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Abstract: The European Space Agency’s (ESA) “SAR for REDD” project aims to support
complementing optical remote sensing capacities in Africa with synthetic aperture radar (SAR)
for Reducing Emissions from Deforestation and Forest Degradation (REDD). The aim of this study
is to assess and compare Sentinel-1 C-band, ALOS-2 PALSAR-2 L-band and combined C/L-band
SAR-based land cover mapping over a large tropical area in the Democratic Republic of Congo
(DRC). The overall approach is to benefit from multi-temporal observations acquired from 2015 to
2017 to extract statistical parameters and seasonality of backscatters to improve forest land cover
(FLC) classification. We investigate whether and to what extent the denser time series of C- band
SAR can compensate for the L-band’s deeper vegetation penetration depth and known better FLC
mapping performance. The supervised classification differentiates into forest, inundated forest,
woody savannah, dry and wet grassland, and river swamps. Several feature combinations of statistical
parameters from both, single and multi-frequency observations in a multivariate maximum-likelihood
classification are compared. The FLC maps are reclassified into forest, savannah, and grassland (FSG)
and validated with a systematic sampling grid of manual interpretations of very-high-resolution
optical satellite data. Using the temporal variability of the dual-polarized backscatters, in the form of
either wet/dry seasonal averages or using the statistical variance, in addition to the average backscatter,
increased the classification accuracies by 4–5 percent points and 1–2 percent points for C- and L-band,
respectively. For the FSG validation overall accuracies of 84.4%, 89.1%, and 90.0% were achieved for
single frequency C- and L-band, and C/L-band combined, respectively. The resulting forest/non-forest
(FNF) maps with accuracies of 90.3%, 92.2%, and 93.3%, respectively, are then compared to the
Landsat-based Global Forest Change program’s and JAXA’s ALOS-1/2 based global FNF maps.

Keywords: tropical forest; land cover; REDD/MRV; SAR; ALOS PALSAR; ALOS-2 PALSAR-2;
Sentinel-1; MLC

1. Introduction

Tropical forest represents the most important above-ground carbon pool and plays a crucial
role in biodiversity, hydrological and biochemical cycles, and socio-economics for local communities.
Deforestation and forest degradation are estimated to account for up to 17% of the global anthropogenic
greenhouse gas emissions [1]. The forest sector is therefore an important part in climate policies [2] and
the negotiations of the United Nations Framework Convention on Climate Change (UNFCCC) as stated
in Article 5 of the Paris Agreement [3]. The UN initiative, Reducing Emissions from Deforestation and
Forest Degradation, including conservation, sustainable management of forests, and enhancement of
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forest carbon stocks (REDD+), is an effort to create a financial value for the carbon stored in forests and
encourages developing countries to reduce emissions from forested lands and invest in low-carbon
paths to sustainable development [4]. A necessity for the implementation of REDD+ is the development
of consistent and accurate national forest monitoring systems (NFMS) for monitoring, reporting, and
verification (MRV) based on both remote sensing for activity data and in situ measurements for
emission factors [5]. Freely available U.S. Geological Service (USGS) Landsat data and particularly the
Global Forest Change (GFC) data [6] are the baseline of global forest maps and often the main satellite
source in NFMSs because of their 30-year-long acquisition record. Landsat has been used operationally
by the Brazilian Space Agency (INPE) since 1988 in their PRODES and DETER programs to monitor
the Amazon on a yearly and alert system basis [7–9]. Moreover, the World Bank generally encourages
countries to base their forest emission reporting on GFC data.

However, as persistent cloud cover in the tropics prevents reliable observations at most times
with optical satellite sensors, the development of forest monitoring methods with cloud-penetrating
synthetic aperture radar (SAR) is a major research and development topic, specifically in the Group
on Earth Observations Global Forest Observation Initiative (GFOI) [10], to complement and improve
NFMSs [11–13]. Both, C- and L-band SAR have proven to be useful tools to monitor forests in humid
tropics due to their ability to penetrate the cloud cover [14–23]. L-band (1.27 GHz, ~23.6 cm wavelength)
SAR is generally better suited than C-band (5.3 GHz, ~5.6 cm wavelength) since its signal penetrates
deeper into the forest canopy and, thus, also provides more information on biomass [24]. L-band SAR
is still unable to distinguish very high biomass values and its signal saturates at 150–200 t/ha [25]. The
spatial and spatial–temporal variability of forests and the forest structure, due to the seasonality of
e.g. foliage, ground humidity and flooding, have a strong impact on the SAR backscatter [26], forest
mapping [27], and biomass estimation accuracy [28]. Hence, [28] suggested that a 1 ha pixel resolution
would be an ideal scale for mapping biomass. However, [25] showed the potential of multi-frequency
approaches even for highly spatially fragmented and heterogeneous forest. This is the reason why the
European Space Agency (ESA) is planning the BIOMASS mission, to be launched in 2022, carrying an
even-lower-frequency P-band SAR to better map the high-biomass forests [29].

With the launch of Sentinel-1 [30] of the European Union’s Copernicus Program however, the
European Space Agency’s (ESA) C-band SAR has evolved from research satellites into a fully operational
monitoring purpose setup with higher satellite data availability to establish consistent and denser time
series, increased radiometric accuracy, and with a free data policy. L-band SAR data from the Japanese
Space Agency’s (JAXA) Advanced Land Observing Satellites (ALOS and ALOS-2) Phased Array-Type
L-band Synthetic Aperture Radar (PALSAR and PALSAR-2, respectively) is to date only available on a
commercial basis or in limited amounts through research grants. Processed global yearly mosaics and
derived forest/non-forest maps are, however, freely available [31,32].

This study is an outcome of the ESA Data User Element (DUE) Innovator III project “SAR
for REDD”, which has the overall objective to provide synthetic aperture radar pre-processing and
analysis capabilities and tools to users in tropical countries and primarily in Africa that are involved in
REDD initiatives and to demonstrate its usefulness for operational tropical forest monitoring. The
demonstration region of interest (ROI) is the Mai-Ndombe district in the Democratic Republic of
Congo (DRC) and the end user is the Observatoire Satellital des Forêts d’Afrique Centrale (OSFAC,
https://osfac.net/), a Congolese non-governmental organization (NGO). OSFAC’s primary task is to
support the management of natural resources and promote sustainable development by producing
reliable land cover products, distributing satellite data, building capacity, and providing technical
assistance to implementing partners. Among those partners are the environmental ministries of several
Congo Basin countries which are responsible for the REDD implementation and development of
tropical forest monitoring systems in these countries. DRC is involved in the UN REDD program since
2013 [33].

This paper’s main objective is to compare Sentinel-1, ALOS-2 PALSAR-2, and combined C/L-band
SAR-based land cover mapping performances over a large tropical area in DRC and assess whether and
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to what extent the denser time series of C- band SAR can compensate for the L-band’s deeper vegetation
penetration depth. The sub-objectives are to test different combinations of statistical parameters, the
seasonality and different time periods in the supervised multi-variate classification, and to compare
the overall performance with global FNF maps.

2. Materials and Methods

2.1. Region of Interest (ROI): Mai-Ndombe District in DRC

The Mai-Ndombe district is located in the Bandundu Province in the west of DRC, bordering the
Congo River and the Republic of Congo. The area is very rich in biodiversity and endemic species
(Bonobo). However, for many years this area has been facing high rates of deforestation and forest
degradation caused by charcoal production for cities, especially due to the proximity of the capital
Kinshasa, slash and burn agriculture, and industrial logging. The district covers an area of 128,789 km2

with its center geographical coordinates around [18◦31′E; 2◦42”S].
It is part of the humid tropics with primary and secondary forests, interspersed by swamp forest

in humid lowlands and wet meadows, inundated forests in proximity of waterbodies, especially in
the north, and savannahs predominantly in upland areas. There is a distinctive dry season from June
to September, followed by the rainy season until December. The region has a north–south humidity
gradient with the south being drier. Figure 1 shows the location of the Mai-Ndombe district and an
overview of the very-high-resolution (VHR) data for validation.
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Figure 1. (a) Location (red rectangle) in the Democratic Republic of Congo (DRC) (from 
http://forestindustries.eu/) and (b) border (red line) of the Mai-Ndombe district superimposed on a 
Sentinel-1 mosaic over the whole area and locations of very-high-resolution (VHR) optical validation 
data from SPOT-5 and the SPOT Pleiades satellites [contains information © Centre National D'Etudes 
Spatiales (CNES) (2015,2016) and Airbus DS (2015/2016)] . Lake Mai-Ndombe is the big black area in 
the center. 

2.2. Satellite Data  

The study is based on C- and L-band space-borne SAR data. C-band SAR data is from the CSAR 
sensor on the operational satellites Sentinel-1A and 1B (S1A and S1B) [34] from the European 
Copernicus program. L-band SAR is from the Phased Array type L-band SAR (PALSAR-1 and -2) 
[35,36] on the Advanced Land Observing Satellites (ALOS-1 and -2) from the Japan Aerospace 
Exploration Agency (JAXA).  

2.2.1. Sentinel-1 A and B CSAR (2015–2017) 

The two identical S1A and S1B have been launched on 3 April 2014 and 25 April 2016, 
respectively, circumnavigating the whole earth on a 12 day repeat cycle. Data over the ROI are 
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Figure 1. (a) Location (red rectangle) in the Democratic Republic of Congo (DRC) (from
http://forestindustries.eu/) and (b) border (red line) of the Mai-Ndombe district superimposed on a
Sentinel-1 mosaic over the whole area and locations of very-high-resolution (VHR) optical validation
data from SPOT-5 and the SPOT Pleiades satellites [contains information© Centre National D’Etudes
Spatiales (CNES) (2015,2016) and Airbus DS (2015/2016)]. Lake Mai-Ndombe is the big black area in
the center.

2.2. Satellite Data

The study is based on C- and L-band space-borne SAR data. C-band SAR data is from the
CSAR sensor on the operational satellites Sentinel-1A and 1B (S1A and S1B) [34] from the European
Copernicus program. L-band SAR is from the Phased Array type L-band SAR (PALSAR-1 and
-2) [35,36] on the Advanced Land Observing Satellites (ALOS-1 and -2) from the Japan Aerospace
Exploration Agency (JAXA).
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2.2.1. Sentinel-1 A and B CSAR (2015–2017)

The two identical S1A and S1B have been launched on 3 April 2014 and 25 April 2016, respectively,
circumnavigating the whole earth on a 12 day repeat cycle. Data over the ROI are covered only by
descending paths 109, 036, and 138 and acquired only by S1A on a 12 day revisiting cycle (Figure 2).
Prior to October 2016, paths 036 and 138 were only acquired sporadically. The Sentinel-1 data set
processed in this study covers the period April 2015–December 2017 with acquisitions in dual polarized
interferometric wide swath mode (IW) processed at Ground Range Detected (GRD) level-1 freely
available from the Copernicus Open Access Hub (https://scihub.copernicus.eu/). The dual polarization
is in VV and VH, i.e. emitted in vertical (first V) and received (second V/H) in vertical and horizontal
(H) polarization.
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Figure 2. Sentinel-1 coverage with paths 109, 036, and 138 over the Mai Ndombe district.

2.2.2. ALOS PALSAR (2007–2010) and ALOS-2 PALSAR-2 (2015–2017)

ALOS-2 PALSAR-2 [36] was launched on 24 May 2014 as a follow up mission of ALOS PALSAR [35]
that was operational from 2006 to 2011.

The processed mode in this study acquired over the ROI is the fine beam dual (FBD) strip map
mode in HH and HV polarization. PALSAR-2 data is used for direct comparison and combined used
with Sentinel-1 data, whereas PALSAR is used in comparison as a historical reference as it turned
out to be better calibrated than PALSAR-2. PALSAR-2 calibration has been updated on 28 March
2017 [37]. However, 2015 and 2016 data from ALOS-2 have been acquired prior to the update. JAXA’s
correction values have been applied during the pre-processing stage but did not fully correct for the
calibration error.

In all, 347 PALSAR and 196 PALSAR-2 FBD scenes have been acquired, covering each pixel
5–7 times and 3–6 times, respectively (Figure 3), not considering overlap between neighboring scenes.
PALSAR data have been provided in level 1.1 by both ESA and JAXA, whereas PALSAR-2 level-1.1
data has been provided only by JAXA. Both PALSAR (/-2) acquisition plans gave priority to the dry
season, but for each sensor at least one measurement per pixel has been acquired over the wet season.
Although ALOS and ALOS-2 are commercial satellite programs, this project benefited from several
research data grants (see Acknowledgements) and nearly all PALSAR (/-2) FBD acquisitions from
ascending orbits were available in this study.

https://scihub.copernicus.eu/
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Figure 3. (a) Phased Array-Type L-band Synthetic Aperture Radar (PALSAR) and (b) PALSAR-2 data
acquired for this study. The number of acquisitions corresponding to the gray scales are indicated, not
considering overlapping areas that appear white.

2.3. Pre-Processing and Mosaicking

Since the 1990s, Norut (now NORCE) has developed its in-house Generic SAR processing system,
called GSAR [38], that has been used for pre-processing as well as to extract the statistical parameters
for each pixel over a given data stack/time period.

All SAR data were first geocoded, radiometrically calibrated, terrain and slope corrected [39]
on the same 30 m Universal Transverse Mercator (UTM) grid of zone 34S into gamma naught (γ◦)
backscatter for both, co- and cross-polarized bands (γ◦[copol] and γ◦[xpol]), i.e., VV and VH for
Sentinel-1 and HH and HV for PALSAR and PALSAR-2. The 1 arc-second (~30 m resolution) digital
surface model (DSM) from the Shuttle Radar Topography Mission (SRTM) [40,41] from the year 2000
was used for the pre-processing. Since the topography of the Mai-Ndombe district does not include
high mountains and only a few steep slopes, the pixels affected by topographic-induced SAR shadow
or overlay are negligible. Furthermore, ALOS-2 data from 2015 and 2016 have been corrected for
JAXA’s initial error in radiometric calibration factors given in the data according to [37].

Following the pre-processing, all SAR data were statistically analyzed with the GSAR software
suite establishing mean and variance images of γ◦ for each polarization band and each single-year and
multi-year period in 2007–2010 for PALSAR and 2015–2017 for Sentinel-1 and PALSAR-2. Mean γ◦

images were also established for the wet and dry seasons using all October–May and June–September
scenes, respectively. The normalized difference index (NDI) bands were calculated with the mean
images by

NDI =
γ◦[copol] − γ◦[xpol]
γ◦[copol] + γ◦[xpol]

. (1)

Figure 4 illustrates the five image bands that are available as features in a multi-variate classification
for each sensor and time period.

Mean dual-polarized mosaics are represented in red–green–blue channels as RGB = [γ◦[copol];
γ◦[xpol]; NDI]. Figure 5 shows the multi-year averaged mosaics for PALSAR (2007–2010), PALSAR-2
(2015–2017), and Sentinel-1 (2015–2017) along with an optical Landsat-8 mosaic as reference. Averages
based on data from the wet season show significantly different backscatter signatures compared to
averages based on the dry season in some areas, especially those with less vegetation. This has been
shown to be the case even on a global scale on a 0.05 decimal degree grid by [27]. The cause of this is
due to the differences in ground humidity, flooding, and vegetation foliage. Examples of such different
signatures for both C- and L-band SAR are shown in Figure 6, which is a detailed view of the red
rectangle in Figure 5. Although the dry season is in general very distinctive, the wetness and soil
humidity of the rest of year is hard to quantify because of different acquisition times and specifically
few acquisitions during the wet season from PALSAR and PALSAR-2. Furthermore, climate change
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makes the historically established seasonal periods less reliably defined. A different approach to use
the seasonal variability is therefore to use the variance of each pixel of the whole time series instead of
specific seasons. Figure 7 shows the yearly averaged mosaics and RGB composites representing the
variance of co- and x-pol backscatters and γ◦[co-pol]. These variables are used in different multi-variate
combinations in a maximum-likelihood classification (MLC) [39] for forest land cover.

Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 20 

 

Figure 3. (a) Phased Array-Type L-band Synthetic Aperture Radar (PALSAR) and (b) PALSAR-2 data 
acquired for this study. The number of acquisitions corresponding to the gray scales are indicated, 
not considering overlapping areas that appear white. 

In all, 347 PALSAR and 196 PALSAR-2 FBD scenes have been acquired, covering each pixel 5–7 
times and 3–6 times, respectively (Figure 3), not considering overlap between neighboring scenes. 
PALSAR data have been provided in level 1.1 by both ESA and JAXA, whereas PALSAR-2 level-1.1 
data has been provided only by JAXA. Both PALSAR (/-2) acquisition plans gave priority to the dry 
season, but for each sensor at least one measurement per pixel has been acquired over the wet season. 
Although ALOS and ALOS-2 are commercial satellite programs, this project benefited from several 
research data grants (see Acknowledgements) and nearly all PALSAR (/-2) FBD acquisitions from 
ascending orbits were available in this study. 

2.3. Pre-Processing and Mosaicking 

Since the 1990s, Norut (now NORCE) has developed its in-house Generic SAR processing 
system, called GSAR [38], that has been used for pre-processing as well as to extract the statistical 
parameters for each pixel over a given data stack/time period.  

All SAR data were first geocoded, radiometrically calibrated, terrain and slope corrected [39] on 
the same 30 m Universal Transverse Mercator (UTM) grid of zone 34S into gamma naught (γ°) 
backscatter for both, co- and cross-polarized bands (γ°[copol] and γ°[xpol]), i.e., VV and VH for 
Sentinel-1 and HH and HV for PALSAR and PALSAR-2. The 1 arc-second (~30 m resolution) digital 
surface model (DSM) from the Shuttle Radar Topography Mission (SRTM) [40,41] from the year 2000 
was used for the pre-processing. Since the topography of the Mai-Ndombe district does not include 
high mountains and only a few steep slopes, the pixels affected by topographic-induced SAR shadow 
or overlay are negligible. Furthermore, ALOS-2 data from 2015 and 2016 have been corrected for 
JAXA’s initial error in radiometric calibration factors given in the data according to [37]. 

Following the pre-processing, all SAR data were statistically analyzed with the GSAR software 
suite establishing mean and variance images of γ° for each polarization band and each single-year 
and multi-year period in 2007–2010 for PALSAR and 2015–2017 for Sentinel-1 and PALSAR-2. Mean 
γ° images were also established for the wet and dry seasons using all October–May and June–
September scenes, respectively. The normalized difference index (NDI) bands were calculated with 
the mean images by  𝑁𝐷𝐼 ൌ ஓ°ሾୡ୭୮୭୪ሿ ି ஓ°ሾ୶୮୭୪ሿஓ°ሾୡ୭୮୭୪ሿ ା ஓ°ሾ୶୮୭୪ሿ. (1) 

Figure 4 illustrates the five image bands that are available as features in a multi-variate 
classification for each sensor and time period. 

 

Figure 4. Illustration of the five available image bands per sensor, (left) Sentinel-1 and (right) ALOS-2
PALSAR-2 and period; mean(γ◦[co-pol]), mean(γ◦[x-pol]), normalized difference index (NDI), and
variances (var(γ◦[co-pol]), and var(γ◦[x-pol]).

Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 20 

 

Figure 4. Illustration of the five available image bands per sensor, (left) Sentinel-1 and (right) ALOS-
2 PALSAR-2 and period; mean(γ°[co-pol]), mean(γ°[x-pol]), normalized difference index (NDI), and 
variances (var(γ°[co-pol]), and var(γ°[x-pol]).  

Mean dual-polarized mosaics are represented in red–green–blue channels as RGB = [γ°[copol]; 
γ°[xpol]; NDI]. Figure 5 shows the multi-year averaged mosaics for PALSAR (2007–2010), PALSAR-
2 (2015–2017), and Sentinel-1 (2015–2017) along with an optical Landsat-8 mosaic as reference. 
Averages based on data from the wet season show significantly different backscatter signatures 
compared to averages based on the dry season in some areas, especially those with less vegetation. 
This has been shown to be the case even on a global scale on a 0.05 decimal degree grid by [27]. The 
cause of this is due to the differences in ground humidity, flooding, and vegetation foliage. Examples 
of such different signatures for both C- and L-band SAR are shown in Figure 6, which is a detailed 
view of the red rectangle in Figure 5. Although the dry season is in general very distinctive, the 
wetness and soil humidity of the rest of year is hard to quantify because of different acquisition times 
and specifically few acquisitions during the wet season from PALSAR and PALSAR-2. Furthermore, 
climate change makes the historically established seasonal periods less reliably defined. A different 
approach to use the seasonal variability is therefore to use the variance of each pixel of the whole 
time series instead of specific seasons. Figure 7 shows the yearly averaged mosaics and RGB 
composites representing the variance of co- and x-pol backscatters and γ°[co-pol]. These variables 
are used in different multi-variate combinations in a maximum-likelihood classification (MLC) [39] 
for forest land cover. 

 

 
Figure 5. (a) ALOS PALSAR, (b) ALOS-2 PALSAR-2, and (c) Sentinel-1 multi-year mosaics over Mai-
Ndombe. (d) The same area observed with optical Landsat-8 as reference (Global Forest Change 
(GFC) data v1.5) [6]. The red and cyan rectangles show areas that are enlarged in following figures. 

Figure 5. (a) ALOS PALSAR, (b) ALOS-2 PALSAR-2, and (c) Sentinel-1 multi-year mosaics over
Mai-Ndombe. (d) The same area observed with optical Landsat-8 as reference (Global Forest Change
(GFC) data v1.5) [6]. The red and cyan rectangles show areas that are enlarged in following figures.
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2.4. Maximum-Likelihood Classification into Forest and Land Covers (FLC)

During fieldwork in March 2013 northwest of Lake Mai-Ndombe [42], several areas that could be
directly compared to SAR signatures were identified. Based on these observations and VHR optical
data from GoogleEarth and RapidEye satellites, shapefile polygons of homogeneous training areas for
six different land cover classes were assigned and used for a supervised MLC [43]. The six forest land
cover (FLC) classes identified are forest, inundated forest, savannahs, predominantly dry grassland,
predominantly wet grassland, and river swamps. Figure 8 shows examples of such areas that were
recognized. A new water mask was constructed by using existing water mask shapefiles of lakes and
rivers, the water mask extracted from the Facet Atlas [44], and by thresholding the cross-polarized
SAR data.
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Figure 8. Assignment of (a) Lamdsat-8 (optical), (b) Sentinel-1 C-band SAR and (c) ALOS-2 PALSAR-2
L-band SAR backscatter signatures to the six different land cover classes observed during field work in
March 2013 in the northwest of Lake Mai-Ndombe, cyan rectangle in Figure 5c. Contains modified
Copernicus Sentinel-1 data 2015–2017, ALOS-2 PALSAR-2 [original data © JAXA 2015–2017], and
Landsat-8 data [original data© NASA/U.S. Geological Service (USGS), processed by GFC v1.5] [6].

The MLC has been chosen for classification because of several reasons; among those are: MLC
is based on probability calculations assuming a Gaussian distribution of the signature for each class,
which simplifies future operational implementation and allows for automatic use once the signatures
are known for each class and variable; MLC is a general and widely distributed tool in most geographic
information system (GIS) and image processing software and the results should therefore be easily
reproducible; MLC [45] performed clearly better compared to all, but neural network classifier (NNC),
supervised classification methods from the ENVI software (https://www.harrisgeospatial.com/Software-
Technology/ENVI) suit that have been test run for this study. The NNC results were very similar to
MLC results in accuracy. The calculated probabilities easily allow assigning super classes when the
reference validation data does not include all six classes. All classification results have then been
filtered with a 3 × 3 pixel majority window, so that less than five adjacent forest pixels, a minimum of
0.45 ha, would not be considered as forest according to the 0.5 ha forest area definition

https://www.harrisgeospatial.com/Software-Technology/ENVI
https://www.harrisgeospatial.com/Software-Technology/ENVI
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The aim of the study is to investigate different combination of variables in a multi-variate MLC
classification from single C-/L-band and multi-frequency, C-, and L-band combined. The different
combinations of variables are based on:

1. The yearly averaged SAR backscatters, i.e., the three variables per sensor; mean(γ◦[copol2017]),
mean(γ◦[xpol2017]), and NDI2017 for the year 2017.

2. The multi-year averaged SAR backscatters, i.e., the three variables per sensor
mean(γ◦[copol2015–2017]), mean(γ◦[xpol2015–2017]), and NDI2015–2017 for the years 2015–2017.

3. The seasonally averaged backscatter for the dry and wet seasons, i.e., four variables per sensor;
mean(γ◦[copoldry]), mean(γ◦[xpoldry]), mean(γ◦[copolwet]), and mean(γ◦[xpolwet]).

4. The statistical parameters mean and variance from the three-year period 2015–2017, four
variables per sensor; mean(γ◦[copol2015–2017]), mean(γ◦[xpol2015–2017]), var(γ◦[copol2015–2017]),
and var(γ◦[xpol2015–2017]).

2.5. Validation and Inter-Comparison Approach

The general approach to estimate the accuracy and quantifying uncertainty of land cover maps is
done by comparing the produced maps with a reference sample data set via a confusion matrix [46].
The main purpose in our case is however to inter-compare the different combinations of variables
in the MLC. As reference data set, three Pléiades images, two from 19 and one from 21 November
2016 (© Centre National D’Etudes Spatiales (CNES)/AirbusDS) in 50 cm resolution and a SPOT-5
scene (©CNES) dated 25 June 2015 in 5 m resolution from the SPOT5-Take5 program were made
available through ESA and the Centre National D’Etudes Spatiales (CNES) (Figure 9). We follow
the approach of [47] based on a systematic sampling grid. As we have trained the MLC with in situ
knowledge, RapidEye imagery from 2013, and GoogleEarth, the SPOT5 and Pléiades VHR data are
independent and solely used for validation. The Pléiades images cover an area of about 1000 km2 each
and have been sampled on a regular 2.1 km grid for visual interpretation. The SPOT-5 scene covers
an area of about 3600 km2 and has been sampled on a 4.2 km grid. The FLC maps include six land
cover/vegetation classes. A reliable manual interpretation from optical satellite images did in general
not allow a better differentiation than into forest, savannah, and grassland (FSG) as the other classes
were not abundant in the VHR images and difficult to interpret visually. The samples where therefore
interpreted manually into FSG samples considering the majority of each land cover in a square area of
0.5 ha, i.e., a 70 m × 70 m square, following the forest definition. In total, 924 samples were interpreted:
709 forest, 144 savannah, and 71 grassland samples.

Hence, we first reclassified the FLC land cover maps of the MLC into three-classes FSG maps;
forest therefore includes the original “forest” and “inundated forest” class, grassland includes the dry
and wet grassland classes and to reclassify “river swamp”, we choose the forest, savannah, or grassland
class with the highest probability from the MLC. For the final forest/non-forest (FNF) validation,
savannah and grassland are considered as non-forest. As a final step, all classification in 30 m resolution
are filtered with a 3 × 3-pixel majority window.



Remote Sens. 2019, 11, 2999 10 of 19Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 20 

 

 
Figure 9. Position of the VHR reference data: three Pléiades images (red rectangles), from 19 and 21 
November 2016 (©CNES/AirbusDS) and a SPOT-5 scene (©CNES) dated 25 June 2015. 

3. Results 

The MLC was applied on each SAR sensor dataset alone, PALSAR (2007–2010) as a historic 
reference, PALSAR-2, Sentinel-1, and on a combined PALSAR-2/Sentinel-1 data set (2015–2017) with 
the four combinations of variables described in Section 2.4. Figure 10 shows a comparison of the 
results from Sentinel-1, ALOS-2, and Sentinel-1/ALOS-2 combined using the multi-year statistical 
parameters, mean and variance, of the co- and cross-polarization backscatters γ°. As Table 1 shows, 
this feature combination gave in general the highest accuracies. 

 
  

Figure 9. Position of the VHR reference data: three Pléiades images (red rectangles), from 19 and
21 November 2016 (©CNES/AirbusDS) and a SPOT-5 scene (©CNES) dated 25 June 2015.

3. Results

The MLC was applied on each SAR sensor dataset alone, PALSAR (2007–2010) as a historic
reference, PALSAR-2, Sentinel-1, and on a combined PALSAR-2/Sentinel-1 data set (2015–2017) with
the four combinations of variables described in Section 2.4. Figure 10 shows a comparison of the results
from Sentinel-1, ALOS-2, and Sentinel-1/ALOS-2 combined using the multi-year statistical parameters,
mean and variance, of the co- and cross-polarization backscatters γ◦. As Table 1 shows, this feature
combination gave in general the highest accuracies.

The left panel of Figure 10 shows that Sentinel-1 results can be quite noisy in the forested areas.
The reason for this could be that C-band SAR penetrates only a little in the canopy and its signature
therefore reflects also height differences in the upper canopy surface in inhomogeneous mixed forest
that L-band will not see as it penetrated deeper in the canopy and will smooth out the canopy surface
effects. C-band however seems to better distinguish lower biomass land covers, such as savannah,
wet, and dry grassland up to a certain biomass level, above which C-band will saturate and classify as
forest. Somewhat surprisingly, it seems that C-band also distinguishes inundated forest from forest
better than L-band does. This could be due to this specific type of inundated forest, which might be a
much lower biomass forest than the surrounding tropical forest. This still needs further investigation.
The black arrow in the PALSAR-2 result indicates a vast misclassification area into river swamp in
a particular satellite path which we anticipate is mainly due to the calibration factor error in 2015
and 2016 ALOS-2 data or do to the low ALOS-2 coverage during the wet seasons. The use of both
sensors, ALOS-2 and Sentinel-1 (right panel in Figure 10), clearly seems to better distinguish the land
cover areas, smoothing out the noise in forest areas of Sentinel-1 and still keeping a better distinction
between savannah, wet, and dry grassland. Figure 11 shows the derived FSG and FNF results from the
same MLC variable combination and enlarged area as in Figure 10.
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Figure 11. (Upper panels) Forest, savannah, and grassland (FSG) and (lower panels) forest/non-forest
(FNF) results derived from the MLC results for Sentinel-1, ALOS-2, and Sentinel-1/ALOS-2 combined
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Table 1. Summary of the accuracy assessment and comparison of the results of the MLC performed
on single sensors and multi-sensors with different combination of variables. Best results are marked
in shadow.

Sensor Variable Combination Year(s) Accuracy
Kappa FSG FNF

ALOS PALSAR
(L-band)

Single year
Mosaic

2010
Accuracy 88.10 91.23

Kappa 0.65 0.73
Multi-year

Mosaic
2007–2010

Accuracy 89.07 91.34
Kappa 0.68 0.73

Seasonal (dry/wet)
Mosaics

2007–2010
Accuracy 89.72 91.88

Kappa 0.71 0.76
HH/HV Statistics
(mean, variance) 2007–2010

Accuracy 90.04 92.21
Kappa 0.71 0.76

ALOS-2 PALSAR-2
(L-band)

Single year
Mosaic

2017
Accuracy 89.61 92.21

Kappa 0.69 0.76
Multi-year

Mosaic
2015–2017

Accuracy 89.61 92.42
Kappa 0.69 0.76

Seasonal (dry/wet)
Mosaics

2015–2017
Accuracy 89.07 91.77

Kappa 0.69 0.75
HH/HV Statistics
(mean, variance) 2015–2017

Accuracy 89.07 92.21
Kappa 0.70 0.77

Sentinel-1
(C-band)

Single year
Mosaic

2017
Accuracy 79.33 83.87

Kappa 0.42 0.52
Multi-year

Mosaic
2015–2017

Accuracy 79.22 83.98
Kappa 0.42 0.53

Seasonal (dry/wet)
Mosaics

2015–2017
Accuracy 83.87 90.26

Kappa 0.55 0.71
VV/VH statistics
(mean, variance) 2015–2017

Accuracy 84.42 89.94
Kappa 0.54 0.69

ALOS-2 Palsar-2
(L-band)
+

Sentinel-1
(C-band)

Single year
Mosaic

2017
Accuracy 87.77 92.01

Kappa 0.64 0.76
Multi-year

Mosaic
2015–2017

Accuracy 89.29 92.42
Kappa 0.70 0.77

Seasonal (dry/wet)
Mosaics

2015–2017
Accuracy 89.83 92.97

Kappa 0.72 0.80
HH/HV/VV/VH Statistics

(mean, var) 2015–2017
Accuracy 90.04 93.29

Kappa 0.72 0.80

The FSG and FNF results shown in Figure 11 and the corresponding results from all different
applied variable combinations have been validated according to the approach described in Section 2.5.
and are presented in Table 1. The different feature combinations using Sentinel-1 data have accuracies
of 82% ± 3% with a kappa of 0.48% ± 0.07% and 87% ± 4% (kappa of 0.61 ± 0.1) for FSG and FNF,
respectively. For the L-band SAR data, both from ALOS and ALOS-2, FSG accuracies are around
90% ± 1% (kappa 0.68 ± 0.03) and FNF accuracies are around 92% ± 1% (kappa 0.75 ± 0.02). For
Sentinel-1 data, where we have continuous time series on a 12-day cycle, the use of temporal variability,
either by dividing into a wet and dry data set or by using the variance over the whole data set improves
the FSG and FNF classification results significantly by about 5–6 percent points and increasing kappa
from 0.42 to 0.55 and from 0.52 to 0.70, respectively. For L-band SAR, which is in general clearly
better suited for forest and land cover classification, using the variability improves the results only by
1–2 percent points for ALOS. For ALOS-2, there is no improvement, i.e., an insignificant decrease and
increase in accuracy and kappa, respectively. We assume that the main reason that there has been no
improvement by using multi-year data including differentiating wet and dry seasons and statistics
compared to only 2017 data is due to (1) the radiometric correction issue for 2015 and 2016 data and (2)
that, also valid for ALOS, ALOS-2 acquisitions have a strong acquisition focus on the dry season, and
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much less acquisitions per pixel in general which could be the main reason for the quite stable results.
This will be further discussed in Section 4.

Tables 2 and 3 show the confusion matrixes for the FSG and FNF classification using the Sentinel-1
and ALOS-2 co- and cross polarized 2015–2017 average backscatters and their variances (last line in
Table 1). They indicate that there is a tendency to classify into higher biomasses, i.e., grassland toward
savannah and savannah toward forest) and the producer accuracy increases with higher biomass
classes. However, there seems to be no strong bias in the user accuracies. Note that majority filtering
took place after classifying FNF from FSG, and Table 3 is therefore not directly derived from Table 2.

Table 2. FSG confusion matrix using Sentinel-1 and ALOS-2 co- and cross-polarized 2015–2017 average
backscatters and variances.

Overall acc.: 90.04%
Kappa: 0.72

Reference VHR

Forest Savannah Grassland Total User Acc.

Sentinel-1
/ALOS-2

Forest 697 40 11 748 93.18%

Savannah 10 98 23 131 74.81%

Grassland 2 6 37 45 82.22%

Total 709 144 71 924

Prod. Acc 98.31% 68.06% 52.11%

Table 3. FNF confusion matrix using Sentinel-1 and ALOS-2 co- and cross-polarized 2015–2017 average
backscatters and variances.

Overall acc.: 93.29%
Kappa: 0.80

Reference VHR

Forest Non-Forest Total User Acc.

Sentinel-1
/ALOS-2

Forest 697 50 747 93.31%

Non-Forest 12 165 177 93.22%

Total 709 215 924

Prod. Acc 98.31% 76.74%

4. Discussion

4.1. Inter-Comparison between Single and Multi-Frequency SAR Results

In agreement with earlier studies, it is no surprise that the results reflect that L-band SAR is in
general better suited for forest mapping than C-band SAR as C-band SAR saturates at much lower
biomass vegetation than L-band. The results however show that the use of statistics of the better
temporal resolution of C-band Sentinel-1 time series acquisition compared to less frequent L-band
PALSAR can make up for about half of the difference in accuracies.

The general impression for all SAR sensors is that temporal filtering to reduce speckle and single
acquisition conditions improves classification results. As long as we can also neglect inter-annual forest
change compared to the mapping errors for example when building a baseline forest map, integration
over a multi-year time period for data sets with very few yearly acquisitions, like PALSAR-1 and -2,
also improves the results. This is especially the case if the temporal resolution of the data series does
not even resolve the seasonality between dry and wet periods. Dividing a data stack into specific
seasonal averaged products or extracting the statistics, even if that requires a multi-year period, clearly
increases the accuracy and kappa value. This shows clearly in the PALSAR-1 and Sentinel-1 results,
with improved accuracies of 1–2 percent points and 4–5 percent point, and improved kappa values by
about 0.05 and 0.1, respectively. We assume that the reason why this does not show in the PALSAR-2
results is partly because of the calibration issue of 2015 and 2016 PALSAR-2 level 1.1 products, as well
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as the fact that PALSAR-2 acquisitions are too few (3–6 acquisitions per pixel) to define significant
statistical values. Unfortunately, our available PALSAR-2 acquisitions in 2017 did not allow for a
division into wet and dry mosaics over the whole area. All four PALSAR-2 feature combinations show
therefore very similar results.

The temporal resolution of Sentinel-1 acquisitions of 12 days, i.e., 30 acquisitions per year, would
probably allow integrating the data set also over a single year instead of a multi-year period to clearly
detect seasonal differences and extract significant statistical values. For comparability with the L-band
data set however, this has not been studied in detail, but the slightly better results of the 2017 averaged
mosaics versus the 2015–2017 averaged mosaics clearly support this assumption.

In general, our approach to either use seasonal averages or statistics (mean and variance) is very
similar as we assume that the main variance of SAR signatures is due to differences in humidity
and foliage, especially in low vegetated areas, and results therefore should be and are very similar.
Although, it seems that using the yearly statistical values, mean backscatter and variance, gives slightly
better results. As the locals of the region reported to us during the field campaign that the rainy and
dry season patterns have changed in their occurrence during the year, probably due to climate change,
our definition of wet and dry seasons, based on historic weather observations might not correctly
apply and even less in the future. The variability between wet and dry conditions might therefore be
better reflected with statistical parameters instead, or each observation would need to be confirmed
individually by meteorological observation.

In this study, we have only taken temporal statistics into account and not textural statistics in
space which would have reduced our spatial resolution. The temporal resolution of Sentinel-1 could
even allow to consider other statistical parameters, for example different percentiles and the temporal
distribution of SAR signatures. Such dense time series are of course also better suited to clearly detect
and confirm changes with time series analysis tools such as the Bfast algorithm [19,48]. A more specific
study of the backscatter time series and seasonality could also be of particular interest in regard to
forest ecology or physiology but is beyond the scope of this paper.

The highest accuracies are obtained when combining C- and L-band in a multi-frequency approach.
Nevertheless, the results show that C-band does not seem to improve the L-band results when only
using yearly or multi-year mosaics without using the seasonality or statistics. When C-and L-band are
combined, it is clear that the Sentinel-1’s strength lies in the dense time series, and that their temporal
statistics and the multi-seasonal division are the main reasons of the improvements in accuracies
compared to L-band ALOS-2 alone. Both the FSG and the FNF maps improve by about one percent
point combining C- and L-band SAR compared to L-band alone.

4.2. Comparision with Global Forest Maps

A main reference data set for forest and forest change maps is the GFC program [6] based on the
Landsat archive. It is also the data set that is widely used to establish baseline forest reference maps for
the carbon emission reporting in REDD+ programs. JAXA provides yearly forest maps based on ALOS
and ALOS-2 [31,32]. Both data sets have been validated with the same VHR data set and compared to
our SAR results (Table 4). According to the final DRC Emission Reductions Program Document from
2016 [49], the forest definition has been set to a minimum crown cover of 30%, minimum land area
0.5 ha, and minimum tree height of 3 m. However, in the Emission Reductions Program Idea Note
(ERPIN) [50] and based on [6], forest (primary and secondary) is defined with a crown cover higher
than 50% and woodland, defined as crown cover of 26%–50%, is defined as non-forest. Our validation
shows clearly that a crown cover higher than 50% corresponds better to a forest definition than a
minimum crown cover of 30% in GFC data. Table 4 summarizes the accuracy assessment of these two
global forest maps compared to our SAR-based results. Shimada [51] reported global accuracies for
ALOS-2 forest maps of 88.21% and 87.77% for the years 2015 and 2016, respectively, which are in good
agreement with our validation results.



Remote Sens. 2019, 11, 2999 15 of 19

Table 4. Summary of the accuracy assessment of global forest maps from GFC (Landsat) and JAXA
(ALOS-2) compared to this study’s best results of each SAR sensor individually and combined.

Sensor Method Year(s) Accuracy
Kappa FNF

Landsat-7
50% tree cover
GFC v1.5 [6] 2010

Accuracy 88.64%
Kappa 0.64

Landsat-8
50% tree cover

2016
Accuracy 89.07%

GFC v1.5 [6] Kappa 0.68

Landsat-8
30% tree cover
GFC v1.5 [6] 2016

Accuracy 81.28%
Kappa 0.35

ALOS PALSAR JAXA [32] 2010
Accuracy 87.88%

Kappa 0.61
ALOS-2

PALSAR-2
JAXA [32] 2015

Accuracy 87.65%
Kappa 0.59

ALOS PALSAR
HH/HV Statistics
(mean, variance) 2007–2010

Accuracy 92.21%
Kappa 0.76

ALOS-2
PALSAR-2

HH/HV Statistics
(mean, variance) 2015–2017

Accuracy 92.21%
Kappa 0.77

Sentinel-1
(C-band)

Seasonal dry/wet mosaics 2015–2017
Accuracy 90.26%

Kappa 0.71

ALOS-2 and S1
HH/HV/VV/VH Statistics

(mean, var) 2015–2017
Accuracy 93.29%

Kappa 0.80

5. Conclusions

This study compared forest land cover maps from single (C- and L-band) and multi-frequency
satellite SAR data applying different feature combination in a supervised MLC. The SAR results and
global forest maps from GFC and JAXA were then validated with the same sampled and visually
interpreted VHR optical satellite data and compared. The accuracy assessment shows that C-, L-, and
C/L-band combined all achieved FNF map accuracies above 90% and higher accuracies than global
forest maps from both Landsat [6] and ALOS-2 [32]. A few yearly observations with L-band SAR
still give higher accuracies than dense time series of C-band Sentinel-1, but it is clear that the dense
time series and the operational acquisition plan of Sentinel-1 provides an enormous improvement,
showing that Sentinel-1 can be used complementarily and interoperable to optical data for forest
mapping. Forest–savannah–grassland and FNF classification with L-band SAR are about 6 percent
points and 2 percent point more accurate than with C-band, respectively. However, the combination of
C- and L-band combined shows that C-band can improve L-band results to obtain accuracies of 90.04%
(kappa of 0.72) and 93.29% (kappa of 0.80) for FSG and FNF classifications, respectively. The results
also indicate that using temporal statistics, at least mean and variance, considerably improves the
accuracies. They can be used instead of a seasonal separation of data stacks, especially if the seasons
are either not clearly defined, have strong inter-annual variations, are not known, or might have shifted
because of climate change. Without any doubt, dense data stacks of L-band, representing all seasons
with clear statistics will further increase the potential of SAR classification of forest land cover and
even for sub-classes dividing into different vegetation types. The ESA L-band SAR candidate mission
ROSE-L [52] should therefore be of high interest for the land cover science community, especially in
the tropics and high latitudes with persistent cloud cover.
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