km × 12 km surrounding the pixel. Over ocean, thresholds for standard deviation of BTTIR1

(i.e., SDTIR1) and BTDTIR1,MIR (i.e., SDTIR1,MIR) are taken to be 0.6 and 0.2 respectively. However, land
surfaces are more inhomogeneous in nature, which can lead to more spatial variability, and hence
different thresholds are used for delineating cloud pixels over land under different solar illumination
conditions [49].

(c) Sea surface temperature threshold test:
SST can be estimated using a non-linear split window technique with BTTIR1 and BTTIR2

measurements over cloud free pixels [57]. Same estimation of temperature (TE) on a cloud pixel
will yield a lower temperature compared to actual SST. Taking advantage of this, detection of cloud
pixels over ocean has been carried out by comparing the TE value in each pixel with monthly mean
climatology of SST (SSTCLIM) in the same pixel. To arrive at the correct threshold, the difference of the
monthly mean SSTCLIM between day time and night time from MODIS onboard Terra is examined.
Figure S3 in Supplementary Materials shows day time and night time SST difference in each month
during a period of 2000 to 2015, which is observed to be within 2 K. Possible variation of SST within
day time (or night time) is considered to fix the criteria as SSTCLIM – 3.5 K. This offset of 3.5 K is needed
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to account for the inadequacy of the climatology data, especially over the areas where SST variation is
more in space and time (for example, over coastal areas). Thus, a pixel is classified as cloudy in the
current algorithm, if TE is less than SSTCLIM by at least 3.5 K. Thus, the possible variation of SST within
day time (or night time) would be very well below the threshold of 3.5 K used in the current algorithm
and hence, even for the time of highest SST difference, the condition of SSTCLIM – 3.5K would not lead
to any misclassification of clear sky pixel as cloudy.

(d) Topography test:
The primary test employed may fail to detect low level clouds over high elevation surfaces such

as mountains, when the temperature difference between cloud top and surface is not large enough.
Hence the topography test is used to identify clouds over such regions, by assuming a dry adiabatic
lapse rate of 10 Kkm−1 and mean sea level temperature of 300 K. Thus the threshold for each pixel is
estimated as TTT = 300 – (10 ×H), where H is the surface elevation above mean sea level in km. A pixel
is flagged as cloudy if the satellite measured BTTIR1 is less than TTT – 6 K. This offset of 6 K is arrived
at, after carrying out a sensitivity analysis.

(e) Reflectance test:
Clouds show large reflectance at visible channels and hence this fact is made use of in detection of

cloud pixels during day time. Pixels are identified as cloudy in the present algorithm, if reflectance at
VIS channel is greater than 0.2 over ocean and 0.3 over land [58]. However, the reflectance test may
lead to misclassification of highly reflecting surfaces as clouds and hence it is not applied over the
pixels that are identified to be affected by sunglint. Another test is employed over sunglint areas, by
considering reflectance at VIS (RVIS) and BT at MIR channels respectively along with sun-satellite
geometry (see Figure 1). The test was proposed by Derrien and Gléau [49] and it relies on the fact that
cloud reflectance decreases with increase of wavelength from VIS to MIR, whereas the reflectance over
sunglint remains high at both the channels. Percentage probability (Psunglint) of sunglint is estimated
from sun-satellite geometry [59] as:

Psunglint = exp
(
−

1
2

(
θ

8.5

)2)
× 100%, (1)

where θ is the sum of the solar and satellite zenith angles. A threshold of 0.1% for Psunglint is set to
indicate the areas with risk of sunglint and those pixels with Psunglint greater than 0.1% are considered
as sunglint pixels [50].

Detection of STC Clouds

Transparency of high altitude thin cirrus clouds, at visible to infrared wavelengths [60], makes
their detection difficult through passive satellite remote sensing techniques. Increase in transparency
of clouds leads to transmittance of more radiation from surface to satellite and hence the estimated BT
will be higher than the actual CTT. This leads to misclassification of STC clouds as low level warm
clouds or even as clear sky conditions. The present algorithm employs two different tests for detecting
STC clouds; (i) split window technique with BTTIR1 and BTD of TIR1 and TIR2 (i.e., BTTIR1 – BTTIR2;
denoted as BTDTIR1,TIR2) [61,62] and (ii) the WV-IR method using BTWV and BTD of TIR1 and WV
channel (i.e., BTTIR1 – BTWV; denoted as BTDTIR1,WV) [63,64]. Threshold values for these tests are
adopted from Inoue [61,62], Roca et al. [63] and Rajeev et al. [64]. Roca et al. [63] and Rajeev et al. [64]
have established the threshold values for the same region in the present study. Thresholds used for
identifying STC clouds with these two tests are provided in the flowcharts in Figures 1 and 2. A pixel
is identified as a STC cloud, only if it is detected to be so by both of the tests.

3.2. Retrieval of Cloud Top Temperature

Satellite derived BT of clouds can differ from the actual CTT, depending on the emissivity of
clouds and relative contribution of radiation from clouds and underlying surface. Hence different
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techniques need to be implemented for retrieval of CTT for different types of clouds. Thus, in the
present algorithm, CTT retrieval is carried out after classifying the detected cloud pixels into four
categories: low level opaque, high level opaque, STC and partial clouds. The classification is carried
out using BT measurements at thermal and water vapor channels. Out of the detected cloud pixels,
those satisfy any of the two conditions of STC clouds are segregated first. From the remaining cloud
pixels, those with BTTIR1 < 250 K and 0 ≤ BTDTIR1,TIR2 ≤ 0.5 are classified as high level opaque and
those with BTTIR1 ≥ 250 K and 0 ≤ BTDTIR1,TIR2 ≤ 1 are grouped as low level opaque clouds [51].
The cloud pixels, those do not fall in any of the above three categories are considered as partial clouds.

For opaque clouds, emissivity is assumed to be unity and hence BTTIR1 is considered as CTT.
However, for STC and partial clouds, the amount of radiation reaching satellite is partly contributed
by the cloud and partly by underneath surface. In such cases, effective emissivity of clouds is to be
estimated to delineate both the contributions so that the CTT can be retrieved.

3.2.1. Retrieval of Cloud Top Temperature of STC and Partial Clouds

The CTT retrieval scheme employed for STC/partial clouds is based on two dimensional scatter
plot between BTTIR1 and BTDTIR1,TIR2 over a region consisting of clear, opaque and STC/partial
clouds [61,65]. The scatter plot provides an arc like structure with high BTTIR1 and low BTDTIR1,TIR2

corresponding to clear pixels, low BTTIR1 and low BTDTIR1,TIR2 to opaque clouds and high BTDTIR1,TIR2

with intermediate BTTIR1 to STC/partial clouds at same altitude of the opaque clouds. Thus, the
right and left sides of the curve represent clear pixels and opaque clouds respectively, whereas the
middle part represents STC/partial clouds. Detailed description of the methodology is given in
Korpela et al. [66].

The current CTT retrieval algorithm considers an area of 15 pixels × 15 pixels surrounding a
pixel of STC/ partial cloud and fits the arc like curve between BTTIR1 and BTDTIR1,TIR2, by using the
non-linear relation given below [66]:

BTDest(x,p) =

[ x− Tc

TS,TIR1 − Tc

]
−

[
x− Tc

TS,TIR1 − Tc

]β(TS,TIR1 − Tc
)
+

[
x− Tc

TS,TIR1 − Tc

]β(
BTDS,TIR1,TIR2

)
, (2)

where, x is satellite measured BTTIR1, BTDest is the estimated difference in brightness temperature
between TIR1 and TIR2 and p is a function of four parameters; cloud top temperature (Tc), ratio
of absorption coefficient of TIR2 and TIR1 (β), surface temperature at TIR1 (TS,TIR1) and difference
of surface temperature at TIR1 and TIR2 (BTDS,TIR1,TIR2), which are free to adjust so that the best
fit of observation can be obtained. An iterative method is used, which tries to find the best fit
through iterative adjustments in two of the free parameters Tc and β. Other parameters TS,TIR1 and
BTDS,TIR1,TIR2 are fixed from the measurements. TS,TIR1 is the highest BTTIR1 of clear sky pixels within
the selected region if clear sky pixels are present within it. If there is no clear sky pixel available in the
selected region, BTTIR1 of nearest clear sky pixel is considered as TS,TIR1. Similarly, BTDS,TIR1,TIR2 is the
minimum of BTDTIR1,TIR2 among the clear sky pixels, if they are available within the region or else the
BTDTIR1,TIR2 corresponding to nearest clear sky pixel. Iterations are done by varying the value of Tc

from 180 K to BTTIR1 in the pixel, at an interval of 0.5 K, with values of β ranging from 1 to 2 at an
interval of 0.1. The best fit is identified as the one with minimum root mean square value between
estimated and satellite measured BTD and the corresponding Tc value is considered as the CTT.

Efficiency of this method depends on the availability of sufficient number of clear, cloudy and
STC/partial pixels within the region of consideration. In the present algorithm, CTT retrieval of
STC/partial clouds is carried out, with full confidence, if at least one pixel is available in all the three
categories; opaque, clear and STC/partial. The remaining cases are considered for retrieval, if at least
25 cloud pixels are available, but flagged with low confidence.
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3.3. Cloud Mask from CALIPSO and MODIS for Validation

In order to ensure accurate evaluation of generated cloud mask by implementing the present
algorithm on INSAT-3D, collocated reference datasets are carefully prepared from CALIOP and MODIS.
From CALIPSO 5 km cloud layer dataset, clear and cloud pixels for inter-comparison are identified by
using feature classification flags at different atmospheric layers and their quality assessment. Accuracy
of clear and cloud features from CALIOP is ensured by considering only those pixels with quality
assessment (QA) value high (high value of QA is same as the CAD score ≥ 70) [67]. Due to the multiple
averaging resolution scheme adopted in the CALIOP product retrieval algorithm, the 5 km layer
product includes layers with fundamental horizontal averaging distance of 5 km, an intermediate
distance of 20 km and a maximum of 80 km [36]. This leads to an overlap of features in vertical
dimensions in the CALIOP data and such overlapping is avoided by considering only pixels with
horizontal averaging of 5 km. After segregating highly confident clear and cloud pixels at each layer
from CALIOP, a binary cloud mask is generated in which cloud pixels are those with at least one layer
of confident cloud feature and clear pixels are those with all layers of clear feature. From the level
2 MODIS cloud product, only those pixels, which are classified as either confident clear or cloudy
are considered for comparison in the present study. However, in order to perform inter-comparisons,
collocated pixels are identified among INSAT-3D, MODIS and CALIOP by using the nearest neighbor
approach with a maximum distance of 500 m separation between centers of the pixels, within ±30 min
temporal difference.

3.4. Implementation of INSAT-3D Algorithm on MODIS Channels

The developed cloud detection algorithm for INSAT-3D is applied on the radiance/reflectance data
from comparable channels of MODIS. MODIS channels considered here are having central wavelengths
at 0.645 µm, 3.9 µm, 6.715 µm, 11.03 µm and 12.02 µm, which are close to the VIS, MIR, WV, TIR1
and TIR2 channels of INSAT-3D respectively. Basically, MODIS provides reflectance at visible and
radiance at remaining channels. In order to implement the present cloud detection algorithm on
MODIS channels, radiances of all channels except 0.645 µm channel are converted to BT using Planck’s
equation. Other datasets used in the cloud detection algorithm, such as SST climatology and GTOPO30,
are re-gridded to the spatial resolution of MODIS data. Finally, all tests in the present cloud detection
algorithm (see Section 3.1) are applied to MODIS channels, as they are implemented on INSAT-3D
channels. The cloud mask thus generated, by implementing the algorithm on MODIS channels, is
validated using reference dataset from CALIOP and MODIS (detailed in Section 3.3).

3.5. Cloud Classes and CTT from CALIOP

Identified cloud pixels from INSAT-3D are grouped into four categories and they are compared
with confident cloud pixels from CALIOP, which are identified as detailed in Section 3.3. Identified
single layer cloud pixels from CALIOP are categorized into two classes: thick and thin, based on a
pre-defined threshold (CODthreshold) value of cloud optical depth (COD) at 532 nm. The classification is
carried out by considering four values of CODthreshold, for the inter-comparison with INSAT-3D cloud
categories. Similarly, comparison of INSAT-3D retrieved CTT is carried out using CALIPSO layer top
temperature of topmost cloud layer having high QA values. As mentioned earlier, collocated pixels are
identified between INSAT-3D and CALIPSO by using the nearest neighbor approach with a maximum
distance of 500 m separation between centers of the pixels, within ±30 min temporal difference.

3.6. Cloud Layer Identification and CTT Retrieval from Radiosonde Profiles

As part of the validation of satellite retrieved CTT, identification of cloud layers and estimation of
CTT is carried out from radiosonde profiles of temperature, pressure and relative humidity (RH). In
order to identify cloud layers from radiosonde profiles, RH threshold based cloud detection method
proposed by Zhang et al. [68], which is a modified version of Poore et al. [69] and Wang and Rossow [70],
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is used in the present study. The method involves identification of the moisture layer and confirmation
of cloud presence in the moisture layer using an altitude depended RH threshold. Extensive description
of the methodology is provided in Zhang et al. [68]. It is reported that the cloud layers detected
by this scheme is with 53.9% agreement against ground based active sensors [71]. This method is
basically developed for locations within mid-latitude climate regime (32.56◦N and 116.78◦E). However,
Zhang et al. [72] and Narendra Reddy et al. [73] have explored the utility of this method over the
tropical climate regime. From the study carried out over tropical western Pacific, Zhang et al. [72] have
reported difference of CTH within 500 m in 66.7% of clouds detected by this method, in comparison
with combined observations of cloud radar, micro-pulse radar and laser ceilometer. In the present
study, radiosonde profiles are re-gridded at 50 m vertical resolution and only those are continuous up
to 11 km altitude are considered for the identification of cloud layers and retrieval of CTT. Maximum
and minimum thresholds of RH (RHmax and RHmin) for this purpose are taken as 92% and 95% within
0–2 km, 90% and 93% within 2–6 km and 88% and 90% within 6–11km. RH is expressed as RH with
respect to water (ice) at altitudes where temperature is above (below) 0 ◦C. A systematic examination
of profiles from the surface to the top of the profile is done to detect the presence of moisture layers
where RH exceeds the corresponding RHmin. These layers are considered as cloud layers only if the
maximum RH within the layer exceeds RHmax corresponding to the base level of that layer. In order
to avoid the possibility of misclassifying the moist layer as a cloud, layers with bases within 100 m
from the ground and thickness less than 300 m are excluded. Finally, the temperature at top of the
topmost cloud layer is taken as CTT and is considered for validation of the satellite retrieved CTT.

4. Results and Discussion

4.1. Retrieval of Cloud Mask from INSAT-3D

The cloud detection algorithm is implemented on INSAT-3D observations and the retrieved cloud
mask is shown in Figure 3, for representative days in each season. The region is characterized by a
tropical monsoon climate with a distinct seasonality of clouds and precipitation [74]. The figure clearly
demonstrates capability of the cloud detection scheme to capture large scale seasonal variations of cloud
distribution over the Indian region. Accuracy of the cloud detection is evaluated by inter-comparing
the retrieved cloud mask with similar products from active and passive remote sensing sensors.
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Figure 3. INSAT-3D retrieved cloud mask at 07:30 UTC on (a) Jan 1 (winter season), (b) April 1
(pre-monsoon season), (c) Aug 1 (monsoon season) and (d) Nov 1 (post-monsoon season) of the year
2016. The blue and white colored areas in the figure represent clear-sky and cloudy regions respectively.

4.2. Comparison of the Cloud Detection Scheme

Comparison of INSAT-3D retrieved cloud mask using the current algorithm is carried out
with collocated measurements from CALIOP and MODIS. Moreover, the developed cloud detection
algorithm for INSAT-3D is applied on the radiance from comparable channels of MODIS and compared
the output against the CALIOP data. Quantitative outcomes of the above analysis are presented in the
form of statistical scores, namely; hit rate, probability of detection (POD) and false alarm rate (FAR).
Hit rate is fraction of the correctly detected (in comparison with reference data) cloud and clear pixels
out of the total number of pixels considered, whereas POD is fraction of the cloud/clear pixels detected
with respect to the reference (CALIOP or MODIS) cloud/clear pixels and FAR is fraction of the falsely
identified cloud/clear pixels out of the total number of detected cloud/clear pixels.

4.2.1. Comparison of INSAT-3D Retrieved Cloud Mask with CALIPSO Cloud Data

Comparison of the INSAT-3D retrieved cloud mask with the collocated CALIOP cloud product is
carried out using data of one year from March, 2016 to February, 2017, which allowed for examining
performance of the cloud detection scheme under varying seasonal conditions. Statistical scores
generated out of the comparison with CALIOP are tabulated in Table 2.
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Table 2. Inter-comparison of cloud mask algorithm applied to INSAT-3D imager data with clouds from
the CALIOP sensor for one year from March, 2016 to February, 2017.

Hit Rate (%)
Cloudy Regions Clear Regions

POD (%) FAR (%) POD (%) FAR (%)

83.12 81.42 18.21 84.57 15.76

INSAT-3D detected cloudy and clear-sky regions agree with the CALIOP retrievals over India
and surrounding regions for 83% of the time. As indicated by the POD values, 81% of cloud and 85%
of clear-sky pixels in CALIOP products are detected as cloudy and clear-sky respectively by INSAT-3D
with the present algorithm. Compared to CALIOP retrievals, 18% (16%) of clear-sky (cloud) pixels
are identified falsely as cloudy (clear-sky) by the present algorithm, as indicated by the FAR values.
The differences observed are mainly attributed to differences in sensor characteristics and sampling
foot prints. CALIOP has a small footprint of 70 m diameter along its sub-satellite track, where it
provides measurements at every 333 m, whereas INSAT-3D data used in the study are at a spatial
resolution of 4 km × 4 km. When an INSAT-3D pixel is partially clouded and CALIPSO passed through
its cloud free portion, the former detects the pixel as partially cloudy and the latter does as clear, hence
leading to an uncertainty in comparison. In order to examine performance of the current algorithm
further, these results are compared with the reported comparison results of similar passive sensors with
CALIOP retrievals [39,75,76]. Comparison statistics of the INSAT-3D cloud mask, along with that from
various other sensors around the globe, against the CALIOP cloud mask is summarized in Table 3.

Table 3. Summary of cloud mask comparison results of INSAT-3D and other satellites against CALIOP.
Comparison results are presented in terms of probability of detection (POD) of cloudy, POD of clear
and hit rate.

Score

INSAT-3D Geostationary Satellite Polar Orbiting

Current
Algorithm

SEVIRI
(Chung et al.

[39])

SEVIRI (Benas
et al. [75])

AVHRR-AM
(Stengel et al.

[76])

AVHRR-PM
(Stengel et al.

[76])

MODIS-
Terra

(Stengel et al.
[76])

MODIS-
Aqua

(Stengel et al.
[76])

POD of cloudy
(%) 81.42 82.3 87.5 78.3 79.0 91.0 81.6

POD of clear
(%) 84.57 82.1 69.4 70.4 87.7 70.0 83.1

Hit rate (%) 83.12 82.24 80.9 76.2 81.2 91.0 81.6

Period Mar 2016 to Feb
2017

May 2013 to Apr
2014 2006 to 2015 2006 to 2014 2006 to 2014 2006 to 2014 2006 to 2014

Region/Coverage 45.5◦E–105.5◦E
10◦S–45.5◦N

68◦W–62◦E
68◦S–68◦N

60◦W–60◦E
90◦S–90◦N Global Global Global Global

Number 88,383 815,961 100 million 42,119 16,675,575 19,118 16,494,437

Stengel et al. [76] have evaluated cloud mask from polar orbiting satellite sensors, namely;
AVHRR-AM, AVHRR-PM, MODIS-Terra and MODIS-Aqua with collocated measurements of CALIOP.
All sensors are observed to be correctly detecting cloud and clear pixels with respect to the active sensor
CALIOP, resulting in hit rates ranging from 76% to 91% with the highest value for MODIS-Terra and
lowest for AVHRR-AM. As indicated by the POD values, 78%, 79%, 91% and 82% of cloudy conditions
are correctly identified by AVHRR-AM, AVHRR-PM, MODIS-Terra and MODIS-Aqua respectively,
whereas correctly identified clear-sky is of a slightly lower fraction with POD values of 70%, 88%, 70%
and 83% respectively. Likewise, Benas et al. [75] have shown a hit rate of 81% with POD of cloudy and
clear-sky as 88% and 69% respectively for SEVIRI, in comparison with CALIOP. At the same time, study
by Chung et al. [39] has reported 82% POD for cloud and clear-sky in comparison between SEVERI
and CALIOP. In the same way, Qin et al. [41] quantitatively compared the Himawari satellite retrieved
cloud mask over Australian region and found a hit rate of 87% in reference to CALIOP. Moreover,
Jedlovec et al. [55] combined results for night and day of the bi-spectral composite threshold technique
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applied to GOES data in four different seasons, which show a hit rate of 84.5%, with a false alarm rate
of 8.1% and a skill score of 76.4%.

In addition, Stengel et al. [40] applied three state-of-the-art retrieval schemes, namely, CLAVR-x
(cloud from AVHRR extended) processing scheme, CM-SAF (climate monitoring satellite application
facility) processing scheme and ORAC (Oxford Rutherford Appleton Laboratory retrieval of aerosol
and cloud) processing scheme to AVHRR onboard the NOAA-18 and retrieved cloud properties were
inter-compared with collocated CALIOP measurements. AVHRR cloud mask evaluation scores in
terms of PODs for cloudy scenes were reported to be 82%, 82% and 87% for CLAVR-x, CM-SAF and
ORAC respectively, whereas PODs for clear-sky classification were slightly lower with values 83%, 72%
and 61% respectively for the three schemes. These results show very good agreement of different cloud
detection schemes of passive sensors with CALIOP observations and the small biases observed are
attributed to differences in sensor characteristics, retrieval approaches and viewing geometrics [40,77].
Space borne passive imagers are reported to be less sensitive to optically thin clouds [40]. Active
space borne LIDAR is capable of detecting high altitude thin clouds but may fail in detecting low level
clouds due to signal attenuation within thick clouds of COD > 5 [36,78,79]. Though POD of cloud
for INSAT-3D is lower than that of SEVIRI and MODIS-Terra, it is better than that of AVHRR-AM
and PM. Close agreement among the comparison statistics summarized in Table 3 shows that the
cloud mask generated over the Indian region by implementing the present algorithm on INSAT-3D is
comparable with the global high quality cloud mask products available from different satellites and
hence the INSAT-3D generated cloud mask could be used for generating cloud climatology over the
Indian region.

4.2.2. Comparison of INSAT-3D Retrieved Cloud Mask with MODIS Cloud Data

In addition to the comparison with CALIOP (active LIDAR sensor) retrievals, cloud mask retrieved
by implementing the present algorithm on INSAT-3D is compared with MODIS (passive sensor) cloud
mask and the statistical scores are presented in Table 4.

Table 4. Comparison of the cloud mask, generated by implementing the algorithm on INSAT-3D and
MODIS, with standard cloud product from MODIS.

Months
Algorithm
Applied to Hit Rate (%)

Cloudy Regions Clear Regions

POD (%) FAR (%) POD (%) FAR (%)

January INSAT-3D 79.50 66.49 6.13 94.87 29.44

MODIS
channels 85.28 75.97 4.05 96.22 22.78

June INSAT-3D 79.20 71.25 12.44 88.35 27.26
MODIS

channels 83.40 75.50 7.93 92.51 23.37

The comparison is carried out by using MODIS data during the first fifteen days of the months
of January and June in the year of 2016, which are in the winter and monsoon seasons respectively.
Comparison with MODIS also shows efficiency of the developed algorithm, with 80% hit rate in
January and 79% in June. PODs of cloud and clear-sky pixels in January are 66% and 95% respectively
with FAR 6% and 29%, whereas POD of cloud and clear pixels in June are 71% and 88% with FAR 12%
and 27%. The current algorithm uses only five channels of INSAT-3D for cloud detection, whereas
MODIS cloud detection scheme uses up to 22-channels [80]. Thus, the observed differences in cloud
detection could mainly be due to the difference in cloud detection techniques employed and channels
used in both the satellites, in addition to the differences in spatial resolution and pixel orientation on
ground. Moreover, it is also to be noted in contest of this comparison that the MODIS algorithm for
cloud mask is clear-sky conservative [47,48], whereas the present algorithm is cloud conservative.
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In general, inter-comparison results yield performance of the algorithm, relative to another,
with the differences in several factors including retrieval techniques, sensor specifications, time of
observation and spatial resolution. In order to overcome the uncertainties due to these factors,
the current algorithm was applied on MODIS allowing for a direct comparison of the resulting cloud
mask with the MODIS standard cloud product.

4.2.3. Implementation of the Algorithm on MODIS

The present algorithm is implemented on MODIS measurements from the channels similar to
those of INSAT-3D and the generated cloud mask is compared with the MODIS standard cloud product.
Comparison between the MODIS cloud mask with the current algorithm and standard MODIS cloud
product shows a hit rate of 85% and 83% in January and June, which is observed to be 80% and 79%
respectively when the algorithm is implemented on INSAT-3D observations (Table 4). POD of cloud
and clear-sky pixels are 76% (76%) and 96% (93%) in January (June) with FAR 4% (8%) and 23% (23%).
When compared with the MODIS standard product, the cloud mask generated by implementing
the present algorithm on both INSAT-3D and MODIS yielded results in excellent agreement, with a
difference in hit rate as low as 6% and 4% in January and June respectively. The new cloud mask
generated by implementing the current algorithm on MODIS is compared also with the cloud product
from CALIOP. A hit rate of 86% with POD of cloud and clear as 88% and 83% respectively are observed
in the comparison, as shown in Table 5. Similarly, when Stengel et al. [40] have applied the cloud
mask schemes to MODIS channels of comparable wavelengths with those of AVHRR, agreement
reported was with POD of cloud (clear-sky) 84% (85%), 86% (69%) and 90% (62%) for CLAVR-x, CM
SAF and ORAC respectively. Thus the comparison results and their closeness with those of other
passive satellites ensure consistency and efficiency of the cloud detection scheme employed in the
present algorithm in retrieving the cloud mask using INSAT-3D.

Table 5. Evaluation scores of MODIS cloud masks with different algorithms, using CALIPSO as a
reference. Evaluation scores are represented with probability of detection (POD), hit rate and Heidke
skill score (HSS).

Score
MODIS

Current
Algorithm

CLAVR-x
(Stengel et al. [40])

CM SAF
(Stengel et al. [40])

ORAC
(Stengel et al. [40])

POD of cloud (%) 87.67 84 86 90
POD of clear-sky

(%) 83.24 85 69 62

HSS 0.69 0.66 0.55 0.54
Hit rate (%) 85.99 - - -

4.3. Cloud Classification from INSAT-3D and Inter-Comparison with CALIPSO

Retrieval of CTT is carried out, after categorizing the detected cloud pixels of INSAT-3D into
different cloud types (high level opaque, low level opaque, STC and partial clouds as detailed in the
methodology Section 3.2). Comparison of these four categories of clouds is carried out with collocated
CALIPSO cloud pixels for a period of one year from March, 2006 to February, 2017, though a one to one
relation is not expected between cloud classes from INSAT-3D and CALIPSO due to the differences
in defining cloud categories. As detailed in Section 3.5, single layer cloud pixels from CALIOP are
categorized into thick and thin clouds, based on pre-defined threshold values of COD (CODthreshold).
Pixels with COD ≥ CODthreshold are defined as thick and those with COD < CODthreshold are considered
as thin clouds. Hamann et al. [3] have used a threshold of 3 for classifying CALIOP identified clouds as
thick and thin for comparing with clouds from the passive sensor SEVIRI. As per ISCCP classification,
clouds with COD less than 3.6 are considered as thin clouds. In the present study, an analysis is carried
out by considering four different values (1, 2, 3 and 3.6) of CODthreshold for classifying clouds from
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CALIOP into thick and thin classes. Table 6 shows the percentage of detected pixels of each category
from INSAT-3D that falls into the thin and thick classes from CALIPSO.

Table 6. Inter-comparison of INSAT-3D cloud categories with clouds from CALIPSO. Values represent
the percentage of pixels of each cloud class of INSAT-3D that falls into each CALIPSO class.

Cloud Categories

CALIPSO

CODthreshold = 1 CODthreshold = 2 CODthreshold = 3 CODthreshold = 3.6

Thick Thin Thick Thin Thick Thin Thick Thin

INSAT-3D

High level opaque 95 5 92 8 81 19 69 31
Low level opaque 90 10 86 14 83 17 81 19

STC clouds 53 47 44 56 38 62 31 69
Partial clouds 87 13 83 17 71 29 59 41

It is observed from Table 6 that the majority of high level and low level opaque clouds from
INSAT-3D fall under the CALIOP class of optically thick clouds in visible wavelength. As seen in
the table, 81% to 90% of low level opaque clouds from INSAT-3D are identified as optically thick
clouds by CALIPSO, with CODthreshold values ranging from 3.6 to 1. In case of high level opaque
clouds, 95% are observed to be with COD greater than 1 and 69% are with COD greater than 3.6.
Out of the STC cloud pixels, 69% are observed to be in the thin cloud category of CALIPSO, with a
CODthreshold of 3.6. However, 59% of partial clouds from INSAT-3D are observed to be optically thick
with visible optical depth greater than 3.6. This could be partly due to the small foot print of CALIPSO,
compared to the INSAT-3D pixel resolution. Clouds that are partially filled within a 4 km × 4 km
pixel of INSAT-3D may lead to complete coverage of several CALIOP foot prints, which are of only
70 m diameter, within the INSAT-3D pixel. High fraction of opaque clouds and STC clouds falling
under optically thick and thin clouds respectively show a fair agreement of INSAT-3D cloud classes to
CALIPSO categories for single layer clouds. Differences are expected between the cloud classes of
INSAT-3D and those of CALIOP, due to differences in criteria used for the classification, in addition
to the differences in spatial resolution, time of observation and retrieval techniques. Disagreements
between cloud classes from passive and active sensors, due to difference in cloud class definitions, are
reported in earlier studies [81]. Considering the ability of CALIPSO to detect very thin clouds [36,38],
the fraction of STC clouds detected by INSAT-3D to total thin cirrus detected by CALIPSO is examined
and the results are tabulated in Table 7. In order to classify thin and thick cirrus clouds from CALIPSO,
Sassen et al. [38] have used a COD of 0.3 as the threshold. Here, the analysis is carried out for three
values of CODthreshold; 0.3, 0.5 and 1.0. Pixels with COD < CODthreshold and CTH > 8 km are classified
as thin cirrus clouds from CALIPSO.

Table 7. Inter-comparison of INSAT-3D semi-transparent cirrus (STC) clouds and thin cirrus class from
CALIPSO. Values represent the percentage of pixels of STC clouds of INSAT-3D to the total thin cirrus
clouds of CALIPSO.

Cloud Category CALIPSO

CODthreshold = 0.3 CODthreshold = 0.5 CODthreshold = 1

STC Clouds 84 85 86

It can be seen from Table 7 that 84% of the thin cirrus clouds with a COD < 0.3 from CALIPSO are
detected as STC clouds by INSAT-3D. However, the fraction increases to 86% when the CODthreshold

increases to 1. This shows the capability of the present algorithm implemented on INSAT-3D to detect
even optically thin clouds with excellent accuracy.
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4.4. Retrieval of CTT

Retrieval of CTT is carried out by applying suitable methods for each of the four cloud categories
of INSAT-3D (as detailed in the methodology Sections 3.2 and 3.2.1). Figure 4 shows retrieved CTT, by
applying the present algorithm on INSAT-3D retrieved cloud mask for the same representative days in
each season as shown in Figure 3. CTT values over India and the surrounding regions varied from 180 to
290 K, with deep convective cloud structures (i.e., CTT < 250 K) during the monsoon and post-monsoon
seasons. The spatial variations of CTT observed indicate the general consensus of less organized cloud
systems over the Indian region during winter and pre-monsoon season, compared to that in monsoon
season. Clouds retreated towards the equator from the subcontinent in the post-monsoon season, after
its wide spreading in the monsoon season, which is seen in the figure.

Figure 4. INSAT-3D retrieved cloud top temperature (CTT) at 07:30 UTC on (a) January 1 (winter
season), (b) April 1 (pre-monsoon), (c) August 1 (monsoon) and (d) Novmber 1 (post-monsoon) of the
year 2016.

4.5. Validation of INSAT-3D Retrieved CTT

Validation of INSAT-3D retrieved CTT is carried out, using concurrent radiosonde measurements.
Outcomes of the comparison analysis are presented in terms of mean bias error, mean absolute error
and root mean square error (RMSE). Figure 5 depicts scatter plot between CTTs from INSAT-3D and
collocated radiosonde measurements. Radiosonde measurements above 11 km altitude (below ~200
hPa) are not considered in the analysis to avoid the possibility of errors due to relative humidity
uncertainties. This restriction has reduced number of data points available for comparison and limited
the minimum CTT value to about 235 K. CTT from INSAT-3D and radiosonde agrees well within
7.90 K, with a RMSE of 10.30 K and mean bias error of –0.31 K. The observed difference in CTT
could be partially due to temporal differences between the satellite observations and radiosonde
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measurements, and inherent biases of the methods. However, such differences are similar to those
previously published [82,83]. For instance, Zhang et al. [72] have compared the radiosonde based
cloud layer retrieval with a ground-based active remote sensing of cloud (ARSCL) value-added
product, which combines data from 95-GHz W-band atmospheric radiation measurement (ARM) cloud
radar and/or the 35-GHz millimeter microwave cloud radar, over multiple atmospheric radiation
measurement sites. Absolute differences in CTHs from radiosonde and ARSCL retrievals were reported
to be less than 500 m for 78.7%, 66.7% and 61.2% of the cases analyzed over the Southern Great Plains,
tropical western Pacific and North Slope of Alaska sites respectively. In view of these results, it could
be concluded that the observed differences in CTT between INSAT-3D and radiosonde, which are
within 3%, could be due to the inherent limitations of sensors and methodologies. However, to gain a
better understanding of these discrepancies over a wide range of temperatures, a detailed comparison
is carried out with collocated CALIOP measurements over a large spatial domain.

Figure 5. Comparison of retrieved CTT (Kelvin) from INSAT-3D, with that from radiosonde profiles.

4.6. Comparison of INSAT-3D Retrieved CTT using CALIPSO

In addition to the validation with radiosonde estimates, INSAT-3D retrieved CTT is compared with
CTT from CALIOP. Conversion of CTH measured by CALIOP to CTT uses temperature profiles from
MERRA-2 as mentioned in the data section. MERRA-2 gives temperature profiles at 72 vertical levels
up to 0.01 hPa with a horizontal resolution of 0.625◦ longitude × 0.5◦ latitude [84]. CTH measurements
from CALIOP have a spatial resolution of 5 km and vertical resolution of 30 m up to altitude of 8.2 km
and 60 m above 8.2 km. This difference in the horizontal and vertical resolution between MERRA-2 and
CALIOP causes uncertainties in the estimated CTT of CALIOP from CTH. However, several studies
have reported the inter-comparison of CTT from CALIOP and that of passive satellite sensors [75,85,86].
Since geostationary satellites are performing measurements over different regions of the globe, direct
comparison of retrievals from these satellites are not possible. Relative assessment of retrievals from
these geostationary satellites is possible by the comparisons using common datasets, such as CALIPSO
CTT. Thus, the comparison of CTTs from INSAT-3D and CALIPSO would be useful for future global
studies, which require combination of cloud retrievals from different geostationary satellites. The
comparison is carried out by considering all concurrent and collocated pixels of INSAT-3D, except
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those are flagged with low confidence. Limitations in the comparison of CTT from satellite sensors with
CALIPSO CTT is discussed in detail in the literature [86,87]. Major disagreement is reported for thin
cloud layers, which is mainly attributed to lower sensitivity of passive sensors to high level thin clouds
with low optical depth. Benas et al. [75] have reported significant improvement in agreement between
CTT from SEVERI and CALIOP, when optically thin clouds are not included for the comparison.
The presence of multi-layer clouds is also reported to be affecting the agreement between cloud top
properties from active and passive satellites. Based on the comparison between CTH from SEVIRI
and CALIOP with single and multi-layer clouds, Hamann et al. [3] have reported an increase in bias
of more than 2 km in presence of multi-layer clouds. In view of this, inter-comparison of CTT from
INSAT-3D and CALIOP has been performed, for single and multi-layer clouds, by including and
excluding optically thin clouds with optical depths ranging from 0.25 to 1. The results are summarized
in Table 8, in which values inside bracket represent the comparison statistics of single layer (SL) clouds,
whereas those outside represent that of single and multi-layer (ML) clouds together.

Table 8. Inter-comparison of INSAT-3D retrieved CTT against CALIPSO for single and multi-layer
clouds with varying cloud optical depth (COD) values of top layer.

Thresholds of
COD

Mean Bias Error
ML (SL)

Mean Absolute
Error

ML (SL)

RMSE
ML (SL)

Correlation
Coefficient

ML (SL)

No threshold 12.63 (9.07) 16.27 (13.56) 22.90 (19.40) 0.62 (0.73)
COD > 0.25 10.41 (8.07) 13.93 (12.19) 19.30 (16.91) 0.73 (0.80)
COD > 0.50 8.68 (6.87) 12.38 (11.12) 16.65 (14.99) 0.81 (0.85)
COD > 0.75 8.07 (6.65) 11.80 (10.81) 15.95 (14.51) 0.83 (0.87)
COD > 1.00 7.45 (6.31) 11.23 (10.61) 15.20 (14.32) 0.85 (0.87)

COD: cloud optical depth; ML: single and multi-layer clouds, SL: single layer cloud only.

It can be noticed from the table that the agreement is better for single layer clouds, compared
to that for multilayer clouds, in all the cases considered. Even when all the optically thin clouds are
included in comparison, CTTs from INSAT-3D and CALIOP agree within the mean bias error of 12.63 K
(9.07), mean absolute error of 16.27 K (13.56), RMSE of 22.90 K (19.40) and coefficient of correlation of
0.62 (0.73) for ML (SL) clouds. However, the agreement is observed to be improving when optically
thin clouds are excluded from the analysis. When only single layer clouds with COD > 1 are considered
for the analysis, mean bias error, mean absolute error, RMSE and coefficient of correlation are observed
to be 6.31 K, 10.61 K, 14.32 K and 0.87 respectively, as shown in Figure 6. These results presented are
subjected to the uncertainties associated with CALIPSO CTT. However, it can be noted here that the
effect of multilayer clouds decreases with an increase in optical depth of the top layer cloud. The
improvements in the comparison observed here with an increase in COD in the absence of multi-layer
clouds only indicate removal of bias due to sensitivity difference between the datasets rather than
bias in the retrieval procedure. It can be noted that the reduction in biases observed in the absence
of optically thin clouds is not high, which indicates capability of the present algorithm to efficiently
retrieve CTT even over optically thin clouds.

By evaluating SEVIRI retrieved CTT dataset against CALIOP data, Taylor et al. [86] have
reported large spatio-temporal variability in absolute retrieval biases, varying from less than 5 K
to 30 K. Hamann et al. [3] also have reported 40% (20%) deviations in CTH retrieval from SEVERI
over tropics (extra-tropics), leading to 1.0–2.5 km difference in CTH, in comparison with CALIOP
measurements. Overall, biases of INSAT-3D retrieved CTT in the present study are comparable to
the reported discrepancy of 0.5–3.0 km, which is approximately 3–20 K by assuming a lapse rate of
6.5 Kkm−1 [83,87–89].
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Figure 6. Comparison of retrieved CTT (Kelvin) from INSAT-3D, with that from CALIPSO,
by considering only the pixels with full confidence (opaque and STC/partial in conditions (i) and (iv))
from INSAT-3D. Five hundred and seventeen data points are included in the analysis.

4.7. Sensitivity of CTT Retrieval to Cloud Classification Scheme

Since different methods are employed for CTT retrieval of different types of clouds, based on
their opacity, cloud classification is critical and crucial in CTT retrieval. For optically thick clouds,
emissivity is assumed to be unity and hence the measured BTTIR1 is taken as CTT. This makes the
threshold used for segregating optically thick clouds so important in CTT retrieval. Hence a sensitivity
analysis is carried out, for SL and ML clouds; by considering different thresholds for high level and
low level optically thick clouds and the results are summarized in Table 9. Several earlier studies
(Hamada et al. [90], Inoue [61,62] and Lutz et al. [91]) have considered BTDTIR1,TIR2 of 2.5 K (1 K) for
segregating high (low) level thick clouds. With these thresholds, mean bias error, mean absolute
error, RMSE and correlation coefficient in comparison between CTT from INSAT-3D and CALIOP
are observed to be 11.60 K (10.45), 14.23 K (13.40), 18.52 K (17.45) and 0.81 (0.84) for ML (SL) clouds.
The agreement between CTT from both the satellites is observed to be improving when BTDTIR1,TIR2

thresholds for high level thick clouds are made more stringent from 2.5 K to 0.5 K. In this case, mean
bias error, mean absolute error, RMSE and correlation coefficient are observed to be 7.45 K (6.31),
11.23 K (10.61), 15.20 K (14.32) and 0.85 (0.87) respectively, for ML (SL) clouds. Decrease in mean
bias error of 4.15 K (4.14 K) and increase in correlation coefficient from 0.81 to 0.85 (0.84 to 0.87) was
seen for ML (SL) clouds. As the BTDTIR1,TIR2 threshold decreases from 2.5 to 0.5, more pixels, which
are earlier classified as opaque clouds, fall into the category of partial clouds and hence the CTT
retrieval for partial clouds detailed in Section 3.2.1 is employed instead of just considering BTTIR1 as
the CTT. However, decrease of the BTDTIR1,TIR2 threshold for low level clouds from 1 to 0.5 has led to
deterioration of the statistical scores. Based on this sensitivity analysis, BTDTIR1,TIR2 of 0.5 K (1 K) was
used in the present algorithm to segregate high (low) level thick clouds for further retrieval of CTT.
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Table 9. Inter-comparison of INSAT-3D retrieved CTT against CALIPSO for different thresholds of
cloud classification.

Conditions Mean Bias Error
ML (SL)

Mean Absolute Error
ML (SL)

RMSE
ML (SL)

Correlation Coefficient
ML (SL)

High level thick clouds:
BTTIR1 < 250 and 0 ≤

BTDTIR1,TIR2 ≤ 2.5
Low level thick clouds:
BTTIR1 ≥ 250 and 0 ≤

BTDTIR1,TIR2 ≤ 1.0

11.60 (10.45) 14.23 (13.40) 18.52 (17.45) 0.81 (0.84)

High level thick clouds:
BTTIR1 < 250 and 0 ≤

BTDTIR1,TIR2 ≤ 1.0
Low level thick clouds:
BTTIR1 ≥ 250 and 0 ≤

BTDTIR1,TIR 2 ≤ 1.0

9.39 (8.23) 12.33 (11.47) 16.51 (15.36) 0.84 (0.87)

High level thick clouds:
BTTIR1 < 250 and 0 ≤

BTDTIR1,TIR2 ≤ 0.5
Low level thick clouds:
BTTIR1 ≥ 250 and 0 ≤

BTDTIR1,TIR2 ≤ 1.0

7.45 (6.31) 11.23 (10.61) 15.20 (14.32) 0.85 (0.87)

High level thick clouds:
BTTIR1 < 250 and 0 ≤

BTDTIR1,TIR2 ≤ 0.5
Low level thick clouds:
BTTIR1 ≥ 250 and 0 ≤

BTDTIR1,TIR2 ≤ 0.5

8.37 (7.24) 11.69 (11.01) 15.78 (14.79) 0.83 (0.86)

4.8. Sensitivity of CTT to the Retrieval Criteria

While CTT of optically thick cloud is considered as the BTTIR1, that of the STC and partial cloud
is retrieved through the best fit on a two dimensional scatter plot between BTTIR1 and BTDTIR1,TIR2

over a region consisting of clear, opaque, STC/partial clouds. In order to get the best retrieval, the
region considered around the pixel must contain sufficient number of opaque, STC/ partial clouds and
clear pixels. However, it is observed that several of the pixels did not meet these criteria and it led to
elimination of them from the retrieval. In order to avoid exclusion of these pixels, an analysis is carried
out to understand the sensitivity of these stringent conditions and also to explore the possibility to relax
these criteria without compromising quality of the product. In this regard, six sets of conditions are
followed for retrieval of CTT of STC and partial clouds and the retrieved CTT in each case is compared
with the CTT from CALIOP. Among the six sets of conditions, which are given below, the first three are
for STC and the remaining three are for partial clouds.

Conditions for the STC clouds are that the area considered must contain:

(i) At least one high level opaque cloud, STC cloud and clear sky pixel.
(ii) At least one pixel of high level opaque cloud.
(iii) At least 25 cloud pixels irrespective of any of the conditions.

Conditions for partial clouds are that the area considered must contain:

(iv) At least one opaque cloud (high/low), partial and clear sky pixel.
(v) At least one pixel of opaque cloud (high/low).
(vi) At least 25 cloud pixels, irrespective of any of the conditions.

Table 10 shows the results of comparison of INSAT-3D retrieved CTT, by following the above
set of conditions, with CALIOP CTT. Though only those pixels, which satisfy conditions (i) and (iv)
are considered as confident in the CTT retrieval scheme, the comparison statistics indicate that the
pixels those satisfy conditions (ii), (v) and (vi) are also quite acceptable. It could be noted that the
conditions (iii) and (vi) are the same, but the former is for STC and the latter is for partial clouds, which
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demands only 25 pixels, irrespective of any other conditions. Conditions (iii) and (vi) provided better
CTT retrieval for partial clouds than STC. The sensitivity analysis reveals that five out of six conditions,
though four of them are not considered with full confidence, provide CTT retrieval with good accuracy.

Table 10. Inter-comparison of INSAT-3D retrieved CTT against CALIPSO with different conditions
(given in Section 4.8) for retrieval over STC and partial clouds.

Condition
Numbers Mean Bias Error Mean Absolute

Error RMSE Correlation
Coefficient

(i) 8.14 11.59 15.27 0.84
(ii) 9.64 12.43 16.56 0.82
(iii) 7.11 13.51 19.78 0.76
(iv) 6.15 9.59 12.94 0.91
(v) 6.94 10.13 13.71 0.88
(vi) 8.73 10.69 14.03 0.90

5. Conclusions

Accurate retrieval of cloud parameters such as cloud mask and CTT at sufficient spatial and
temporal resolutions is essential for climate studies. Diurnal variations of cloud parameters over a large
spatial domain can only be achieved using observations from geostationary satellite sensors. Imager
on INSAT-3D is one among them, which provides observations over the Indian region at an interval of
half an hour. An algorithm is developed in the present study to retrieve the cloud mask and cloud top
temperature using INSAT-3D observations. Reliability of the parameters retrieved by implementing the
developed algorithm on INSAT-3D is examined through inter-comparisons with the cloud mask and
cloud top temperature (CTT) from MODIS and CALIOP and also through validation with conventional
radiosonde measurements. In addition, the cloud mask scheme is implemented on similar channels of
MODIS and the retrievals are inter-compared. The current algorithm implemented on INSAT-3D is
observed to be capable of generating cloud mask with ~85% accuracy, as evidenced by the comparison
analysis. Further, validation results indicate that the uncertainty associated with CTT retrieval using
INSAT-3D is 3%. Reliability and consistency of the retrieved products are further ensured by comparing
the current comparison statistics with that of the same products from other satellites over different
regions of the globe. Excellent comparison scores and their close agreement with reported similar
comparisons show the efficiency of the present algorithm to apply for operational generation of these
essential climate variables to create long-term climate quality data over the Indian region.
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