Hydrological Impacts of Large Fires and Future Climate: Modeling Approach Supported by Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study-Area
2.2. Satellite Data to Support SWAT Parametrization
2.3. SWAT Hydrological Model Setup for Fire and Post-Fire Recovery
2.4. Future Climate Scenarios
2.5. Large Fires in the Future
3. Results and Discussion
3.1. Post-Fire Recovery in SWAT Based on Satellite Data
3.2. Climate and Large Fires in the Future
3.3. Hydrological Impacts of Future Large Fires under Climate Change
3.4. Challenges for Landscape Adaptation to Large Fires and Future Climate
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carvalho-Santos, C.; Honrado, J.P.; Hein, L. Hydrological services and the role of forests: Conceptualization and indicator-based analysis with an illustration at a regional scale. Ecol. Complex. 2014, 20, 69–80. [Google Scholar] [CrossRef]
- Emelko, M.B.; Silins, U.; Bladon, K.D.; Stone, M. Implications of land disturbance on drinking water treatability in a changing climate: Demonstrating the need for “source water supply and protection” strategies. Water Res. 2011, 45, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of prescribed fires on soil properties: A review. Sci. Total Environ. 2018, 613–614, 944–957. [Google Scholar] [CrossRef]
- Nunes, J.P.; Doerr, S.H.; Sheridan, G.; Neris, J.; Santín, C.; Emelko, M.B.; Silins, U.; Robichaud, P.R.; Elliot, W.J.; Keizer, J. Assessing water contamination risk from vegetation fires: Challenges, opportunities and a framework for progress. Hydrol. Process. 2018, 32, 687–694. [Google Scholar] [CrossRef]
- Turco, M.; Rosa-Cánovas, J.J.; Bedia, J.; Jerez, S.; Pedro Montávez, J.; Llasat, M.C.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef]
- Pausas, J.G.; Ribeiro, E. Fire and plant diversity at the global scale. Glob. Ecol. Biogeogr. 2017, 26, 889–897. [Google Scholar] [CrossRef]
- Doerr, S.H.; Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150345. [Google Scholar] [CrossRef]
- Liu, Y.; Stanturf, J.; Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 2010, 259, 685–697. [Google Scholar] [CrossRef]
- Brotons, L.; Duane, A. Correspondence: Uncertainty in climate-vegetation feedbacks on fire regimes challenges reliable long-term projections of burnt area from correlative models. Fire 2019, 2, 8. [Google Scholar] [CrossRef]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT model special section: Overview and insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Serpa, D.; Nunes, J.P.C.; Prats, S.A.; Neves, R.; Keizer, J.J. Predicting the effectiveness of different mulching techniques in reducing post-fire runoff and erosion at plot scale with the RUSLE, MMF and PESERA models. Environ. Res. 2018, 165, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Moussoulis, E.; Mallinis, G.; Koutsias, N.; Zacharias, I. Modelling surface runoff to evaluate the effects of wildfires in multiple semi-arid, shrubland-dominated catchments. Hydrol. Process. 2015, 29, 4427–4441. [Google Scholar] [CrossRef]
- Gould, G.K.; Liu, M.; Barber, M.E.; Cherkauer, K.A.; Robichaud, P.R.; Adam, J.C. The effects of climate change and extreme wildfire events on runoff erosion over a mountain watershed. J. Hydrol. 2016, 536, 74–91. [Google Scholar] [CrossRef]
- Van Eck, C.M.; Nunes, J.P.; Vieira, D.C.S.; Keesstra, S.; Keizer, J.J. Physically-based modelling of the post-fire runoff response of a forest catchment in central portugal: Using field versus remote sensing based estimates of vegetation recovery. Land Degrad. Dev. 2016, 27, 1535–1544. [Google Scholar] [CrossRef]
- Morán-Tejeda, E.; Zabalza, J.; Rahman, K.; Gago-Silva, A.; López-Moreno, J.I.; Vicente-Serrano, S.; Lehmann, A.; Tague, C.L.; Beniston, M. Hydrological impacts of climate and land-use changes in a mountain watershed: Uncertainty estimation based on model comparison. Ecohydrology 2015, 8, 1396–1416. [Google Scholar] [CrossRef]
- Rodrigues, E.L.; Jacobi, C.M.; Figueira, J.E.C. Wildfires and their impact on the water supply of a large neotropical metropolis: A simulation approach. Sci. Total Environ. 2019, 651, 1261–1271. [Google Scholar] [CrossRef]
- Batelis, S.C.; Nalbantis, I. Potential effects of forest fires on streamflow in the enipeas river basin, thessaly, Greece. Environ. Process. 2014, 1, 73–85. [Google Scholar] [CrossRef]
- Havel, A.; Tasdighi, A.; Arabi, M. Assessing the long-term hydrologic response to wildfires in mountainous regions. Hydrol. Earth Syst. Sci. Discuss. 2017, 22, 2527–2550. [Google Scholar] [CrossRef]
- Nunes, J.P.; Quintanilla, P.N.; Santos, J.M.; Serpa, D.; Carvalho-santos, C.; Rocha, J.; Keizer, J.J.; Keesstra, S.D. Afforestation, subsequent forest fires and provision of hydrological services: A model-based analysis for a Mediterranean mountainous catchment. Land Degrad. Dev. 2018, 788, 776–788. [Google Scholar] [CrossRef]
- Syphard, A.D.; Sheehan, T.; Rustigian-Romsos, H.; Ferschweiler, K. Mapping future fire probability under climate change: Does vegetation matter? PLoS ONE 2018, 13, 1–23. [Google Scholar] [CrossRef]
- Wu, M.; Knorr, W.; Thonicke, K.; Schurgers, G.; Camia, A.; Arneth, A. Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography: A comparison of two fire-vegetation models. J. Geophys. Res. Biogeosci. 2015, 1–17. [Google Scholar] [CrossRef]
- Pasetto, D.; Casagrandi, R.; Mari, L.; Arenas-castro, S.; Chrysoulakis, N.; Bustamante, J.; Cord, A.F.; Poursanidis, D.; Domingo-marimon, A.D.C.; Monteiro, A.; et al. Integration of satellite remote sensing data in ecosystem modelling at local scales: Practices and trends. Methods Ecol. Evol. 2018, 2018, 1810–1821. [Google Scholar] [CrossRef]
- Odusanya, A.E.; Mehdi, B.; Schürz, C.; Oke, A.O.; Awokola, O.S. Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria. Hydrol. Earth Syst. Sci. 2019, 23, 1113–1144. [Google Scholar] [CrossRef]
- Knoche, M.; Fischer, C.; Pohl, E.; Krause, P.; Merz, R. Combined uncertainty of hydrological model complexity and satellite-based forcing data evaluated in two data-scarce semi-arid catchments in Ethiopia. J. Hydrol. 2014, 519, 2049–2066. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition procedure based on loess. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Carvalho-Santos, C.; Nunes, J.P.; Monteiro, A.T.; Hein, L.; Honrado, J.P. Assessing the effects of land cover and future climate conditions on the provision of hydrological services in a medium-sized watershed of Portugal. Hydrol. Process. 2016, 30, 720–738. [Google Scholar] [CrossRef]
- Carvalho-Santos, C.; Sousa-Silva, R.; Gonçalves, J.; Honrado, J.P. Ecosystem services and biodiversity conservation under forestation scenarios: Options to improve management in the Vez watershed, NW Portugal. Reg. Environ. Chang. 2016, 16, 1557–1570. [Google Scholar] [CrossRef]
- Fernández, C.; Vega, J.A. Evaluation of RUSLE and PESERA models for predicting soil erosion losses in the first year after wildfire in NW Spain. Geoderma 2016, 273, 64–72. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77–94. [Google Scholar] [CrossRef]
- Haylock, M.R.; Hofstra, N.; Klein Tank, A.M.G.; Klok, E.J.; Jones, P.D.; New, M. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 2008, 113, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. A trend-preserving bias correction—The ISI-MIP approach. Earth Syst. Dyn. Discuss. 2013, 4, 49–92. [Google Scholar] [CrossRef]
- Casanueva, A.; Herrera, S.; Fernández, J.; Gutiérrez, J.M. Towards a fair comparison of statistical and dynamical downscaling in the framework of the EURO-CORDEX initiative. Clim. Chang. 2016, 137, 411–426. [Google Scholar] [CrossRef] [Green Version]
- D’Onofrio, D.; Palazzi, E.; von Hardenberg, J.; Provenzale, A.; Calmanti, S. Stochastic rainfall downscaling of climate models. J. Hydrometeorol. 2014, 15, 830–843. [Google Scholar] [CrossRef]
- Terzago, S.; Palazzi, E.; von Hardenberg, J. Stochastic downscaling of precipitation in complex orography: A simple method to reproduce a realistic fine-scale climatology. Nat. Hazards Earth Syst. Sci. 2018, 18, 2825–2840. [Google Scholar] [CrossRef] [Green Version]
- Sousa, P.M.; Trigo, R.M.; Pereira, M.G.; Bedia, J.; Gutiérrez, J.M. Different approaches to model future burnt area in the Iberian Peninsula. Agric. Meteorol. 2015, 202, 11–25. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Development and Structure of the Canadian Forest fire Weather Index System; Canadian Forestry Service: Ottawa, ON, Canada, 1987; ISBN 0662151984.
- Berrisford, P.; Dee, D.P.; Poli, P.; Brugge, R.; Fielding, M.; Fuentes, M.; Kållberg, P.; Kobayashi, S.; Uppala, S.; Simmons, A. The ERA-Interim archive Version 2.0; ERA Report Series 1; ECMWF: Reading, UK, 2011; p. 23. [Google Scholar]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef] [Green Version]
- Catry, F.X.; Moreira, F.; Tujeira, R.; Silva, J.S. Post-fire survival and regeneration of Eucalyptus globulus in forest plantations in Portugal. For. Ecol. Manag. 2013, 310, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Bastos, A.; Gouveia, C.M.; DaCamara, C.C.; Trigo, R.M. Modelling post-fire vegetation recovery in Portugal. Biogeosciences 2011, 8, 3593–3607. [Google Scholar] [CrossRef] [Green Version]
- Amatulli, G.; Camia, A.; San-Miguel-Ayanz, J. Estimating future burned areas under changing climate in the EU-Mediterranean countries. Sci. Total Environ. 2013, 450–451, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Regos, A.; Aquilué, N.; Retana, J.; De Cáceres, M.; Brotons, L. Using unplanned fires to help suppressing future large fires in mediterranean forests. PLoS ONE 2014, 9, e94906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbero, R.; Abatzoglou, J.T.; Larkin, N.K.; Kolden, C.A.; Stocks, B. Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildl. Fire 2015, 24, 892–899. [Google Scholar] [CrossRef]
- Mann, M.L.; Batllori, E.; Moritz, M.A.; Waller, E.K.; Berck, P.; Flint, A.L.; Flint, L.E.; Dolfi, E. Incorporating anthropogenic influences into fire probability models: Effects of human activity and climate change on fire activity in California. PLoS ONE 2016, 11, e0153589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Wimberly, M.C. Direct and indirect effects of climate change on projected future fire regimes in the western United States. Sci. Total Environ. 2016, 542, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Regos, A.; Ninyerola, M.; Moré, G.; Pons, X. Linking land cover dynamics with driving forces in mountain landscape of the Northwestern Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 1–14. [Google Scholar] [CrossRef]
- Trigo, R.M.; Sousa, P.M.; Pereira, M.G.; Rasilla, D.; Gouveia, C.M. Modelling wildfire activity in Iberia with different atmospheric circulation weather types. Int. J. Climatol. 2016, 36, 2761–2778. [Google Scholar] [CrossRef]
- Pereira, M.G.; Fernandes, L.S.; Carvalho, S.; Santos, R.B.; Caramelo, L.; Alencoão, A. Modelling the impacts of wildfires on runoff at the river basin ecological scale in a changing Mediterranean environment. Environ. Earth Sci. 2016, 75, 392. [Google Scholar] [CrossRef]
- Silins, U.; Stone, M.; Emelko, M.B.; Bladon, K.D. Sediment production following severe wildfire and post-fire salvage logging in the Rocky Mountain headwaters of the Oldman River Basin, Alberta. Catena 2009, 79, 189–197. [Google Scholar] [CrossRef]
- Parente, J.; Pereira, M.G.; Amraoui, M.; Tedim, F. Negligent and intentional fires in Portugal: Spatial distribution characterization. Sci. Total Environ. 2018, 624, 424–437. [Google Scholar] [CrossRef] [Green Version]
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Fernandes, P.M. Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landsc. Urban Plan. 2013, 110, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape e wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raftoyannis, Y.; Nocentini, S.; Marchi, E.; Sainz, R.C.; Guemes, C.G.; Pilas, I.; Peric, S.; Paulo, J.A.; Moreira-Marcelino, A.C.; Costa-Ferreira, M.; et al. Perceptions of forest experts on climate change and fire management in European Mediterranean forests. IForest 2014, 7, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Khabarov, N.; Krasovskii, A.; Obersteiner, M.; Swart, R.; Dosio, A.; San-Miguel-Ayanz, J.; Durrant, T.; Camia, A.; Migliavacca, M. Forest fires and adaptation options in Europe. Reg. Environ. Chang. 2016, 16, 21–30. [Google Scholar] [CrossRef] [Green Version]
Condition | SWAT Class | % Land Cover |
---|---|---|
Unburnt 80% | MIGS—shrub | 33 |
BSVG—low shrub | 7.5 | |
CARV—oak | 7.5 | |
EUCL—eucalypts | 1 | |
PINU—pine | 7 | |
CORN—agriculture (maize + pasture) | 19 | |
URBN—urban low residential | 5 | |
Burnt in 2006 20% | FIMI—shrub/MIFI—burnt shrub | 12 |
FIBS—low shrub/BSFI—burnt low shrub | 5.6 | |
FICA—oak/CAFI—burnt oak | 1.4 | |
FIEU—eucalypts/EUFI—burnt eucalypts | 0.3 | |
FIPI—pine/PIFI—burnt pine | 0.7 |
Parameter | Description | Vegetation Unburnt (Burnt) | ||||
---|---|---|---|---|---|---|
Pine FIPI (PIFI) | Eucalypts FIEU (EUFI) | Oak FICA (CAFI) | Shrub FIMI (MIFI) | Low Shrub FIBS (BSFI) | ||
BLAI | Maximum potential leaf area index (m2/m2) | 4 (1) | 3.7 (1) | 6 (1) | 2 (0.5) | 5 (0.5) |
ALAI_MIN | Minimum leaf area index for plant during dormant period (m2/m2) | 3.9 (1) | 3.4 (1) | 0.75 (1) | 1.8 (0) | 0 (0) |
USLE_C | Minimum value of USLE C factor for water erosion (factor) | 0.001 (0.004) | 0.001 (0.008) | 0.001 (0.002) | 0.001 (0.004) | 0.005 (0.008) |
OV_N (.hru) | Curve number for moisture condition | 0.8 (0.1) | 0.4 (0.1) | 0.8 (0.2) | 0.8 (0.1) | 0.17 (0.1) |
PHU_PLT | Heat units to maturity | 3500 (1500) | 3500 (1500) | 3500 (1500) | 2500 (1000) | 1500 (500) |
RCP 4.5 | RCP 8.5 | |||||||
---|---|---|---|---|---|---|---|---|
CNRM-CM5 | EC-EARTH | IPSL-CM5A-MR | MPI-ESM-LR | CNRM-CM5 | EC-EARTH | IPSL-CM5A-MR | MPI-ESM-LR | |
Change in burnt area compared with each climate model historical (%) | 18.4 | −13.2 | 16.3 | 23.9 | 3.1 | 10.3 | 4.7 | 28.1 |
Total burnt area (ha—30 years) | 80,267 | 58,292 | 80,342 | 66,701 | 69,889 | 74,060 | 72,294 | 68,974 |
Maximum burnt area per year (ha) | 6 637 | 6 486 | 6 283 | 6 321 | 6 581 | 6 757 | 7 083 | 8 148 |
Minimum burnt area per year (ha) | 0 | 6.5 | 31.8 | 0 | 44.2 | 0 | 0 | 0 |
Nº of years with burnt area | 29 | 30 | 30 | 29 | 30 | 28 | 29 | 27 |
Nº of years with low burnt area (<500 ha) (historical) | 3 (3) | 6 (0) | 4 (3) | 2 (1) | 5 | 4 | 2 | 5 |
Nº of years with large burnt area (>4000 ha) (historical) | 7 (3) | 2 (6) | 5 (3) | 2 (1) | 6 | 6 | 3 | 5 |
Nº of years with large burnt area (>3000 ha) (historical) | 11 (5) | 5 (3) | 12 (4) | 5 (3) | 7 | 9 | 9 | 10 |
Nº of years with fires simulated in SWAT (historical) | 5 (4) | 5 (4) | 7 (4) | 3 (3) | 4 | 5 | 4 | 4 |
Total burnt area in SWAT (30 years) | 40,000 | 40,000 | 56,000 | 24,000 | 32,000 | 40,000 | 32,000 | 32,000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho-Santos, C.; Marcos, B.; Nunes, J.P.; Regos, A.; Palazzi, E.; Terzago, S.; Monteiro, A.T.; Honrado, J.P. Hydrological Impacts of Large Fires and Future Climate: Modeling Approach Supported by Satellite Data. Remote Sens. 2019, 11, 2832. https://doi.org/10.3390/rs11232832
Carvalho-Santos C, Marcos B, Nunes JP, Regos A, Palazzi E, Terzago S, Monteiro AT, Honrado JP. Hydrological Impacts of Large Fires and Future Climate: Modeling Approach Supported by Satellite Data. Remote Sensing. 2019; 11(23):2832. https://doi.org/10.3390/rs11232832
Chicago/Turabian StyleCarvalho-Santos, Claudia, Bruno Marcos, João Pedro Nunes, Adrián Regos, Elisa Palazzi, Silvia Terzago, António T. Monteiro, and João Pradinho Honrado. 2019. "Hydrological Impacts of Large Fires and Future Climate: Modeling Approach Supported by Satellite Data" Remote Sensing 11, no. 23: 2832. https://doi.org/10.3390/rs11232832
APA StyleCarvalho-Santos, C., Marcos, B., Nunes, J. P., Regos, A., Palazzi, E., Terzago, S., Monteiro, A. T., & Honrado, J. P. (2019). Hydrological Impacts of Large Fires and Future Climate: Modeling Approach Supported by Satellite Data. Remote Sensing, 11(23), 2832. https://doi.org/10.3390/rs11232832