Editorial for Special Issue “Advances in Satellite Altimetry and Its Application”
Abstract
:1. Introduction
2. Contributions
Acknowledgments
Conflicts of Interest
References
- Guccione, P.; Scagliola, M.; Giudici, D. 2D Frequency Domain Fully Focused SAR Processing for High PRF Radar Altimeters. Remote Sens. 2018, 10, 1943. [Google Scholar] [CrossRef] [Green Version]
- Santos-Ferreira, A.M.; da Silva, J.C.B.; Srokosz, M. SAR-Mode Altimetry Observations of Internal Solitary Waves in the Tropical Ocean Part 2: A Method of Detection. Remote Sens. 2019, 11, 1339. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Han, G. Reconstruction of the Surface Inshore Labrador Current from SWOT Sea Surface Height Measurements. Remote Sens. 2019, 11, 1264. [Google Scholar] [CrossRef] [Green Version]
- Rose, S.K.; Andersen, O.B.; Passaro, M.; Ludwigsen, C.A.; Schwatke, C. Arctic Ocean Sea Level Record from the Complete Radar Altimetry Era: 1991–2018. Remote Sens. 2019, 11, 1672. [Google Scholar] [CrossRef] [Green Version]
- Quartly, G.D.; Rinne, E.; Passaro, M.; Andersen, O.B.; Dinardo, S.; Fleury, S.; Guillot, A.; Hendricks, S.; Kurekin, A.A.; Müller, F.L.; et al. Retrieving Sea Level and Freeboard in the Arctic: A Review of Current Radar Altimetry Methodologies and Future Perspectives. Remote Sens. 2019, 11, 881. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ichikawa, K.; Wei, D. Coastal Waveform Retracking in the Slick-Rich Sulawesi Sea of Indonesia, Based on Variable Footprint Size with Homogeneous Sea Surface Roughness. Remote Sens. 2019, 11, 1274. [Google Scholar] [CrossRef] [Green Version]
- Idžanović, M.; Gerlach, C.; Breili, K.; Andersen, O.B. An Attempt to Observe Vertical Land Motion along the Norwegian Coast by CryoSat-2 and Tide Gauges. Remote Sens. 2019, 11, 744. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Makhoul, E.; Escorihuela, M.J.; Zribi, M.; Quintana Seguí, P.; García, P.; Roca, M. Analysis of Retrackers’ Performances and Water Level Retrieval over the Ebro River Basin Using Sentinel-3. Remote Sens. 2019, 11, 718. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Zhu, C.; Hao, W.; Yan, J.; Ye, M.; Barriot, J.-P.; Cheng, Q.; Sun, T. An Improved Digital Elevation Model of the Lunar Mons Rümker Region Based on Multisource Altimeter Data. Remote Sens. 2018, 10, 1442. [Google Scholar] [CrossRef] [Green Version]
- Passaro, M.; Cipollini, P.; Vignudelli, S.; Quartly, G.; Snaith, H. ALES: A multi-mission subwaveform retracker for coastal and open ocean altimetry. Remote Sens. Environ. 2014, 145, 173–189. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dettmering, D.; Passaro, M.; Braun, A. Editorial for Special Issue “Advances in Satellite Altimetry and Its Application”. Remote Sens. 2019, 11, 2913. https://doi.org/10.3390/rs11242913
Dettmering D, Passaro M, Braun A. Editorial for Special Issue “Advances in Satellite Altimetry and Its Application”. Remote Sensing. 2019; 11(24):2913. https://doi.org/10.3390/rs11242913
Chicago/Turabian StyleDettmering, Denise, Marcello Passaro, and Alexander Braun. 2019. "Editorial for Special Issue “Advances in Satellite Altimetry and Its Application”" Remote Sensing 11, no. 24: 2913. https://doi.org/10.3390/rs11242913
APA StyleDettmering, D., Passaro, M., & Braun, A. (2019). Editorial for Special Issue “Advances in Satellite Altimetry and Its Application”. Remote Sensing, 11(24), 2913. https://doi.org/10.3390/rs11242913