Assessment of Green Infrastructure in Riparian Zones Using Copernicus Programme
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study: Po River Basin
2.2. Materials
2.2.1. Copernicus Land Monitoring Service: Riparian Zones and Corine Land Cover
2.2.2. Ancillary Data: Hydro-Ecoregions, Flood Hazard Risk Maps and Natura 2000 Network
2.2.3. Sentinel-2 Multispectral Imagery
2.3. Methodology
2.3.1. Input Data Acquisition
2.3.2. Pre-Processing
2.3.3. Processing and Outputs
Identification of Agriculture and Forest NWRM in Riparian Areas
Spatial Model of GI Disposition to Deliver Regulative ES
Pixel-based Assessment of GI Condition
- Buffering of the Natura 2000 network
- Calculation and multitemporal analysis of biophysical variables
- Rating of the ES condition indicators
Capacity to provide ecosystem services | (4) | |
Membership in Natura 2000 network | ; [0, 10], | (5) |
Greenness response and water stress | ; [0, 10], | (6) |
; [0, 10], | (7) | |
; [0, 10], | (8) |
3. Results
3.1. Spatial Model of GI Disposition to Deliver Regulative ES
3.2. Pixel-Based Assessment of GI Condition
3.3. Results Per GI Class
3.3.1. Disposition to Deliver Regulative ES
3.3.2. Condition Assessment in 2018 in Po Delta
4. Discussion
5. Conclusions
- Provide a scalable tool based on open-source data, mainly from the CLMS, to support environmental and sustainability policies and strategies in the field of mapping GI and monitoring its condition and pressures in riparian areas.
- Provide a design to account for the constitutive elements of nature-based solutions, such as GI, including its multifunctionality and a simultaneous delivery of environmental and social benefits, based on a multi-stakeholder engagement.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Calliari, E.; Staccione, A.; Mysiak, J. An assessment framework for climate-proof nature-based solutions. Sci. Total Environ. 2019, 656, 691–700. [Google Scholar] [CrossRef]
- Renaud, F.G.; Sudmeier-Rieux, K.; Estrella, M. The relevance of ecosystems for disaster risk reduction. In The Role of Ecosystems in Disaster Risk Reduction; Renaud, F.G., Sudmeier-Rieux, K., Estrella, M., Eds.; United Nations University Press: Tokyo, Japan, 2013; pp. 3–25. [Google Scholar]
- Monty, F.; Murti, R.; Furuta, N. Helping Nature Help Us: Transforming Disaster Risk Reduction through Ecosystem Management; International Union for Conservation of Nature: Gland, Switzerland, 2016; p. 82. [Google Scholar] [CrossRef]
- Munang, R.; Thiaw, I.; Alverson, K.; Liu, J.; Han, Z. The role of ecosystem services in climate change adaptation and disaster risk reduction. Curr. Opin. Environ. Sustain. 2013, 5, 47–52. [Google Scholar] [CrossRef]
- Bommarco, R.; Vico, G.; Hallin, S. Exploiting ecosystem services in agriculture for increased food security. Glob. Food Sec. 2018, 17, 57–63. [Google Scholar] [CrossRef]
- Schoenefeld, J.J.; Jordan, A.J. Environmental policy evaluation in the EU: Between learning, accountability, and political opportunities? Environ. Politics 2019, 28, 365–384. [Google Scholar] [CrossRef]
- Lafortezza, R.; Davies, C.; Sanesi, G.; Konijnendijk, C.C. Green Infrastructure as a tool to support spatial planning in European urban regions. IFOREST 2013, 6, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Moldan, B.; Janoušková, S.; Hák, T. How to understand and measure environmental sustainability: Indicators and targets. Ecol. Indic. 2012, 17, 4–13. [Google Scholar] [CrossRef]
- Tresca, G.; Taramelli, A.; De Lauretis, R.; Vigni, R. La nuova politica spaziale europea: La missione operativa CO2. EAI 2018, 2, 114–119. [Google Scholar] [CrossRef]
- Artmann, M.; Kohler, M.; Meinel, G.; Gan, J.; Ioja, I.-C. How smart growth and green infrastructure can mutually support each other—A conceptual framework for compact and green cities. Ecol. Indic. 2019, 96, 10–22. [Google Scholar] [CrossRef]
- Lindholm, G. The Implementation of Green Infrastructure: Relating a General Concept to Context and Site. Sustainability 2017, 9, 610. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. Green Infrastructure and Territorial Cohesion—The Concept of Green Infrastructure and Its Integration into Policies Using Monitoring Systems; EEA Technical Report no. 18/2011; European Union: Brussels, Belgium, 2011. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; Green Infrastructure (GI)—Enhancing Europe’s Natural Capital. COM/2013/0249; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Naumann, S.; Davis, M.; Kaphengst, T.; Pieterse, M.; Rayment, M. Design, Implementation and Cost Elements of Green Infrastructure Projects; Final Report to the European Commission, DG Environment, Contract no. 070307/2010/577182/ETU/F.1; Ecologic Institute and GHK Consulting, European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Cardoso da Silva, J.M.; Wheeler, E. Ecosystems as infrastructure. Perspect. Ecol. Conserv. 2017, 15, 32–35. [Google Scholar] [CrossRef]
- Hansen, R.; Olafsson, A.S.; van der Jagt, A.P.N.; Rall, E.; Pauleit, S. Planning multifunctional green infrastructure for compact cities: What is the state of practice? Ecol. Indic. 2019, 96, 99–110. [Google Scholar] [CrossRef]
- European Commission. Building a Green Infrastructure for Europe; Publications Office of the European Union: Brussels, Belgium, 2014. [Google Scholar] [CrossRef]
- Farrugia, S.; Hudson, M.D.; McCulloch, L. An evaluation of flood control and urban cooling ecosystem services delivered by urban green infrastructure. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2013, 9, 136–145. [Google Scholar] [CrossRef]
- Schindler, S.; Sebesvari, Z.; Damm, C.; Euller, K.; Mauerhofer, V.; Schneidergruber, A.; Biró, M.; Essl, F.; Kanka, R.; Lauwaars, S.G.; et al. Multifunctionality of floodplain landscapes: Relating management options to ecosystem services. Landsc. Ecol. 2014, 29, 229–244. [Google Scholar] [CrossRef]
- European Commission Directorate-General Environment. The Multifunctionality of Green Infrastructure; Science for Environment Policy—DG Environment News Alert Service, In-Depth Report; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Talberth, J.; Gray, E.; Yonavjak, L.; Gartner, T. Green versus Gray: Nature’s Solutions to Infrastructure Demands. Solut. J. 2013, 4, 40–47. [Google Scholar]
- The Mersey Forest; Natural Economy Northwest; CABE; Natural England; Yorkshire Forward; The Northern Way; Design for London; Defra; Tees Valley Unlimited; Pleasington Consulting Ltd.; et al. GI-Val: The Green Infrastructure Valuation Toolkit. Version 1.6 (Updated in 2018); URBAN GreenUP—H2020 Project GA No. 730426; European Commission: Brussels, Belgium, 2010; Available online: https://bit.ly/givaluationtoolkit (accessed on 17 July 2019).
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal L, 22 July 1992; 7–50.
- Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the conservation of wild birds. Official Journal L, 26 January 2010; 7–25.
- European Commission. Communication from the Commission to the European Parliament, the Council, the Economic and Social Committee and the Committee of the Regions. In Our Life Insurance, Our Natural Capital: An EU Biodiversity Strategy to 2020; COM/2011/0244; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- European Environment Agency. Flood Risk and Environmental Vulnerability—Exploring the Synergies between Floodplain Restoration, Water Policies and Thematic Policies; EEA Report no 1/2016; European Union: Luxembourg, 2016. [Google Scholar] [CrossRef]
- Taramelli, A.; Valentini, E.; Cornacchia, L.; Monbaliu, J.; Sabbe, K. Indications of dynamic effects on scaling relationships between channel sinuosity and vegetation patch size across a salt marsh platform. J. Geophys. Res. Earth Surf. 2018, 123, 2714–2731. [Google Scholar] [CrossRef]
- Regione Lombardia—DG Agricoltora. LIFE HelpSoil—Helping Enhanced Soil Functions and Adaptation to Climate Change by Sustainable Conservation Agriculture Techniques; Veneto Agricoltura—Agenzia Veneta per L’innovazione nel Settore Primario; LIFE12 ENV/IT/000578; Padova, Italy, 2017. [Google Scholar]
- European Commission. Tools to Support Green Infrastructure Planning and Ecosystem Restoration; Publications Office of the European Union: Brussels, Belgium, 2019. [Google Scholar] [CrossRef]
- Lennon, M. Green infrastructure and planning policy: A critical assessment. Local Environ. 2015, 20, 957–980. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. An EU Strategy on Adaptation to Climate Change; COM/2013/0216; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; A New EU Forest Strategy: For Forests and the Forest-Based Sector; COM/2013/0659; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Common Agricultural Policy. Available online: https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy_en (accessed on 28 June 2018).
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal L, 22 December 2000; 1–73.
- Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks. Official Journal L, 6 November 2007; 27–34.
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting Ecosystem and Human Health in Urban Areas using Green Infrastructure: A Literature Review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Teller, A.; Erhard, M.; Grizzetti, B.; Barredo, J.I.; Paracchini, M.L.; Condé, S.; Somma, F.; Orgiazzi, A.; Jones, A.; et al. Mapping and Assessment of Ecosystems and Their Services—An Analytical Framework for Mapping and Assessment of Ecosystem Condition in EU: Discussion Paper; European Commission: Brussels, Belgium, 2018. [Google Scholar] [CrossRef]
- Autorità di bacino del fiume Po (ADBPO). Piano del Bilancio Idrico del Bacino del Fiume Po. Piano di Gestione del Distretto Idrografico del Fiume Po—Art. 14 dell’Allegato “Misure Urgenti e Indirizzi Attuativi Generali del Piano di Gestione” alla Deliberazione del Comitato Istituzionale n. 1/2010 di Adozione del Piano di Gestione—Relazione Generale; ADBPO: Parma, Italy, 2016. [Google Scholar]
- De Michele, C.; Salvadori, G.; Vezzoli, R.; Pecora, S. Multivariate assessment of droughts: Frequency analysis and dynamic return period. Water Resour. Res. 2013, 49, 6985–6994. [Google Scholar] [CrossRef]
- Pilot Project—Atmospheric Precipitation—Protection and Efficient Use of Fresh Water, Integration of Natural Water Retention Measures in River Basin Management. European Commission Directorate-General Environment. DG 07.0330/2013/659147/SER/ENV.C1, 05/09/2013 to 05/11/2014. Available online: http://nwrm.eu/ (accessed on 16 July 2018).
- Burt, T.; Pinay, G.; Grimm, N.; Harms, T. Between the land and the river: River conservation and the riparian zone. In River Conservation: Challenges and Opportunities; Sabater, S., Elosegi, A., Eds.; Fundación BBVA: Madrid, Spain, 2013; pp. 217–241. ISBN 978-84-92937-47-9. [Google Scholar]
- Ewel, K.C.; Cressa, C.; Kneib, R.T.; Lake, P.S.; Levin, L.A.; Palmer, M.A.; Snelgrove, P.; Wall, D.H. Managing Critical Transition Zones. Ecosystems 2001, 4, 452–460. [Google Scholar] [CrossRef]
- European Commission. Regulation (EU) No 377/2014 of the European Parliament and of the Council of 3 April 2014 Establishing the Copernicus Programme and Repealing Regulation (EU) No 911/2010 (Text with EEA Relevance). Official Journal L, 24 April 2014; 44–46.
- Sentinel-2 Mission Details. Available online: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/sentinel-2 (accessed on 28 July 2018).
- Copernicus Land Monitoring Service. Europe’s Eyes on Earth. Riparian Zones. Available online: https://land.copernicus.eu/local/riparian-zones (accessed on 12 June 2018).
- Weissteiner, C.J.; Ickerott, M.; Ott, H.; Probeck, M.; Ramminger, G.; Clerici, N.; Dufourmont, H.; De Sousa, A.M.R. Europe’s Green Arteries—A Continental Dataset of Riparian Zones. Remote Sens. 2016, 8, 925. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Land Monitoring Service. Europe’s Eyes on Earth. Available online: https://land.copernicus.eu/ (accessed on 12 June 2018).
- Piedelobo, L.; Ortega-Terol, D.; del Pozo, S.; Hernández-López, D.; Ballesteros, R.; Moreno, M.A.; Molina, J.-L.; González-Aguilera, D. HidroMap: A New Tool for Irrigation Monitoring and Management Using Free Satellite Imagery. ISPRS Int. J. Geo-Inf. 2018, 7, 220. [Google Scholar] [CrossRef] [Green Version]
- Piedelobo, L.; Hernández-López, D.; Ballesteros, R.; Chakhar, A.; Del Pozo, S.; González-Aguilera, D.; Moreno, M.A. Scalable pixel-based crop classification combining Sentinel-2 and Landsat-8 data time series: Case study of the Duero river basin. Agric. Syst. 2019, 171, 36–50. [Google Scholar] [CrossRef]
- Taramelli, A.; Lissoni, M.; Piedelobo, L.; Schiavon, E.; Valentini, E.; Nguyen Xuan, A.; González-Aguilera, D. Monitoring Green Infrastructure for Natural Water Retention Using Copernicus Global Land Products. Remote Sens. 2019, 11, 1583. [Google Scholar] [CrossRef] [Green Version]
- Filipponi, F.; Valentini, E.; Nguyen Xuan, A.; Guerra, C.A.; Wolf, F.; Andrzejak, M.; Taramelli, A. Global MODIS Fraction of Green Vegetation Cover for Monitoring Abrupt and Gradual Vegetation Changes. Remote Sens. 2018, 10, 653. [Google Scholar] [CrossRef] [Green Version]
- Tornato, A.; Valentini, E.; Nguyen Xuan, A.; Taramelli, A.; Schiavon, E. Assessment of User-Driven Requirements in term of Earth Observation Products and Applications for Institutional Operational Services. In AGU Fall Meeting Abstracts, Proceedings of the AGU Fall Meeting , Washington, DC, USA, 10–14 December 2018; American Geophysical Union: Washington, DC, USA, 2018. [Google Scholar]
- van Oudenhoven, A.P.E.; Schröter, M.; Drakou, E.G.; Geijzendorffer, I.R.; Jacobs, S.; van Bodegom, P.M.; Chazee, L.; Czúcz, B.; Grunewald, K.; Lillebø, A.I.; et al. Key criteria for developing ecosystem service indicators to inform decision making. Ecol. Ind. 2018, 95, 417–426. [Google Scholar] [CrossRef]
- Alves, A.; Patiño Gómez, J.; Vojinovic, Z.; Sánchez, A.; Weesakul, S. Combining Co-Benefits and Stakeholders Perceptions into Green Infrastructure Selection for Flood Risk Reduction. Environments 2018, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Liquete, C.; Teller, A.; Erhard, M.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.-E.; et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 2016, 17, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Weiers, S.; Bock, M.; Wissen, M.; Rossner, G. Mapping and indicator approaches for the assessment of habitats at different scales using remote sensing and GIS methods. Landsc. Urban Plan. 2004, 67, 43–65. [Google Scholar] [CrossRef]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- European Environment Agency. Spatial Analysis of Green Infrastructure in Europe; EEA Technical Report no 2/2014; European Union: Brussels, Belgium, 2014. [Google Scholar] [CrossRef]
- European Environment Agency. Green Infrastructure and Flood Management—Promoting Cost-Efficient Flood Risk Reduction via Green Infrastructure Solutions; EEA Report no 14/2017; European Union: Brussels, Belgium, 2017. [Google Scholar] [CrossRef]
- European Environment Agency. European Waters–Assessment of Status and Pressures 2018; EEA Report no 7/2018; European Union: Brussels, Belgium, 2018. [Google Scholar] [CrossRef]
- Grunewald, K.; Richter, B.; Meinel, G.; Herold, H.; Syrbe, R.-U. Proposal of indicators regarding the provision and accessibility of green spaces for assessing the ecosystem service “recreation in the city” in Germany. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 26–39. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.; Symons, J.; Young, C. Assessing the Economic Value of Green Infrastructure: Green Paper; Climate Change Working Paper No. 24; Victoria Institute of Strategic Economic Studies, Victoria University: Melbourne, Australia, 2015; ISBN 978-1-86272-706-9. [Google Scholar]
- Pakzad, P.; Osmond, P. Developing a Sustainability Indicator Set for Measuring Green Infrastructure Performance. Procedia Soc. Behav. Sci. 2016, 216, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Ravazzani, G.; Barbero, S.; Salandin, A.; Senatore, A.; Mancini, M. An integrated Hydrological Model for Assessing Climate Change Impacts on Water Resources of the Upper Po River Basin. Water Resour. Manag. 2015, 29, 1193–1215. [Google Scholar] [CrossRef]
- Marchina, C.; Bianchini, G.; Natali, C.; Pennisi, N.; Colombani, N.; Tassinari, R.; Knoeller, K. The Po river water from the Alps to the Adriatic Sea (Italy): New insights from geochemical and isotopic (δ18O-δD) data. Environ. Sci. Pollut. Res. 2015, 22, 5184–5203. [Google Scholar] [CrossRef]
- Musolino, D.; De Carli, A.; Massarutto, A. Evaluation of socio-economic impact of drought events: The case of Po river basin. Eur. Countrys. 2017, 9, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Montanari, A. Hydrology of the Po River: Looking for changing patterns in river discharge. Hydrol. Earth Syst. Sci. 2012, 16, 3739–3747. [Google Scholar] [CrossRef] [Green Version]
- Pham, H.V.; Sperotto, A.; Torresan, S.; Acuña, V.; Jorda-Capdevila, D.; Rianna, G.; Marcomini, A.; Critto, A. Coupling scenarios of climate and land-use change with assessments of potential ecosystem services at the river basin scale. Ecosyst. Serv. 2019, 40, 101045. [Google Scholar] [CrossRef]
- Sperotto, A.; Molina, J.L.; Torresan, S.; Critto, A.; Pulido-Velazquez, M.; Marcomini, A. Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks. Sustainability 2019, 11, 4764. [Google Scholar] [CrossRef] [Green Version]
- Water2Adapt—Resilience Enhancement and Water Demand Management for Climate Change Adaptation. Fondazione Eni Enrico Mattei (FEEM). IWRM-Net Initiative, September 2010–August 2012. Available online: http://www.feem-project.net/water2adapt/index.html (accessed on 13 July 2018).
- Autorità di bacino del fiume Po (ADBPO). Open Data Emilia-Romagna. Distretto Po—Idroecoregioni. Available online: http://dati.emilia-romagna.it/dataset/distretto-po-idroecoregioni (accessed on 14 June 2018).
- Autorità di bacino del fiume Po (ADBPO). Open Data Emilia-Romagna. Distretto Po—Autorità di Bacino del Fiume Po (ITN008)—FHRM—Direttiva Alluvioni—Mappe di Pericolosità da Alluvione 2013—Scenari di Bassa, Media e alta Probabilità. Available online: http://dati.emilia-romagna.it/dataset/distretto-po-fhrm-direttiva-alluvioni-mappe-pericolosita-alluvione-2013 (accessed on 15 June 2018).
- Direzione Generale Cura del Territorio e dell’Ambiente. Regione Emilia-Romagna. Parchi, foreste e Natura 2000—Dati Cartografici e Banche Dati. Available online: http://ambiente.regione.emilia-romagna.it/it/parchi-natura2000/consultazione/dati (accessed on 15 June 2018).
- Copernicus Land Monitoring Service. Europe’s Eyes on Earth. Corine Land Cover. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 30 December 2018).
- The European Space Agency Portal. Sentinel-2 MSI Resolutions. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions (accessed on 20 September 2018).
- Rouse, J.W.; Hass, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium—Volume I; Technical Presentations; NASA SP-351; NASA: Washington, DC, USA, 1973; pp. 309–317. [Google Scholar]
- Liu, H.Q.; Huete, A.R. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- PEPS—Operating Platform Sentinel Products (CNES). Available online: https://peps.cnes.fr/rocket/#/home (accessed on 1 September 2018).
- Hagolle, O.; Huc, M.; Desjardins, C.; Auer, S.; Richter, R. MAJA ATBD—Algorithm Theoretical Basis Document. Tech. Rep., MAJA MACCS-ATCOR Joint L2A Method and System, CNES+CESBIO and DLR. 2017. Available online: http://www.cesbio.ups-tlse.fr/multitemp/?p=12432 (accessed on 1 September 2018). [CrossRef]
- Djamai, N.; Fernandes, R. Comparison of SNAP-Derived Sentinel-2A L2A Product to ESA Product over Europe. Remote Sens. 2018, 10, 926. [Google Scholar] [CrossRef] [Green Version]
- Congedo, L. Semi-Automatic Classification Plugin Documentation. Available online: https://semiautomaticclassificationmanual-v5.readthedocs.io/en/latest/index.html (accessed on 15 September 2018).
- Palomo, I.; Martín-López, B.; Potschin, M.; Haines-Young, R.; Montes, C. National Parks, buffer zones and surrounding lands: Mapping ecosystem service flows. Ecosyst. Serv. 2013, 4, 104–116. [Google Scholar] [CrossRef]
- Azar, R.; Villa, P.; Stroppiana, D.; Crema, A.; Boschetti, M.; Brivio, P.A. Assessing in-season crop classification performance using satellite data: A test case in Northern Italy. Eur. J. Remote Sens. 2017, 49, 361–380. [Google Scholar] [CrossRef] [Green Version]
- Serrano, J.; Shahidian, S.; Marques da Silva, J. Evaluation of Normalized Difference Water Index as a Tool for Monitoring Pasture Seasonal and Inter-Annual Variability in a Mediterranean Agro-Silvo-Pastoral System. Water 2019, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- Wright, W.C.C.; Eppink, F.V.; Greenhalgh, S. Are ecosystem service studies presenting the right information for decision making? Ecosyst. Serv. 2017, 25, 128–139. [Google Scholar] [CrossRef]
- Liu, Y.; Bi, J.; Lv, J.; Ma, Z.; Wang, C. Spatial multi-scale relationships of ecosystem services: A case study using a geostatistical methodology. Sci. Rep. 2017, 7, 9486. [Google Scholar] [CrossRef] [Green Version]
- Wissen Hayek, U.; Teich, M.; Klein, T.M.; Grêt-Regamey, A. Bringing ecosystem services indicators into spatial planning practice: Lessons from collaborative development of a web-based visualization platform. Ecol. Ind. 2016, 61, 90–99. [Google Scholar] [CrossRef]
- Bechter, T.; Baumann, K.; Birk, S.; Bolik, F.; Graf, W.; Pletterbauer, F. LaRiMo—A simple and efficient GIS-based approach for large-scale morphological assessment of large European rivers. Sci. Total Environ. 2018, 628–629, 1191–1199. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, J.; Feng, L.; Zhou, X. DCN-Based Spatial Features for Improving Parcel-Based Crop Classification Using High-Resolution Optical Images and Multi-Temporal SAR Data. Remote Sens. 2019, 11, 1619. [Google Scholar] [CrossRef] [Green Version]
- Staccione, A.; Mysiak, J.; Ostoich, M.; Marcomini, A. Financial liability for environmental damage: Insurance market in Italy, focus on Veneto region experience. Environ. Sci. Pollut. Res. 2019, 26, 25749–25761. [Google Scholar] [CrossRef]
- Copernicus Land Monitoring Service. Upcoming Product: CLC+. Available online: https://land.copernicus.eu/user-corner/technical-library/upcoming-product-clc (accessed on 8 November 2019).
- Pandeya, B.; Buytaert, W.; Zulkafli, Z.; Karpouzoglou, T.; Mao, F.; Hanna, D.M. A comparative analysis of ecosystem services valuation approaches for application at the local scale and in data scarce regions. Ecosyst. Serv. 2016, 22, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Land Monitoring Service. High Resolution Vegetation Phenology and Productivity. Available online: https://land.copernicus.eu/user-corner/technical-library/phenology (accessed on 11 November 2019).
Product | Delineation of Potential Riparian Zones | Riparian Zones Land Cover/Land Use |
---|---|---|
Product short name | DRZP | RZ LC/LU |
Product definition | Spatial model which indicates the capacity to host riparian features. | Detailed LC/LU dataset for areas along a buffer zone of selected rivers (Strahler level 3 to 8). |
Input data |
|
|
Geometric resolution or equivalent scale | Raster: 25 m Vector: 1:50.000 | 1:10.000 |
Minimum Mapping Unit | Raster: 625 m2 pixel-based Vector: 50 ha | 0.5 ha |
Minimum Mapping Width | 10 m | |
Coordinate Reference System | ETRS89/LAEA Europe EPSG: 3035 | ETRS89/LAEA Europe EPSG: 3035 |
Temporal reference | 2010–2014 | 2010–2014 |
Accuracy | Not-yet-assessed (just by experts) | ≥85% |
Responsible | European Environment Agency (EEA) | European Environment Agency (EEA) |
Product | CLC 2018 and CLCC 2012/2018 |
---|---|
Satellite data | Sentinel-2 (S2) (and Landsat-8 for gap filling) |
Time consistency | 2017–2018 (CLC) and 2012–2018 (CLCC) |
Geometric accuracy | ≤10 m (S2) |
Minimum Mapping Unit/Width | 25 ha/100 m |
Coordinate Reference System | ETRS89/LAEA Europe EPSG: 3035 |
Change mapping (CLCC) | Boundary displacement min. 100 m All changes ≥5 ha are mapped |
Thematic accuracy | ≥85% |
Satellite Platform | Sentinel-2 (A & B) |
---|---|
Spatial resolution | 10 m 1 and 20 m 2 |
Temporal resolution | 5 days 3 |
Time consistency | 2015-to date |
Radiometric resolution | 12 bits |
Band set used | Band 2 (Blue): 0.490 μm Band 4 (Red): 0.665 μm Band 8 (NIR): 0.842 μm Band 11 (SWIR1): 1.610 μm |
Satellite Platform | Date | Cloud Coverage (%) |
---|---|---|
S2A | 30 March 2018 | 45 |
S2A | 19 April 2018 | 5 |
S2A | 19 May 2018 | 31 |
S2A | 28 June 2018 | 18 |
S2A | 18 July 2018 | 0 |
S2A | 17 August 2018 | 2 |
S2A | 26 September 2018 | 5 |
Criteria [39,57,58,59,60,61,62,63,64,65] | Indicators Used | Output Delivered |
---|---|---|
Capacity to provide ecosystem services | Riparian Zones products [47] from the Copernicus local component:
| 1. Identification of agriculture and forest NWRM in riparian areas 2. Spatial model of GI disposition to deliver regulative ES |
Membership in Natura 2000 network | Buffers of Natura 2000 areas [75] to calculate the distance to detected GI. | 3. Pixel-based assessment of GI condition 5 |
Indicators of the ecosystem’s functional attributes: greening response and water stress | Bio-geophysical indices calculated using Sentinel-2 (S2) 4: |
MAES Level 4 LC/LU Classes 1 [47] | Green Infrastructure [42] | Area (km2) |
---|---|---|
Pastures Managed grasslands without trees and scrubs with a Tree Cover Density (TCD) of less than 30% and over or equal 30% Dry, mesic and alpine and subalpine grasslands without trees with a TCD of less than 30% Herbaceous vegetation Heathlands and moorlands Sparsely vegetated areas | Meadows and pastures | 775.68 |
Transitional woodland and scrub Lines of trees and scrub | Buffer strips and hedges | 94.10 |
Annual crops associated with permanent crops Complex cultivation patterns | Crop rotation Strip cropping along contours Intercropping 2 | 91.46 |
Land principally occupied by agriculture with significant areas of natural vegetation Agro-forestry with a TCD over 30% and less than 30% Dry, mesic and alpine and subalpine grasslands with trees with a TCD over or equal 30% | Green cover | 224.07 |
Riparian and fluvial broadleaved, coniferous and mixed forest with a TCD over 80%, 50–80%, 30–50% and 10–30% Broadleaved, coniferous and mixed forest swamp with a TCD over 80%, 50–80%, 30–50% and 10–30% | Forest riparian buffers | 2688.64 |
Riverbanks | Riverbanks | 133.92 |
Forest Other natural and semi-natural broadleaved, coniferous and mixed forest with a TCD over 80%, 50–80%, 30–50% and 10–30% Broadleaved evergreen forest with a TCD over 80%, 50–80%, 30–50% and 10–30% Highly artificial broadleaved, coniferous and mixed plantations with a TCD over 80%, 50–80%, 30–50% and 10–30% Other scrub land Sclerophyllous vegetation | Continuous cover forestry | 32.26 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piedelobo, L.; Taramelli, A.; Schiavon, E.; Valentini, E.; Molina, J.-L.; Nguyen Xuan, A.; González-Aguilera, D. Assessment of Green Infrastructure in Riparian Zones Using Copernicus Programme. Remote Sens. 2019, 11, 2967. https://doi.org/10.3390/rs11242967
Piedelobo L, Taramelli A, Schiavon E, Valentini E, Molina J-L, Nguyen Xuan A, González-Aguilera D. Assessment of Green Infrastructure in Riparian Zones Using Copernicus Programme. Remote Sensing. 2019; 11(24):2967. https://doi.org/10.3390/rs11242967
Chicago/Turabian StylePiedelobo, Laura, Andrea Taramelli, Emma Schiavon, Emiliana Valentini, José-Luis Molina, Alessandra Nguyen Xuan, and Diego González-Aguilera. 2019. "Assessment of Green Infrastructure in Riparian Zones Using Copernicus Programme" Remote Sensing 11, no. 24: 2967. https://doi.org/10.3390/rs11242967
APA StylePiedelobo, L., Taramelli, A., Schiavon, E., Valentini, E., Molina, J. -L., Nguyen Xuan, A., & González-Aguilera, D. (2019). Assessment of Green Infrastructure in Riparian Zones Using Copernicus Programme. Remote Sensing, 11(24), 2967. https://doi.org/10.3390/rs11242967