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Abstract: The development of low-cost, small, modular receivers and their application in diverse
scenarios with complex data quality has increased the requirements of single-frequency carrier-phase
data preprocessing in real time. Different methods have been developed, but successful detection
is not always ensured. The issue is crucial for high-precision positioning with Global Positioning
System (GPS). Aiming at a high detection rate and low false-alarm rate, we propose a new cycle-slip
detection method based on fuzzy-cluster. It consists of two steps. The first is identification of the
epoch when cycle slips appear using Chi-square test based on time-differenced observations. The
second is identification of the satellite which suffers from cycle slips using the fuzzy-cluster algorithm.
To verify the performance of the proposed method, we compared it to a current robust method using
real single-frequency data with simulated cycle slips. Results indicate that the proposed method
outperforms the robust estimation method, with a higher correct-detection rate and lower undetection
rate. As the number of satellites simulated with cycle slips increases, the correct-detection rate rapidly
decreases from 100% to below 50% with the robust estimation method. While the correct-detection
rate using the proposed method is always more than 60%, even if the number of satellites simulated
with cycle slips reaches five. In addition, the proposed method always has a lower undetection rate
than the robust estimation method. Simulation showed that when the number of satellites with cycle
slips exceeds three, the undetection rate increases to more than 30%, reaching ~70% for the robust
estimation method and less than 30% for the proposed method.

Keywords: cycle-slip detection; time-differenced; quality control; fuzzy-cluster; number of cycle slips;
single-frequency

1. Introduction

Carrier-phase measurements are essential for high-precision positioning with Global Navigation
Satellite System (GNSS), such as real-time kinematic (RTK) positioning and precise point positioning
(PPP), since they are much more accurate than pseudoranges. Continuous tracking of the carrier-phase
signals ensures that the resolved integer ambiguities remain unchanged. However, carrier-phase
measurements often suffer from cycle slips because of sudden change of satellite geometry or under
condition of strong atmospheric effects such as for instance ionospheric scintillation [1–3], which results
in integer ambiguity biased by an unknown integer. The corresponding carrier-phase measurement will
also be biased by one to 1 million cycles. Generally, each cycle of slip can easily introduce a range error
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of ~20 cm to the phase measurements on frequency L1 [4]. Such unexpected slips should be detected,
and repaired if possible or addressed by introducing and estimating a new ambiguity parameter
alongside the other unknowns to avoid affecting the centimeter- to millimeter-level positioning and
navigation accuracy.

Many algorithms dedicated to cycle-slip detection have been developed in recent years.
Most of these methods used phase combinations and phase/code range combinations in both
frequencies. For example, the TurboEdit method has exploited the Hatch-Melbourne-Wübbena
(HMW) linear combination together with ionospheric residual combinations in undifferenced or
double-differenced dual-frequency observations [5–8]. Moreover, linear combinations with triple-
frequency observations are more dedicated to extra-long wavelength, accurate time-differenced
ionospheric prediction, optimized geometry-free phase combinations and minimization of the impact
of code measurements [9–11]. However, the choice of optimum combinations becomes practically
difficult given diversity of equipment and these methods are not suitable for observation with only
single-frequency [12]. As a result, method suitable for single frequency or in which the individual
signal of each frequency is treated as independent observation has drawn increasing interest [4,13,14].
Such methods can generally be placed in two categories.

The first category includes methods based on time-series analysis of observations. Blewitt
employed phase-code comparison and Doppler integration to detect cycle slips [15]. Lichtenegger
proposed a polynomial-fitting method [16], and Kleusberg applied higher order time differences
of carrier-phase observations to detect cycle slips [17]. Each of these methods has its limitations.
The code-phase comparison method is not suitable for small cycle slips due to measurement noise
and multipath in the pseudorange. Moreover, having smooth phase observations is an underlying
assumption of many of these methods, and this assumption is easily violated.

The second category includes methods relying on statistical quality control. These methods regard
cycle slips as outliers to be separated with various mathematical models. The idea originates from
Baarda and Teunissen [18–20]. Several of these methods were developed to detect and identify cycle
slip. De Lacy and Zhang exploited the Bayesian approach for undifferenced observations [21,22]. Song
used robust estimation to deal with cycle slips that cannot be modeled [23]. Kirkko-Jaakkola and Fujita
used Receiver Autonomous Integrity Monitoring (RAIM) methodology to process the cycle slip on
time-differenced observations [24,25]. Teunissen studied the GNSS integrity about outliers and slips
on single-receiver [26]. More recently, Zangeneh-nejad extended these methods to fix cycle slips based
on the generalized likelihood ratio test [27], and Li developed an enhanced cycle-slip detection and
repair algorithm with integer least-squares estimation that is applicable to real-time single-frequency
data [28].

Cycle slips can be satisfactorily detected using most, if not all of the above methods in benign
environments. The latter quality control approach is in favor because it is robust to small cycle
slips even in adverse situations, and is feasible to enhance mathematical models. However, these
publications have not studied in detail about the correct-detection and false-alarm rates, which is
crucial in real-time data processing. For example, noisy measurements may disturb cycle-slip detection
results, which will lead to low correct-detection rates and high false-alarm rates. A cycle-slip-detection
method with a high correct-detection rate and a low undetection rate for single frequency observation
is desired.

According to the idea of outliers’ detection and RAIM, we propose a new cycle-slip detection
method aiming at high correct-detection rate and low false-alarm rate. In this method, the epoch when
the cycle slips appear is determined based on a chi-square test. Then, the fuzzy-cluster algorithm is
employed to identify the satellite where the cycle slip occurs. The purpose of fuzzy-cluster algorithm is
generally to separate a dataset into subsets according to their similarities and dissimilarities [29]. This
useful tool is commonly used in data analysis with reasonable and satisfactory clustering results [30–34].

We next describe the new proposed fuzzy-cluster-based method and its application in cycle-slip
detection in detail. Afterwards, numerical experiments are conducted to assess the performance of
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the new method compared to the current robust estimation method using real single-frequency data
with simulated cycle slips. Finally, some conclusions are drawn and the outlook for future research
is discussed.

2. The New Fuzzy-Cluster-Based Method

We propose a fuzzy-cluster-based cycle-slip detection method using time-differenced
single-frequency GPS carrier-phase measurements. Similar to the current robust-estimation-based
cycle-slip detection method [27], the new method consists of two steps but with different mathematical
models. The first step is to identify the epoch when cycle slips appear and the second step is to determine
the satellite which suffers from cycle slips. The mathematical models used and the implementation of
the proposed cycle-slip detection method are demonstrated in detail in the section.

2.1. Epoch Identification of Cycle Slip

The raw observation equation of the GPS L1 measurement can be formulated as [35]:

φ j = ρ− I j + dtr − dt j + dT + λ(N j + b− b j) + εφ (1)

where the superscript j identifies a satellite; ρ is the range between the receiver antenna and the phase
center of the satellite, including displacements due to earth tides, ocean loading, and relativistic effects;
dtr and dt j are the clock offsets of receiver r and satellite j, respectively; I j is the slant ionospheric delay
on the L1 frequency of satellite j; dT is the slant tropospheric delay; λ and N j are respectively the
wavelength of the signal and the integer ambiguity in cycles; b and b j are respectively the receiver and
satellite uncalibrated hardware phase delays; and εφ is the carrier-phase measurement noise.

Differentiating the observations with respect to time, some parameters that remain constant, slowly
varying or corrected with current models can be eliminated. The geometry-based and time-differenced
observation equation is formulated as:

∆φ j = ∆ρ+ ∆dtr + λ∆N j + ∆εφ (2)

where ∆ is the difference operator between two adjacent epochs, and the other symbols are defined
above. It is known that the variation of the ambiguity parameter ∆N j is zero for continuous observations
while an integer value when cycle slips appear. Assuming there are n available satellites on L1 frequency
signals tracked by a receiver and there is no cycle slip, all observation equations of each satellite in
form of Equation (2) can be expressed as:

L = Ax (3)

where x = [∆x ∆y ∆z ∆dtr]
T are three position parameters and one clock parameter for a moving

receiver; L = [∆φ1 ∆φ2 . . . ∆φn]T; and A is the design matrix, which can be easily obtained by
computing the partial derivatives of Equation (2) with respect to the estimated parameters. If there is
no cycle slip, the quadratic form of the least-square residual of Equation (3) follows a Chi-squared
distribution:

te = v̂TPv̂ ∼ χ1−α,η (4)

where v̂ is the post residuals for all satellites resolved from Equation (3) and P is the weight matrix
depending on elevation angle. α is the significance level, and η is the number of degrees of freedom for
the Chi-square test. The specified α and the corresponding η can determine a threshold. When there is
indeed no cycle slips, te is smaller than the threshold and the Chi-squared distribution in Equation (4)
is workable. However, if te is larger than the threshold, it can be considered that the assumption that
there is no cycle slip is wrong. In this case, the variation of the ambiguity parameter ∆N j is no longer
zero and there is at least one cycle slip at this epoch. This can be illustrated with Figure 1. If there is no
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cycle slip, the te keeps on millimeter level. Once cycle slip occurs, the corresponding te will increase
significantly. So we can determine the epoch when cycle slip occurs according to te with chi-square test.

Figure 1. The upper panel is the 2-nd order differences of phase observation series. Subfigure (a) is
the 2-nd order differences of phase observation series without cycle slip and subfigure (b) is the one
with cycle slip. The below panel is the standard deviation series. The left subfigure (c) is the standard
deviation series without cycle slip and the right subfigure (d) is the one with cycle slip.

2.2. Satellite Identification of Cycle Slip

As mentioned above, Equation (3) is formed under the assumption that there is no cycle slip.
Therefore, appearance of cycle slips mean there are gross errors in Equation (3). Once gross errors
appear, we can detect the outliers with some methods such as robust estimation, Bayesian estimation,
RAIM, and so on. Among these methods, the RAIM method is expected to achieve a high correct
detection rate [24,25], which is curial for real-time GPS observation quality control. Hence, we apply a
fuzzy-cluster involved RAIM method to detect the satellite suffering from cycle slips in Equation (3) in
this paper. Its procedure consists of decorrelation for the design matrix and then cluster for all satellites.

Firstly, the decorrelation for design matrix A can be realized by means of Householder
transformations [36], which is a decomposition of the matrix A into an orthogonal matrix and
an upper triangular matrix as:

An×4 =

[
Q4×n

T(n−4)×n

]T[
R4×4

0(n−4)×4

]
(5)

where
[

Q4×n
T(n−4)×n

]
, derived from

[
Q4×n

T(n−4)×n

]T[
Q4×n

T(n−4)×n

]
= I, is an orthogonal matrix described

with sub-matrix Q4×n and T(n−4)×n in this paper.
[

R4×4

0(n−4)×4

]
, derived from

[
Q4×n

T(n−4)×n

]
An×4, is an



Remote Sens. 2019, 11, 2896 5 of 17

upper triangular matrix divided into sub-matrix R4×4 and a zero matrix 0(n−4)×4. Flag m = n− 4, then,
according to the parity detection theory [36], the parity detection vector composed of the matrix T and
post residuals v̂ resolved from Equation (3) can be formed as:

−Tv̂ =


T11

T21

T12

T22

· · · T1n
· · · T2n

...
... ...

...
Tm1 Tm2 · · · Tmn




v̂1

v̂2
...

v̂n

 =


t1

t2
...

tm

 (6)

where


t1

t2
...

tm

 is the parity detection vector in the parity detection theory [36]. If there is at least

one cycle slip, the v̂ will become large because of containing the unknown integer, which is the same
for −Tv̂. Hence, we put the −Tv̂ and all satellites together and then cluster them into two subsets to
separate the satellites suffering from cycle slips, which is expressed as:

−T11v̂1 −T12v̂2 · · · −T1nv̂ t1

−T21v̂1 −T22v̂2 · · · −T2nv̂ t2
...

... · · ·
...

...
−Tm1v̂1 −Tm2v̂2 · · · −Tmnv̂n tm

=
[

a1 a2 . . . an an+1
]

(7)

we recognize that ai (i = 1, 2, . . . n + 1) is a sample of n+1 observations in m-dimensional
Euclidean space.

Then, we use the fuzzy-cluster algorithm to separate the dataset ai (i = 1, 2, . . . n + 1) into two
subsets. It should be note herein that the one of two subsets that contains an+1 represents the satellites
suffering from cycle slips. That is to say, the samples categorized with an+1 correspond to the satellites
to be identified. In the following, the fuzzy-cluster algorithm is explained in detail. Two cluster centers
are marked as:

c = {c1, c2} (8)

and the desired optimal cluster criterion is to minimize the objective function that is the generalized
form of the least-squared error function [32]:

Jp =
∑n+1

i=1

∑2

j=1
µ

p
ij‖ai − c j‖

2, 1 < p < ∞ (9)

where p is the weighting fuzziness parameter, which is generally chosen as 2 [30–34]; µi j is the
membership value of the ith sample in the jth cluster. µi j must satisfy the following three conditions:

µi j ∈ [0, 1], ∀i, j∑C
j=1 µi j = 1,∀i

0 <
∑n+1

i=1 µi j < n + 1,∀n
(10)

In detail, the steps of this fuzzy-cluster algorithm are as follows.

• Step 1. Fix the weighting fuzziness parameter p > 0 and the iteration termination condition
parameter ε > 0.

• Step 2. Given initials randomly µ(0)i j ∼ U(0, 1), let the count of iterations iter = 1.

• Step 3. Compute cluster centers using the following equation:
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c j =

∑n+1
i=1 µ

p
ijai∑n+1

i=1 µ
p
ij

, ( j = 1, 2) (11)

• Step 4. Update µi j with c j using the following equation:

µi j =

 2∑
k=1

(
‖ai − c j‖

‖ai − ck‖

) 2
p−1


−1

, (i = 1, 2, . . . , n + 1; j = 1, 2) (12)

• Step 5. Compute µiter
− µ(iter−1). If µiter

− µ(iter−1) < ε, then stop; else iter = iter + 1 and return to
Step 3.

2.3. Implementation of the New Approach

As mentioned above, each sample can obtain two membership values that belong to every
cluster center in fuzzy-cluster algorithm. The sample, corresponding to one satellite, with the larger
membership value belonging to cluster an+1 is more likely to suffer from cycle slip. In the parity
detection theory, after decorrelation for the design matrix, the ai (i = 1, 2, . . . n) owned the higher
correlation where an+1 is most likely the outlier [35]. That is to say, the larger of the membership
belongs to cluster an+1, the most likely to be satellite suffering from cycle slip. To detect the cycle slip,
we choose satellites that are most likely without cycle slips according to the membership one by one
to verify with the Chi-square test. If the verification passes, we consider all of the selected satellites
are without cycle slip and continue to choose a new satellites from the rest of the satellites. Until the
verification fails, we think this new satellite and all the rest satellites are suffering from cycle slips. In
addition, there are at least four satellites visible to achieve positioning, so we consider that the number
of satellites without cycle slips is no less than four. The detailed procedure are as follows: we first
select four data points that have the smallest membership value belonging to cluster an+1 who are
unlikely to suffer from cycle slip. Then the one with the smallest membership value belonging to
cluster an+1 among the rest satellites is selected and formed the observation equations together with
the four satellites initially selected in form of Equation (3). Afterwards, a chi-square test is performed
on the posteriori residual of the new formed equations. If the test passes, we can think that the new
selected satellite does not suffer from cycle slip and the iteration can be continued. Otherwise, it will
be detected as cycle slip and the iteration stops. Figure 2 shows the flowchart of this procedure.

Figure 2. Flow chart of the fuzzy-cluster-based method for cycle-slip detection.
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3. Experiments and Result

Considering that the proposed method is similar to the current robust estimation method, we
compare the new method with the robust estimation method to validate the proposed method.
Experiments are conducted as: (1) Performance of the robust estimation method (method I) and
the proposed method (method II) at a single epoch with various numbers of simulated cycle slips
was compared and analyzed to preliminarily investigate the effectiveness of the proposed method;
(2) Performance of these two methods with various numbers of cycle slips in multiple epochs was
compared; (3) Statistical results were computed. Three indicators were considered to assess the
performance of the proposed method. The first one is the correct-detection rate, which is the number
of correctly detected cycle slips divided by the total number of detected cycle slips. The second one is
the undetection rate, which is the number of undetected cycle slips divided by the total number of
simulated cycle slips. The last one is the false-detection rate, which is the number of false detected
cycle slips divided by the total number of detected cycle slips. The false-detection rate means how
many correct measurements were treated as a cycle slip.

3.1. Data and Experiment Description

Observations of a real GPS dataset, collected by a LEICA receiver with a LEIAR25 antenna on
21 May 2016, were used. This geodetic receiver provided phase observations on L1. We have assumed
a good environment for the test, such as static receiver and free of multipath. Since it is easier to
accurately simulate cycle slips after the raw observables are confirmed to be cycle-slip-free, we checked
the raw data carefully and selected signals with a length of 1200 seconds from 00:21:30 to 00:41:30.
Models and estimated parameters were described in detail in Table 1. Only GPS L1 measurements
were collected and all parameters were estimated single-epoch. Experiments were designed as follows.
Various numbers of cycle slips with a size of one cycle on single and multiple epochs were simulated
and detected using the robust estimation method and proposed method. Their performances were
analyzed in detail. Moreover, the correct-detection rates and undetection rates were computed.

Table 1. Data processing strategy and observation model used during cycle-slip detection in precise
point positioning (PPP).

Item Contents

Models

Observables
Single-differenced phase

measurement: GPS L1
Original measurement noise: 3 mm

Sampling rate 1 s
Cut-off elevation 7◦

Weighting Elevation-dependent, 1 for E > 30◦,
otherwise 2sin(E)

Tropospheric delay GMF, a priori model
Station phase center Igs08.atx
Satellite phase center Igs08.atx

Relativity effect IERS Conventions 2010 [37]

Station displacement Solid Earth tide, pole tide, ocean
loading tide

Phase windup Corrected

Parameters estimated in
cycle-slip detection

Station coordinates variation between epochs Estimated with LSQ
Receiver clock variation between epochs Estimated with LSQ

Ambiguity variation between epochs Considered as 0 in the same arc but
cycle slips for different arc

Tropospheric variation between epochs ignored for 1 s data [38]
Ionospheric variation between epochs ignored for 1 s data [38]
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3.2. Performance of Single-Epoch Cycle-Slip Detection

In this section, we analyze the performance of the two methods at a specific epoch when there
were various numbers of cycle slips. First, we simulated a small cycle slip with size of one cycle on
one satellite at a time and detected cycle slips using both the proposed method and the current robust
estimation method. Ten satellites were available at the 100th epoch, and each had a simulated cycle slip,
in turn. The detection results with methods I and II are shown in Figure 3. The horizontal axis shows
the index of the experiment, and the vertical axis shows the available satellites. The green squares
denote simulated cycle slips. The blue inverted triangles denote detection results with the robust
estimation method and the red triangles represent detected cycle slips using the proposed method. We
can see that both methods performed well when there was only one simulated cycle slip at a time.
Hence, the proposed method can be preliminarily concluded to be effective.

Figure 3. Cycle-slip detection results with methods I and II at the 100th epoch when cycle slip was
simulated on one satellite at a time. Blue inverted triangles denote detection results with robust
estimation method; red triangles are for the fuzzy-cluster-based method. Green squares denote
simulated cycle slips. Ten satellites were available at this epoch and each satellite has a simulated cycle
slip in turn. The horizontal axis denotes the index of each experiment, and the vertical axis shows
available satellites. All simulated cycle slips could be correctly detected with both two methods.

We further simulated cycle slips on two satellites at a time. The size of simulated cycle slip is one
cycle for each satellite. There are 45 ways to select two satellites from ten. We randomly chose 20 of
them. All detection results with both methods are presented in Figure 4. The symbols are the same as
above. In addition, the simulated cycle slips that were not successfully detected are also individually
marked with green circles and the detected but not simulated cycle slips are marked with blue circles
for robust estimation method while red circles for the proposed method.
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Figure 4. Cycle-slip detection results with methods I and II when cycle slips were simulated on two
satellites at a time. The blue inverted triangles denote the detection results with the robust estimation
method, while the red triangles are for the fuzzy-cluster-based method. Green squares denote simulated
cycle slips. Green circles denote the simulated cycle slips that were not successfully detected; blue
circles denote the detected but not simulated cycle slips for method I and red circles for method II. The
figure shows 20 from all possible experiments. The horizontal axis shows the index of each experiment,
and the vertical axis shows the available satellites.

We can see from Figure 4 that better performance can be obtained with the proposed method. For
all experiments, seven simulated cycle slips could not be detected with the robust estimation method,
and five of those were correctly detected with the proposed method. Also, the proposed method
obviously had lower false-alarm rates. Some satellites without simulated cycle slips were thought to
have cycle slips using the robust estimation method, but most of these cases were avoided with the
proposed method. Statistical results are shown in Table 2.

Table 2. Statistical results of cycle-slip detection when cycle slips were simulated on two satellites at a
time, using robust estimation and clustering analysis method.

Type of Cycle Slip Robust Cluster

Simulation 40 40
Detection 61 44

Correct Detection 33 38
Correct-Detection rate 33/61 = 54.1% 38/44 = 86.4%

False-Detection rate (61−33)/61 = 45.9% (44−38)/44 = 13.6%
Undetection rate (40−33)/40 = 17.5% (40−38)/40 = 5.0%

As shown in Table 2, for all experiments, a total of 40 cycle slips were simulated. A total of
61 cycle slips were detected for the robust estimation method and 44 for the fuzzy-cluster-based
method. Among all detections, methods I and II correctly detected 33 and 38, respectively, that is,
the correct-detection rate was 54.1% for the robust estimation method and 86.4% using the proposed
method. The undetection rate was 17.5% for robust estimation and 5% using the fuzzy-cluster-based
method. In addition, the false-detection rate reached 45.9% for the robust method while 13.6% for the
proposed method.

Overall, in a single epoch, the proposed method performed as well as the robust estimation
method when there was only one simulated cycle slip at a time. When the number of cycle slips
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increased to two, better performance was obtained using the fuzzy-cluster-based method, with a higher
correct-detection rate and lower undetection rate.

3.3. Performance of Multi-Epoch Cycle-Slip Detection

We performed the same experiments for multi-epochs instead of only one epoch and determined
whether the conclusion drawn above was reasonable. The size of simulated cycle slip is one cycle for
each satellite. To be more specific, cycle slips were first simulated on one satellite every 50 epochs to be
detected using both two methods. Similarly, there are 10 ways to select one satellite from ten satellites
and all possible experiments were performed. Two examples are shown below.

As shown in Figure 5, the left panel describes the performance of the two methods when cycle
slips were simulated on satellite G05 every 50 epochs, and the right panel is for satellite G26. Both
methods could correctly detect all simulated cycle slips at multi-epochs. Experiments were conducted
on 10 available satellites in turn, and statistical results are presented in Table 3. We can see that a
total of 240 simulated cycle slips were correctly detected, with a correct-detection rate of 100% for
both methods.

Figure 5. Cycle-slip detection results with methods I and II over 1200 seconds when cycle slips were
simulated on one satellite every 50 epochs. The left panel Example 1 is for G05, and the right panel
Example 2 for G26. The blue inverted triangles are the detection results with the robust estimation
method, while the red triangles are for the fuzzy-cluster-based method. The green squares denote
simulated cycle slips. All simulated cycle slips could be correctly detected with both two methods.

Table 3. Statistical cycle-slip detection results on multi-epochs when the cycle slip was simulated on
one satellite at a time using the robust estimation method and proposed method.

Type of Cycle Slip Robust Cluster

Simulation 240 240
Detection 240 240

Correct Detection 240 240
Correct-Detection rate 100% 100%

False-Detection rate 0% 0%
Undetection rate 0% 0%

Afterwards, cycle slips were simulated on two satellites at a time every 50 epochs, and the
performance of the two methods was compared. There are 45 ways to select two satellites from ten
satellites. Some typical examples are shown in Figure 6. Example 1 describes the detection results
when cycle slips were simulated on satellites G05 and G15 simultaneously. Example 2 is for satellites
G18 and G21, Example 3 is for satellites G05 and G18, and Example 4 is for satellites G05 and G26.



Remote Sens. 2019, 11, 2896 11 of 17

Figure 6. Cycle-slip detection results using methods I and II over 1200 seconds when cycle slips
were simulated on two satellites at a time every 50 epochs. Blue inverted triangles denote detection
results with the robust estimation method, and red triangles are for the fuzzy-cluster-based method.
Green squares denote simulated cycle slips. Example 1 shows the detection results when cycle slips
were simulated on G05 and G15, Example 2 is for G18 and G21, Example 3 is for G05 and G18, and
Example 4 is for G05 and G26. Almost all simulated cycle slips were correctly detected with the
fuzzy-cluster-based method, but some were not detected with the robust estimation method.

As shown in Examples 3 and 4, almost all cycle slips were correctly detected with both methods.
However, from Examples 1 and 2, we can see that nearly half of the simulated cycle slips were
not successfully detected with the robust estimation method, while the fuzzy-cluster-based method
detected almost all cycle slips correctly. Statistical results for the four examples are shown in Table 4.

Table 4. Statistical cycle-slip-detection results for the four typical examples when cycle slips
were simulated on two satellites. I denotes the robust estimation method and II is the fuzzy-
cluster-based method.

Type of Cycle Slip Example 1 Example 2 Example 3 Example 4
I II I II I II I II

Simulation 48 48 48 48 48 48 48 48
Detection 119 96 120 72 63 72 51 48

Correct Detection 35 48 24 48 43 48 46 48
Correct-Detection

rate 29% 50% 20% 67% 68% 67% 90% 100%

False-Detection rate 71% 50% 80% 33% 32% 33% 10% 0%
Undetection rate 27% 0% 50% 0% 10% 0% 4% 0%
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We can observe that in Examples 1 and 2, the correct-detection rate was below 30% using the
robust estimation method and was more than 50% with the fuzzy-cluster method. The undetection rate
exceeded 25% using method I and was zero with method II. The false-detection was more than 70% for
the robust method while below 50% for the proposed method. In Example 3, two methods showed
essentially identical correct-detection rates and false-detection rate, but the undetection rate with the
fuzzy-cluster-based method was zero, while it reached 10% with robust estimation. In Example 4,
the fuzzy-cluster-based method still performed better than the robust estimation method, with a
higher correct-detection rate and lower undetection and false-detection rate. To more comprehensively
evaluate the performance of the proposed method, we conducted 45 experiments, covering all possible
choices, when selecting two from ten satellites. The statistical results are shown in Table 5.

Table 5. Statistical cycle-slip detection results on multi-epochs for all possible experiments when
cycle slips were simulated on two of 10 satellites at a time, using robust estimation and the
fuzzy-cluster method.

Type of Cycle Slip Robust Cluster

Simulation 2160 2160
Detection 3574 2549

Correct Detection 1858 2092
Correct-Detection rate 51.9% 84.3%

False-Detection rate 49.1% 15.7%
Undetection rate 13.9% 3.1%

As shown in Table 5, a total of 2160 cycle slips were simulated in all experiments. The
correct-detection rate was only 51.9% using the robust estimation method, while it reached 84.3% with
the fuzzy-cluster method. The false-detection rate reached about 50% for the robust method and only
about 15% for the fuzzy-cluster method. Moreover, the undetection rate was 13.9% with the robust
estimation method, and only 3.1% with the proposed method. Therefore, we can conclude that the
fuzzy-cluster method outperformed the robust estimation method, with a higher correct-detection rate
and a lower undetection rate.

3.4. Performance of Multi-Cycle-Slip Detection

We computed the correct-detection rate and undetection rate when cycle slips were simulated
on various numbers of satellites. Considering the average number of visible GPS satellites is about
9–10, and at least four satellites are required to positioning (http://www.csno-tarc.cn/gps/number), we
assumed that at most five satellites suffered from cycle slips, hence five situations were considered.
In these five situations, the number of satellites suffering from cycle slips was set in turn from 1 to 5.
Over the collected 1200 seconds, cycle slips were simulated every 50 epochs on the selected satellites
in each situation. It should be noted that there are many choices when selecting a specified number
of satellites from ten available satellites. For example, there are 10 ways when selecting one satellite
from ten satellites and 45 choices when selecting two from ten satellites. We took all possible choices
into account to ensure reliable statistical results, which are presented in Figure 7. The horizontal axis
indicates the number of satellites where cycle slips were simulated, and the vertical axis expresses
the correct-detection and undetection rates as percentages. The blue line shows the results with the
robust estimation method, and the red line is for the fuzzy-cluster method. The diamonds denote the
correct-detection rate, and the circles denote the undetection rate.

http://www.csno-tarc.cn/gps/number
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Figure 7. Correct-detection rate (diamonds) and undetection rate (circles) when various numbers
of satellites were simulated with cycle slips for the robust estimation method (blue lines) and
fuzzy-cluster-based method (red lines).

We can see that the correct-detection rate decreased with an increased number of satellites
simulated with cycle slips for both methods, but to different extents. The correct-detection rate rapidly
declined to below 50% when the number of satellites simulated with cycle slips was larger than 2 using
the robust estimation method. However, with the proposed method, it remained at more than 60%
even when the number of satellites simulated with cycle slips reached 5. In addition, the undetection
rate had a rising trend with different amplitudes for the two methods when the number of satellites
simulated with cycle slips increased. For the robust method, this rate quickly exceeded 30% when
the number of satellites simulated with cycle slips increased to 3. It was already more than 60%
when the number of satellites simulated with cycle slips was 5. But, using the proposed method, the
rate remained lower than 30% even if the number of satellites simulated with cycle slips reached 5.
Overall, the proposed method outperformed the current robust estimation method, with a higher
correct-detection rate and lower undetection rate.

3.5. Performance of Different Amplitudes of Cycle-Slip

All of the experiments above are conducted with simulated cycle slip of one cycle. We further
evaluate the performance of the proposed method under the situation of different amplitudes of cycle
slip. Two cases are considered. The first one is simulating different amplitudes of cycle slip at the same
time on more than one satellites. As mentioned above, we assume that at most five satellites suffer
from cycle slip at the same time. So, in this case, four experiments are designed as follows: at the 100th
epoch, different amplitudes of cycle slip are simulated on arbitrary two satellites, three satellites, four
satellites, and five satellites respectively. The simulation and detection results with two methods are
shown in Table 6.

As shown in Table 6, when cycle slips with size of 1 cycle and 5 cycles are simulated on satellites
G05 and G15 respectively, they can be successfully detected with the correct-detection rate of 67% for
robust method while 100% for the proposed method. When cycle slips with size of 1 cycle, 5 cycles, and
10 cycles are simulated on satellites G05, G18, and G21 respectively, the correct-detection rate declines
to 40% for the robust method while it keeps 75% for the cluster method. Meanwhile, the un-detection
rate reaches to 34% for the robust method while 0% for the cluster method. When four or five different
amplitudes of cycle slips are simulated on four or five satellites respectively, the correct-detection rate
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is below than 40% for the robust method while keeps 60% for the cluster method. In addition, the
undetection rate is more than 50% for the robust method and lower than 40% for the cluster method.

Table 6. Statistical cycle-slip-detection results for the four cases when different amplitudes of cycle
slips were simulated on two, three, four, or five satellites. I denotes the robust estimation method and
II is the fuzzy-cluster-based method.

Type of Cycle Slip
G05,G15

(1,5)
G05,G18,G21

(1,5,10)
G05,G15,G18,G21

(1,5,10,20)
G05,G15,G18,G21,G26

(1,5,10,20,30)
I II I II I II I II

Simulation 2 2 3 3 4 4 5 5
Detection 3 2 5 4 6 5 6 5

Correct Detection 2 2 2 3 2 3 2 3
Correct-Detection rate 67% 100% 40% 75% 34% 60% 34% 60%

False-Detection rate 33% 0% 60% 25% 66% 40% 66% 40%
Undetection rate 0% 0% 34% 0% 50% 25% 60% 40%

The other case is simulating different amplitudes of cycle slip at different epochs on one satellite.
We randomly choose one satellite G05 and simulated cycle slips every 50 epochs. The size of simulated
cycle slips is set from 1 to 240 cycles for various epochs. The simulation and detection results with two
methods are shown in Table 7. We can see that all simulated cycle slips with different amplitudes can
be successfully detected with both two methods.

Table 7. Statistical cycle-slip detection results on multi-epochs when the different amplitudes of cycle
slips were simulated on satellite G05 using the robust estimation method and proposed method.

Type of Cycle Slip Robust Cluster

Simulation 240 240
Detection 240 240

Correct Detection 240 240
Correct-Detection rate 100% 100%

False-Detection rate 0% 0%
Undetection rate 0% 0%

4. Discussion

The results above indicate that the proposed method outperforms the robust estimation method,
with a higher correct-detection rate and lower undetection rate. As the number of satellites simulated
with cycle slips increases, the correct-detection rate rapidly decreases from 100% to below 50% with
the robust estimation method. While the correct-detection rate using the proposed method is always
more than 60%, even if the number of satellites simulated with cycle slips reaches five. In addition, the
proposed method always has a lower undetection rate than the robust estimation method.

It should be point out that this new method succeeds with conditions. The data used for tests were
recorded at a high rate 1.0 Hz and not under high ionospheric activity. The variations of tropospheric
and ionospheric delay between epochs can be ignored in this paper.

In addition, although the better performance have been achieved, there are still much work to be
done in the further to modify this method. For example, various cluster algorithms can obtain different
cluster results. Integration of pseudorange observations or multi-frequency or multi-system may also
effect the cluster results. A better cluster results may improve the correct-detection rate and reduce
the undetection rate. Additionally, the efficiency of this method should also be evaluated to adapt to
real-time application.

Moreover, the effect of this method on positioning could be analyzed in the next work. As we
all know, the higher the undetection rate, the worse the positioning accuracy. Meanwhile, the higher
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the false-detection rate, the more frequent initialization and the longer convergence time. So we will
analyze its impact on positioning from these two aspects in the near further.

5. Conclusions

We propose a new fuzzy-cluster-based cycle-slip detection method for GPS single-frequency
signals. In this method, the epoch when cycle slips occur is first determined by a chi-square test.
Afterwards, the satellite suffering from cycle slip is identified based on fuzzy-cluster algorithm. This
algorithm makes full use of a posteriori standard errors and the design matrix, and is characterized by
a high correct-detection rate and low undetection rate.

To evaluate the proposed method, we compared it with the current robust estimation method
using some simulation studies based on real GPS L1 measurements. Results indicated that the proposed
method outperformed the current robust estimation method, with a higher correct-detection rate and
lower undetection rate. Specifically, when the number of satellites simulated with cycle slips increased
to two, the correct-detection rate rapidly declined from 100% to below 50% using the robust estimation
method, while with the proposed method, the percentage was always more than 60 even if the number
of satellites simulated with cycle slips reached five. The undetection rate increased to more than 30%
when the number of satellites simulated with cycle slips was larger than three, and its maximum was
nearly 70% for the robust estimation method. However, the maximum percentage for the proposed
method was lower than 30, even if the number of satellites simulated with cycle slips increased to five.

In conclusion, the proposed method can perform well, with a higher correct-detection rate and
lower false-alarm rate. In addition, this method can be applied to dual-frequency, triple-frequency,
and even multi-systems. Its effect on these situations can be further analyzed. Moreover, different
clustering algorithms may have various results. Thus, an enhanced or modified cluster algorithm and
its effect on cycle-slip detection can be explored in the near future.
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