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Abstract: In this work, we face the problem of forest mapping from TanDEM-X data by means of
Convolutional Neural Networks (CNNs). Our study aims to highlight the relevance of domain-related
features for the extraction of the information of interest thanks to their joint nonlinear processing
through CNN. In particular, we focus on the main InSAR features as the backscatter, coherence,
and volume decorrelation, as well as the acquisition geometry through the local incidence angle.
By using different state-of-the-art CNN architectures, our experiments consistently demonstrate the
great potential of deep learning in data fusion for information extraction in the context of synthetic
aperture radar signal processing and specifically for the task of forest mapping from TanDEM-X
images. We compare three state-of-the-art CNN architectures, such as ResNet, DenseNet, and U-Net,
obtaining a large performance gain over the baseline approach for all of them, with the U-Net solution
being the most effective one.

Keywords: synthetic aperture radar; digital elevation model; image segmemtation; forest classification;
target detection; convolutional neural network; data fusion

1. Introduction

Forests are of paramount importance for the Earth’s ecosystem, since they play a fundamental role
in reducing the concentration of carbon dioxide in the atmosphere and in regulating global warming.
The study of deforestation and development of global forest coverage and biomass is necessary to
assess how forests impact the ecosystem. In this framework, remote sensing represents a powerful
tool for a regular monitoring at a global scale of vegetated areas. A successful example is the product
provided in Hansen et al. [1], which maps world’s forest coverage and its evolution between the
years 2000 and 2010 by exploiting multi-spectral data provided by the Landsat optical spaceborne
mission. Other notable examples include the fusion of multispectral and Lidar data [2] or the use
of hyperspectral images [3]. However, as well known, passive imaging systems are useless under
cloudy conditions, whereas synthetic aperture radar (SAR) systems, providing a continuous large-scale
coverage ranging from mid- to very high-resolution, can operate effectively regardless of weather and
daylight conditions. This feature is particularly important for tropical zones which are characterized
by heavy rain seasons. As originally proposed in Dobson et al. [4], SAR backscatter data from the
ALOS PALSAR mission have been fruitfully applied to global forest mapping in Shimada et al. [5]. On
the other hand, SAR interferometry (InSAR) provides yet more descriptive parameters, such as the
interferometric coherence, that can better explain the nature of the observed target [6,7].

Among InSAR systems, the German TanDEM-X SAR mission provides single-pass interferometric
data at X band. The simultaneity of the bistatic acquisition pair guarantees high correlation
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between the master and slave images, enabling high-resolution interferometric measurements with an
unprecedented quality. The constellation comprises two twin satellites flying in a bistatic close-orbit
configuration, which allows for a flexible selection of the acquisition geometries and, in particular,
of the interferometric baselines [8]. The main goal of the mission was the generation of a global
consistent high-resolution digital elevation model (DEM) with unprecedented accuracy, which
has been successfully completed in 2016 [9]. Besides the nominal DEM product, for each bistatic
interferometric TanDEM-X acquisition, additional quantities can be computed as by-pass products.
Indeed, the bistatic acquisition is not affected by temporal decorrelation, allowing for an accurate
isolation of volume scattering phenomena from the interferometric coherence. This feature was
exploited in References [10,11], where the authors presented a framework for the development of a
global TanDEM-X forest/non-forest map [12] as described more in details in Section 2.1.

Deep learning approaches and, in particular, Convolutional Neural Networks (CNNs) have been
massively used in computer vision and image processing in the last few years, since the publication
of the breakthrough work of Krizhevsky et al. on image classification in 2012 [13]. Thanks to the
CNNs capability to learn very complex nonlinear relationships from huge labeled datasets with the
help of commercial GPUs, unprecedented results have been obtained for many typical tasks such as
super-resolution [14,15], segmentation [16], denoising [17], object detection [18,19], classification [20–22],
and many others.

Recently, deep learning has started to significantly impact remote sensing applications as well,
as testified by the recent survey of Zhu et al. [23]. Established techniques in remote sensing concern,
e.g., pansharpening [24,25], vehicle detection [26] with optical images, crop classification [27,28],
anomaly detection with hyperspectral data [29], despeckling [30,31], classification [32], or target
recognition using SAR data [33,34]. More recently, a multi-temporal SAR-optical fusion method for
vegetation index reconstruction was proposed in Scarpa et al. [35].

Motivated by the abovementioned works in References [10,11], in this paper, we now explore
the use of CNNs for high-resolution forest mapping using TanDEM-X data, aiming at proving
the effectiveness of deep learning for the generation of high-quality products. In particular, our
contribution is two-fold: (i) finding the CNN model that better fits to the problem at hand and (ii)
assessing the impact on the prediction due to handcrafted SAR features used as additional input.
Three modular architectures where built according to three state-of-the-art approaches: ResNet [36],
DenseNet [37], and U-Net [38]. For each architecture, we tested different input combinations, ranging
from the single-band SAR image to a 4-band stack that encloses three additional features: the incidence
angle, the interferometric coherence, and the volume decorrelation contribution, which carry relevant
information on the nature of the illuminated target. Some preliminary results can be found in Mazza
and Sica [39].

The paper is organized as follows. Section 2 provides a brief summary of the baseline reference
method and introduces basic concepts about CNNs. Then, the proposed methods are described in
Section 3, while the used datasets and experimental results are presented and discussed in Section 4.
Finally, the conclusions are drawn in Section 5.

2. Background Concepts

This section provides background concepts that will introduce the reader to the context of the
work from both applicative and methodological points of view. In particular, Section 2.1 deals with
the definition of some SAR features which can be associated to TanDEM-X data that have been
demonstrated to be very effective for forests mapping [11,40]. Then, Section 2.2 recalls general concepts
about CNNs, contextualized to the cases of classification and segmentation.

2.1. Baseline Algorithms for Forest Mapping Using TanDEM-X

The work presented in this paper was born from the experience matured within the TanDEM-X
Forest/Non-Forest Map project, developed at the Microwaves and Radar Institute at the German
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Aerospace Center (DLR), within the framework of the TanDEM-X mission [10]. Its goal was the
generation of a global forest/non-forest classification mosaic from TanDEM-X bistatic InSAR data
acquired for the generation of the global DEM between 2011 and 2015 in stripmap single polarization
(HH) mode. The derived product has been made available in May 2019 and can be downloaded free of
charge for scientific use [12].

Several products, systematically provided by the TanDEM-X system, can be exploited for
classification purposes, such as the calibrated amplitude, the bistatic coherence, and the digital
elevation model (DEM). As an example, Figure 1 shows a sample image set. Together with the
absolutely calibrated backscatter image β0, several features of interest for the present work are shown:
the local incidence angle θi, the interferometric coherence γTot , and the volume correlation coefficient
γVol . These features have been proven to be effective for forest classification in several works [10,11]
and are easy to compute. Baseline solutions considered in the present work, in fact, use volume
correlation coefficient and local incidence angle. For these reasons, we decided to include them as
additional input layers. In the following, a suitable definition of them with a related description of the
meaning is provided.

β0 θi

γTot γVol

Figure 1. Sample data. From the top to the bottom image: absolutely calibrated backscatter β0,
local incidence angle θi, interferometic coherence γTot , and volume correlation coefficient γVol .

The interferometric coherence γTot represents the main indicator for assessing the quality of
an interferogram and is defined as the normalized cross-correlation coefficient between the interferometric
images pair

γTot =
|E[xy∗]|√

E[|x|2]E[|y|2]
, (1)

where E[·] is the statistical expectation, ∗ is the complex conjugate operator, and | · | is the absolute
value. x and y represent the master and slave images, respectively. γTot varies between 0 and 1 m and
it is an image itself being computed locally at each pixel location using a sliding window averaging.

The interferometric coherence is affected by several decorrelation factors which can be singularly
interpreted and computed. In particular, as shown in Krieger et al. [8], γTot can be factorized as

γTot = γSNR γamb γquant γaz γrg γVol γTemp , (2)

where the different factors take into account decorrelations due to limited signal-to-noise ratio (γSNR ),
range and azimuth ambiguities (γamb ), quantization noise (γquant ), relative shift of the Doppler spectra
(γaz ), baseline differences (γrg ), volume scattering (γVol ), and temporal changes (γTemp ).

The factor γVol , also called volume correlation factor, is severely affected by the presence of
multiple scattering from volumes that are easily penetrated by the incident electromagnetic waves.
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The received signal consists therefore of the coherent superposition of multiple reflections. This term
is a reliable indicator of the presence of vegetation on ground and can be extrapolated form the
interferometric coherence as

γVol =
γTot

γSNR γamb γquant γaz γrg γTemp

. (3)

In our specific case, all factors at the denominator but γTemp have been estimated as described
in Martone et al. [10]. γTemp is equal to one, since we are considering TanDEM-X bistatic acquisitions,
which are not affected by temporal decorrelation.

Being γVol in turn a very sensitive indicator of the presence of vegetation on ground, it was
therefore selected in Martone et al. [10] as main feature for forest mapping with TanDEM-X data at
global scale. Moreover, it also has to be remarked that γVol is strongly influenced by the acquisition
geometry and, in particular, by the height of ambiguity hamb. This latter figure represents the elevation
difference corresponding to a complete 2π cycle in the interferogram and, for the bistatic systems, is
defined as

hamb =
λr sin θi

B⊥
, (4)

where λ is the wavelength, r is the slant range distance, and B⊥ is the baseline perpendicular to the
line of sight. As it has been demonstrated in Martone et al. [40], the lower the height of ambiguity, the
higher the volume decorrelation contribution and, hence, the lower the γVol . For this reason, in order
to discriminate between forested and non-forested areas, a supervised geometry-dependent fuzzy
clustering classification approach, which takes into account the geometric acquisition configuration for
the definition of the cluster centers, was proposed in Martone et al. [10] and applied to each acquired
TanDEM-X scene for the generation of the global product. Additionally, a certain variability of the
interferometric coherence at X band was observed among different forest types, mainly due to changes
in forest structure, density, and tree height. This aspect led to an adjustment of the algorithm settings
and, in particular, to the derivation of different sets of cluster centers, depending on the specific type
of forest.

In order to limit the computational burden, the global TanDEM-X dataset of quicklook images
with 50 × 50 m2 ground resolution was used for the generation of the global forest/non-forest map.
Full-resolution results were obtained on a subset of 12 × 12 m2 resolution TanDEM-X images using
an enhanced version of Reference [10] proposed in Reference [11], aimed to preserve both global
classification accuracy and local precision thanks to the introduction of nonlocal filtering. This latter
work represents the starting point of our work and will be therefore referred to as the baseline. The
same work [11] also shows the forest prediction results masking water and built-up regions using
external ground truths. This was motivated by the sensitivity of the volume correlation factor to these
two classes. This solution makes sense as, in many real-world practical applications, one may rely on
the availability of urban and water maps. For these reasons, we decided to keep also this variant in
our experiments, which will be referred to as baseline+.

2.2. Convolutional Neural Networks

Convolutional Neural Network (CNN) is a general term that indicates a machine learning model
built up by interconnecting many different learnable or non-learnable processing units (layers), most
of which are convolutional ones. Neuronal weight sharing and locality, which make sense when
working with images and videos, are the key characterizing elements that distinguish a convolutional
layer from a fully connected (FC) layer. These features allow for a drastic reduction of the number
of parameters to learn, and this is likely one of the reasons why the deep learning revolution has
moved the first steps in the computer vision domain. Within the classification frame, the convolutional
layers are usually employed in the early processing steps in order to retain spatial layout and feature
localization. On the other hand, FC layers are normally applied after several processing units leading
to abstract spatially unstructured features. Besides learnable layers, pooling and activation layers
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are non-learnable essential elements to build up a deep learning classification model. Poolings that
normally interleave convolutional layer blocks aim to progressively “forget” the spatial structure,
reducing the spatial size and hence summarizing the image content with abstract features. Roughly
speaking, pooling helps to move from “where” to “what”. On the other hand, nonlinear point-wise
activation layers, usually coupled with convolutional or FC layers, allow the overall network to
mimic very complex nonlinear functions, therefore expanding the network capacity. According to
this paradigm, many state-of-the-art CNN models for classification, e.g., AlexNet [13], VGG [41], and
GoogLeNet [42], extract hierarchically related feature layers of decreasing scale, usually shown as a
pyramidal stack of which the head is the K-vector that returns the class membership scores associated
with the image (as whole) to be classified. This vector is normally provided as discrete probability
distribution by simply using a softmax activation layer in output, which is defined as

ẑi = g(s)i =
esi

∑K
j=1 esj

for i = 1, . . . , K, (5)

with s = (s1, . . . , sK) as the unnormalized score vector entering the softmax layer and ẑi as the ith class
membership probability singled out.

In order to move from image-wise to pixel-wise classification (the latter is also referred to as
semantic segmentation), it is necessarily to provide spatially localized features toward the output
layer. That is to say, now we need to know “what” and “where”. A first notable attempt to do
this was proposed in Long et al. [16] by converting the FC stages of classification nets, such as
in References [13,41,42], in convolutional ones obtaining Fully Convolutional Networks (FCN) for
semantic segmentation. Another approach is to resort to a encoder–decoder paradigm where an
image classifier plays as encoder while a coupled decoder aims to restore the spatial (classified) layout
by means of upscaling layers and scale-wise skip connections. Examples of this kind are the U-Net
architecture for segmentation or the feature pyramid network (FPN) for object detection proposed
in Ronneberger et al. [38], Lin et al. [43].

On the other hand, depending on the target task, a suitable loss function to be optimized with
a training process needs to be defined according to our expectations. Moreover, the loss must be
differentiable and, more in general, must have a shape that speeds up the gradient descent optimization
process. In our problem, which is a particular case of semantic segmentation where only two classes are
considered (forest/non-forest), the output is just a single probability map resulting from a pixel-wise
softmax (that reduces to a sigmoid in the binary case) activation layer. The softmax activation is
typically associated to a cross-entropy loss function [44], as the gradient of their combination has good
convergence properties. In the binary case, the cross-entropy loss for the ith input–output training
example t = (x, z), generalized to the case of pixel-wise classification, is defined as

Lbce
t = − 1

N

N

∑
n=1

[zn log(ẑn) + (1− zn) log(1− ẑn)] , (6)

with x ∈ RN as the N-pixel input image, z = {zn} ∈ {0, 1}N as the corresponding binary ground-truth
map, and ẑ = {ẑn} = fΦ(x) ∈ [0, 1]N as the probability map predicted by the network fΦ having
parameters Φ. The target loss to be minimized over Φ is the average of the sample loss over the whole
training dataset:

Lbce = Et∼train

[
Lbce

t

]
. (7)

The cross-entropy loss works pretty well for classification tasks where the predictors are asked to
take a global decision about the input image. On the contrary, when dealing with pixel-wise prediction,
although it still gives a rapid loss decay, it does not necessary correspond to satisfactory results. This is
primarily due to the underlying assumption of independence among predictions in different locations
encoded in the loss. Infact, according to Equation (6), each pixel location contributes to the loss through
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the sum, independently from any other pixel. For segmentation tasks this assumption is too strong
as, said in simple words, neighboring pixels are likely to belong to the same segment; therefore, this
should be reflected in the loss. On the basis of this consideration, a more suited option is the Jaccard
similarity loss [45], which is defined as

LJ
t = 1− ∑N

n=1 zn ẑn

∑N
n=1 [(zn + ẑn)− zn ẑn]

, (8)

which is the complement of the intersection over union (IoU) defined for binary masks generalized to
probability masks.

3. Proposed Models

In light of the great success of deep learning to solve vision problems, we propose and compare
three different CNN models to extract forest maps from TanDEM-X data and/or related products.
In particular, the proposed models refer to three different network topologies commonly referred to as
residual network (ResNet) [36], dense network (DenseNet) [37], and U-shaped network (U-Net) [38].
ResNet models were conceived origianally to speed up the training process by forcing convolutional
modules to process in a “differential” manner thanks to skip connections. By following a similar
idea, DenseNet models also achieve fast convergence rates thanks to the “feature reuse” concept.
On the other hand, the U-Net topology allows to preserve spatial details and is therefore often used
for segmentation purposes. For each approach, we consider several input stacking options in order to
assess weather and which TanDEM-X side products can boost the network accuracy on the given task.
In particular, up to four input bands were selected among the following:

• β0, absolutely calibrated backscatter image;
• θi, local incidence angle;
• γTot , interferometric coherence;
• γVol , volumetric decorrelation.

It is also worth noticing that, although CNNs are able to learn features end-to-end, the injection of
suitably defined handcrafted features can be beneficial for the network performance (see Masi et al. [24])
as eventually confirmed also by our experiments.

For all models, we have fixed the same loss to minimize through the training process, which is
a combination of the cross-entropy (Equation (6)) and the Jaccard (Equation (8)) losses:

L = Et∼train

[
Lbce

t + LJ
t

]
.

This choice conjugates the nice convergence properties of the cross-entropy with the good spatial
characteristics of the Jaccard loss as discussed in the above section. The network output, which is in all
cases a probability map, will be thresholded at 0.5 to provide the final forest map.

3.1. TDX-Res

A well-known bottleneck in deep learning is the computational time for training. The ResNet
approach [36] is a notable solution recently proposed to mitigate this problem, which has proven also
to be effective to limit overfitting. The idea is to concatenate residual blocks as done for example in
Figure 2.

A residual block is nothing but a sequence of convolutional layers, inclusive of related nonlinear
activations, f (x), put in parallel to a identity function, or skip connection, yielding the overall
block function

y = gΦ(x) = fΦ(x) + x,
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where Φ is the learnable parameters of the block. In other words, the convolutional branch works
as a differential, or residual, operator, f (x) = y − x. In some problems, such as pansharpening,
this modeling has a very nice explicit interpretation, since the desired output is already partially
contained in the input, and the convolutional layers are therefore asked to just recover the missing
high-frequency content [46]. More in general, in He et al. [36], it has been shown that replacing
unidirectional network blocks with residual schemes (just additional skip connections) consistently
speeds up the training process. This has been verified with respect to several state-of-the-art models,
such as VGG-16 [41], GoogLeNet [42], and BN-InceptionNet [47].

+ +. . . . . . . . .

Input Residual block 1 Residual block 2

Figure 2. ResNet module.

By following this rationale, we designed our 7-layer residual network, hereinafter referred to as
TDX-Res (TanDEM-X ResNet), of which the hyperparameters are gathered in Table 1. All but the last
layer are coupled with a Rectified Linear Unit (ReLU) activation [13] and are singularly residual. The
64-feature bands provided by the 6th layer are then transformed in a single-band, the probability map,
by means of a 1 × 1 convolution coupled with a sigmoid activation.

Table 1. TDX-Res hyperparameters. Shape: #kernels × #input channels × kernel support.

Layer Kernel Shape

Batch Normalization -
Conv + ReLU 64 ×b× (3 × 3)
Conv + ReLU 64 ×64× (3 × 3)
Conv + ReLU 64 ×64× (3 × 3)
Conv + ReLU 64 ×64× (3 × 3)
Conv + ReLU 64 ×64× (3 × 3)
Conv + ReLU 64 ×64× (3 × 3)

Conv + Sigmoid 1 ×64× (1 × 1)

3.2. TDX-Dense

In essence, the ResNet approach creates short paths from early layers to later ones, and this is done
to contrast the so-called “vanishing gradient” problem. As information about input or gradient passes
through many layers, it can vanish and “wash out” by the time it reaches the end (or beginning) of the
network, preventing the network from the minimization of the loss during training. On the basis of this
same consideration, it has been proposed also the DenseNet approach [37], that is an architecture that
distills this insight into a simple connectivity pattern: to ensure maximum information flow between
layers in the network, all layers (with matching feature-map sizes) are directly connected with each
other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding
layers and passes on its own feature maps to all subsequent layers. This principle is summarized in
Figure 3. The `th layer has ` inputs, consisting of the feature-maps of all preceding convolutional
blocks. Its own feature are passed on to all L − ` subsequent layers. This introduces L(L + 1)/2
connections in an L-layer network, instead of just L as in traditional architectures. A key distinguishing
characteristic of the DenseNet approach with respect to ResNet is that features are never combined
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through summation, as they are simply concatenated. Since k is the number of feature maps produced
by each layer, it is easy to verify that the lth layer has b + k(`− 1) input feature maps, where b is the
number of channels in the input layer. For this reason, the hyperparameter k is referred to as the growth
rate of the network.

C Concatenation

C C C

x ConvLayer1 ConvLayer2 ConvLayer3 ConvLayer4 f (x)

Figure 3. Example of the DenseNet model.

Our proposed DenseNet model for forest segmentation over TanDEM-X data, named TDX-Dense,
is a relatively shallow architecture with only 7 layers and a growth rate of 64. In Table 2 are summarized
the main hyperparameters of the network. Both TDX-Res and TDX-Dense use batch normalization on
the input layer to regularize the network behaviour [47].

Table 2. TDX-Dense hyperparameters. Shape: #kernels × #input channels × kernel support.

Layer Kernel Shape

Batch Normalization -
Conv + ReLU 64 ×b× (3 × 3)
Conv + ReLU 64 ×(64 + b)× (3 × 3)
Conv + ReLU 64 ×(128 + b)× (3 × 3)
Conv + ReLU 64 ×(192 + b)× (3 × 3)
Conv + ReLU 64 ×(256 + b)× (3 × 3)
Conv + ReLU 64 ×(320 + b)× (3 × 3)

Conv + Sigmoid 1 ×64× (1 × 1)

3.3. TDX-U

The third model for segmentation belongs to the U-Net family originally proposed for medical
images [38]. The original idea is to use an encoder–decoder paradigm in order to inheritate well-
established CNN classification models pretrained on huge datasets, e.g., ImageNet, which can play the
role of encoder. As the head of the feature pyramid generated by the encoder which summarizes the
image content does not carry spatial information, progressively lost flowing through convolutional
(spreading) and pooling (subsampling) layers, a “mirror” decoding section is properly linked to the
encoder in order to recover the image spatial layout enriched with the class information, semantic
segmentation (see Figure 4). Symmetrically disposed with respect to pooling layers are upsampling
layers. Moreover, in addition to the main feature path (U-shaped trajectory), information flows
through scale-wise shortpaths that brings encoder features directly to the corresponding decoding
stages, working at the same resolution, where they are concatenated with the mainstream features
coming from the lower levels.

While the encoder can be any imported pretrained net, fine-tuned if needed, the decoder is
typically trained from scratch. In our case, due to the very specific characteristics of the input images,
we decided to train from scratch the whole proposed network on the given dataset, avoiding any
transfer learning. Figure 4 refers to our specific implementation, referred to as TDX-U for short in
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the following, which works on four scale levels. At each level, two chained convolutional layers are
located on both the encoder and the decoder sides, with exception of the network head where an
additional 1 × 1 convolution is used to map 64 features in a single probability channel. Additional
information about network hyperparameters are summarized in Table 3.

x f (x)

Feature maps

Concatenation

Convolution

Skip connection

Max Pooling

Upsampling

Figure 4. Proposed U-Net structure for forest segmentation from TanDEM-X data.

Table 3. TDX-U hyperparameters. Shape: #kernels × #input channels × kernel support.

Layer Kernel Shape

Batch Normalization -
Conv + ReLU 64 × b × (3 × 3)
Conv + ReLU 64 × 64 × (3 × 3)

2 × 2 Max Pooling -
Conv + ReLU 128 × 64 × (3 × 3)
Conv + ReLU 128 × 128 × (3 × 3)

2 × 2 Max Pooling -
Conv + ReLU 256 × 128 × (3 × 3)
Conv + ReLU 256 × 256 × (3 × 3)

2 × 2 Max Pooling -
Conv + ReLU 512 × 256 × (3 × 3)
Conv + ReLU 512 × 512 × (3 × 3)

2 × 2 Upsampling -
Conv + ReLU 256 × 512 × (3 × 3)
Conv + ReLU 256 × 256 × (3 × 3)

2 × 2 Upsampling -
Conv + ReLU 128 × 256 × (3 × 3)
Conv + ReLU 128 × 128 × (3 × 3)

2 × 2 Upsampling -
Conv + ReLU 64 × 128 × (3 × 3)
Conv + ReLU 64 × 64 × (3 × 3)

Conv + Sigmoid 1 × 64 × (1 × 1)

4. Experimental Results

In the following, we will discuss the experimental results obtained with the proposed CNN
models in comparison with some reference solutions. First, we provide details about the dataset and
training in Section 4.1, and then, we give a summary of involved methods and accuracy measures
in Section 4.2. Finally, we provide the numerical accuracy assessment of the compared methods
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in Section 4.3 and a subjective comparison through the visual inspection of some sample results in
Section 4.4.

4.1. The Pennsylvania Dataset and Training Details

The dataset of bistatic TanDEM-X images used for the current work was acquired over the state of
Pennsylvania, USA during the first year of the mission and belongs to the global dataset of nominal
acquisitions used for the generation of the TanDEM-X DEM. It consists of ten image tiles of about
9200 × 6700 pixels on average, nine of which are used for training or validation, while the remaining
one is reserved for tests. Training and validation sets are created as follows: 18.000 randomly chosen
128 × 128 patches are grouped in 32-dimensional training mini-batches; 2.000 more patches with
the same size were used for validation instead. The training was carried out running the Adam
optimizer [48] with an initial learning rate of 10−4 for 20 epochs. Moreover, the test set composed of
five 1400 × 1800 samples extracted from the additional tile was reserved for the accuracy assessment
of the compared solutions. The five samples were selected with different characteristics in terms of
class content (e.g., forest, water, urban, bare soil, etc.) for a more comprehensive evaluation of the
generalization properties of the method.

The region of interest is largely covered by temperate forests (about 60%), mainly characterized by
the presence of deciduous trees and birch. The remaining lightly vegetated areas can be associated to
shrubs, bushes, and wildflowers. Moreover, Pennsylvania is characterized by the presence of a dominant
southwest-to-northeast-oriented barrier ridge of high-relief terrain, namely the Appalachian Mountains.
The reason for the choice of such an area of interest is the availability of a high-resolution reference
forest/non-forest map derived from lidar and optical data [49]. This dataset was generated by a
joint collaboration between the University of Maryland and the University of Vermont and released
later in 2015. Input data, acquired between 2006 and 2008, were combined together to generate a
forest/non-forest binary layer for vegetation higher than 2 m and with ground resolution of 1 × 1 m2.

4.2. Methods and Metrics

The proposed solutions described in detail in Section 3 are cast in three groups, TDX-Res,
TDX-Dense, and TDX-U, corresponding to three state-of-the-art CNN building approaches, ResNet,
DenseNet, and U-Net, respectively, particularized to the problem of forest mapping from TanDEM-X
data. In order to show the discriminative power of domain-raleted SAR features, we have tried different
input configurations for each model category by selecting up to 4 input channels selected among SAR
amplitude β0, incidence angle θi, interferometric coherence γTot , and volumetric decorrelation γVol .
All networks were trained from scratch.

As reference solutions for a comparative evaluation, in addition to the two versions of the baseline
method [11] briefly described in Section 2.1, namely baseline and baseline+, we have also implemented
random forest classifiers with different input configurations as well as for the proposed methods.

The accuracy evaluation was based on classical and widespread measures used for detection such
as the true/false positives/negatives rates:

[TP] True positives: rate of pixels correctly classified as forest.
[TN] True negatives: rate of pixels correctly classified as non-forest.
[FP] False positives: rate of pixels wrongly classified as forest.
[FN] False negatives: rate of pixels wrongly classified as non-forest.

Based on these measurements, several indicators can be computed to simplify the interpretation of
the assessed methods. In particular, we will provide precision, recall, F1-score, and accuracy, which are
defined as follows:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)
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F1 = 2 · Precision · Recall
Precision + Recall

(11)

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision and recall are usually shown together as they represent the trade-off between the need
of catching the target class whenever it occurs (FN = 0, Recall = 1) and that of reducing false alarms
(FP = 0, Precision = 1). Ideally, both these measures should be maximized to unity. A compact
representation of both is given by their harmonic average, the F1-score. In case one only cares about
the global rate of correctly classified (as forest or non-forest, in our case) pixels, this is provided by the
last indicator (accuracy).

4.3. Numerical Assessment

For ease of presentation, the numerical results are grouped into two tables. The former (Table 4)
gathers a meaningful set of proposed CNN models and is useful to understand several design choices.
The latter (Table 5) compares some selected proposed models with reference methods. An overview of
the performances of all compared methods is then depicted on the precision–recall plane of Figure 5.

Table 4. Forest detection accuracy assessment on the test dataset for different proposed Convolutional
Neural Network (CNN) models. Input bands are marked in columns 2–5. Bold numbers correspond to
the best for each input configuration, while blue correspond to the best configuration.

Model β0 θi γTot γVol Recall Prec. F1-Score Acc.

TDX-Res × 80.09% 61.79% 69.76% 69.67%

TDX-Res × × 84.44% 79.97% 82.15% 83.96%

TDX-Res × × 78.69% 75.32% 76.97% 79.43%

TDX-Res × × 91.29% 64.32% 75.47% 74.08%

TDX-Res × × 84.06% 65.67% 73.74% 73.84%
TDX-Dense × × 79.12% 67.87% 73.06% 74.51%

TDX-U × × 80.48% 84.57% 82.48% 85.06%

TDX-Res [39] × × × 85.04% 81.38% 83.17% 84.97%
TDX-Dense [39] × × × 83.99% 83.76% 83.88% 85.89%

TDX-U × × × 84.46% 88.19% 86.29% 88.27%

TDX-Res × × × 86.97% 79.42% 83.02% 84.46%
TDX-Dense × × × 91.94% 74.10% 82.06% 82.44%

TDX-U × × × 82.94% 89.25% 85.98% 88.18%

TDX-Res × × × × 89.80% 75.59% 82.08% 82.88%
TDX-Dense × × × × 86.40% 80.83% 83.52% 85.11%

TDX-U × × × × 80.98% 90.97% 85.68% 88.18%

Let us start analyzing our design solutions with the help of Table 4. The models are grouped
depending on the input layer setting, which is specified in columns 2–5. For the sake of brevity, a more
extensive evaluation with respect to the input configuration is presented for the TDX-Res case only,
without loss of generality. A few models correspond to the solutions discussed in Mazza and Sica [39].

It can be observed that each input band brings its own contribution to improve the CNN
discrimination capability, with the exception of the pair (γTot , γVol) that seems highly correlated
according to the numerical results. Infact, accuracy moves from 69.67% using just β0 to 73.84%
including θi, jumping over the 80% barrier including one or two more input channels. Besides, the
simultaneous inclusion of γTot and γVol can be even slightly detrimental for accuracy. Indeed, they are
rarely used simultaneously in the literature because of their direct relationship (Equation (3)). In our
case, for all CNN architectures, these two parameters look nearly equivalent and the best option is to
use just one of them together with β0 and θi, if available. Comparing the different architectural options,
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it results that both TDX-Res and TDX-Dense overestimate the forest class (maximize recall) while
TDX-U is more conservative maximizing the precision metric. However, the latter clearly provides
the best trade-off between precision and recall, performing consistently better than the formers in
terms of both F1-score and accuracy. The above considerations can be easily recognized observing the
precision–recall plane in Figure 5. The incidence angle θi, in fact, is particularly effective when used in
conjunction with the SAR signal β0 (see the gain between small to large black circles, associated to
TDX-Res), but it also boosts the accuracy when other features such as γTot are enclosed (small green
circle vs. filled green circle). The above considerations about precision–recall trade-offs can also be
immediately verified on the same scatter plot in Figure 5, with TDX-U located on the upper-triangular
image section contrarily to TDX-Res/Dense that lies on the lower-triangular part.

Table 5. Numerical comparison with reference methods.Bold numbers correspond to the best for each
input configuration, while blue correspond to the best configuration.

Method β0 θi γTot γVol Recall Prec. F1-Score Acc.

Baseline [11] × × 76.17% 60.34% 67.34% 67.72%
Baseline+ [11] × × 68.23% 74.32% 71.14% 75.82%
Random forest × × 92.24% 55.32% 69.16% 64.06%

TDX-U × × 77.91% 85.62% 81.58% 84.63%

Random forest × × 89.70% 49.40% 63.71% 55.37%
TDX-U × × 80.48% 84.57% 82.48% 85.06%

Random forest × × × 90.28% 61.53% 73.18% 71.09%
TDX-U × × × 84.46% 88.19% 86.29% 88.27%

Random forest × × × 91.93% 60.16% 72.72% 69.88%
TDX-U × × × 82.94% 89.25% 85.98% 88.18%

Random forest × × × × 90.94% 61.19% 73.16% 70.85%
TDX-U × × × × 80.98% 90.97% 85.68% 88.18%
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In Table 5, we compare our best architecture, TDX-U, with the reference methods, differentiating
the analysis with respect to the input configuration. Since the baseline methods apply to the pair
(θi, γVol ) of TanDEM-X by-products, we have also built a CNN model for this case for a fair comparison.
The proposed network outperforms the baseline methods with a large margin using the same input,
with a further gain including other input channels. For other input settings, we compare with random
forest classifiers registering large gains in this case, as well.

4.4. Visual Comparison

Besides numerical evaluation, it is worth to analyse some sample results by visual inspection.
Let us first compare our approach with the baseline methods, therefore assuming the same input
configuration which is the pair (θi, γVol). Three samples representative of different contexts are shown
in Figure 6. The forested areas are highlighted with a green mask that overlays the backscattered SAR
signal β0. The first column shows the ground truth, then the baseline and baseline+ map predictions
are in the middle columns, and our best model using the same input is in the last column. Observe
preliminarly that baseline predicts as forest the water (middle sample) and built-up areas (top and
bottom samples). As already underlined above, γVol does not allow to discriminate forest from these
two classes, and for this reason, in Martone et al. [11], the masked version of baseline, that is baseline+
here, of which the predictions are shown in the third column, was also proposed. The proposed
solution is clearly consistent with the ground truth and with baseline+, although it does not make use
of any external mask. In consideration of the low separability between forest and built-up or water
from γVol , this is a quite surprising achievement. The comparison with the random forest solutions
does not add much information to what has been already seen with the numerical results because
of the large numerical gap registered also with other input configuration; therefore, we skip further
discussions about it for the sake of brevity.

RGB Ground truth Baseline Baseline+ TDX-U

Figure 6. Forest mapping comparison among baseline, baseline+ and TDX-U, using (θi, γVol ) as input.
From the left to the right: optical reference, ground truth, baseline, baseline+ and TDX-U methods.
Correctly classified forest pixels (TP) are shown in green; non-forest pixels erroneously classified as
forest (FP) are in red; and the blue indicates missed forest pixels (FN).
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Let us now concentrate on deep learning models and see what happens with other input
configurations, focusing for simplicity on TDX-U without loss of generality. In Figure 7, we compare
three input settings for the proposed model on the previous running samples. All three configurations
include the incidence angle channel θi, which is concatenated with γVol , β0, or both and are shown in the
second, third, and fourth columns, respectively. The combined use of SAR amplitude and volumetric
decorrelation provides uniformly better results. Similar results are obtained if we replace γVol with γTot

or simply add the latter to the input. In general, the use of β0 seems to improve the accuracy on fine
details, likely because of the coarser resolution of the other input features (see Figure 1).

RGB Ground-truth θi, γVol θi, β0 θi, β0, γVol

Figure 7. Detection results provided by TDX-U using different input settings. From the left to the right:
optical reference, ground truth, TDX-U using (θi, γVol ) , (θi, β0) and (θi, γVol , β0) as input respectively.
Correctly classified forest pixels (TP) are shown in green; non-forest pixels erroneously classified as
forest (FP) are in red; and the blue indicates missed forest pixels (FN).

Finally, in Figure 8, we compare the three proposed models in the best input configuration
according to the numerical results of Table 4, that is (β0, θi, γTot). The U-Net apporach clearly
outperforms the other two in all cases, coherently with the numerical results reported in Table 4.
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RGB Ground-truth TDX-Res TDX-Dense TDX-U

Figure 8. Segmentation results provided by TDX-Res, TDX-Dense, and TDX-U under the best input
configuration: (β0, θi, γTot ). From the left to the right: optical reference, ground truth, TDX-Res,
TDX-Dense, TDX-U. Correctly classified forest pixels (TP) are shown in green; non-forest pixels
erroneously classified as forest (FP) are in red; and the blue indicates missed forest pixels (FN).

5. Conclusions

In this work, we have explored the use of convolutional neural networks for the purpose of
forest mapping from TanDEM-X products. Regardless of the employed CNN building strategy,
results demonstrate that CNNs can effectively fuse input data with heterogeneous dynamics, such as
the SAR backscatter, the interferometric coherence, and the incidence angle. This is likely the most
distinguishing feature of the CNN approach compared to traditional methods [10,11], which only
extract one key feature from the InSAR signal to exclusively exploit it for the classification. CNN have
shown better performance with respect to the pixel-wise random forest algorithm too. In our opinion,
this is due to the ability of CNNs to account for the textural content of the signal that provides
additional discriminative information. Among the considered architectural solutions, U-Net clearly
provides the best performance in terms of accuracy and F1-score. This study opens new research
scenarios showing how to effectively extract information of interest from data acquired by means of
a mission designed mainly for Digital Elevation Model retrieval. Encouraged by the results shown in
this work, our future research will aim to extend the proposed approach to diverse scenarious. In order
to do this, a key enhabling factor will be the collection of a wider and richer dataset for training,
validation, and test that is representative of much diverse climate conditions (boreal, temperate,
tropical, and so forth) and anthropological contexts (rural, industrial, urban, and so on). The use of
additional input features from TanDEM-X or other information sources will also be explored as they
may compensate, to some extent, the lack of referenced data. In addition to the diversity with respect
to climate and cover types, it will be also worth to explore to what extent the proposed approach
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can generalize in resolution in order to enable wide-scale applicability of the method using lower
resolution data.
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