Automatic Extraction of Built-Up Areas from Very High-Resolution Satellite Imagery Using Patch-Level Spatial Features and Gestalt Laws of Perceptual Grouping
Abstract
:1. Introduction
2. Proposed Method
2.1. Generating Candidate Patches of Built-Up Areas by Corner Constraint
2.2. Representating Each Patch as a Feature Vector Using Integrated High-Frequency Wavelet Coefficients.
2.3. Modeling Saliency of Patches by Incorporating Gestalt Laws of Perceptual Grouping
- (1)
- Proximity means that elements tend to be perceived as a whole if they are close to each other.
- (2)
- Similarity means that elements tend to be grouped together if they share similar appearance of visual features.
2.4. Performing Saliency Map Thresholding and Refining the Boundaries of Built-Up Areas
3. Experiments and Analysis
3.1. Datasets and Evaluation Metrics
3.2. Tests on Parameter Values
3.3. Results and Performance Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mboga, N.; Persello, C.; Bergado, J.R.; Stein, A. Detection of informal settlements from VHR images using convolutional neural networks. Remote Sens. 2017, 9, 1106. [Google Scholar] [CrossRef] [Green Version]
- Pesaresi, M.; Guo, H.; Blaes, X.; Ehrlich, D.; Ferri, S.; Gueguen, L.; Halkia, M.; Kauffmann, M.; Kemper, T.; Lu, L.; et al. A global human settlement layer from optical HR/VHR RS data: Concept and first results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2012–2131. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, H. Land use dynamics, built-up land expansion patterns, and driving forces analysis of the fast-growing Hangzhou metropolitan area, eastern China (1978–2008). Appl. Geogr. 2012, 34, 137–145. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, G.M.; Luo, X.; Zheng, Z. Preliminary mapping of high-resolution rural population distribution based on imagery from Google Earth: A case study in the Lake Tai basin, eastern China. Appl. Geogr. 2012, 32, 221–227. [Google Scholar] [CrossRef]
- Wania, A.; Kemper, T.; Tiede, D.; Zeil, P. Mapping recent built-up area changes in the city of Harare with high resolution satellite imagery. Appl. Geogr. 2014, 46, 35–44. [Google Scholar] [CrossRef]
- You, Y.; Wang, S.; Ma, Y.; Chen, G.; Wang, B.; Shen, M.; Liu, W. Building detection from VHR remote sensing imagery based on the morphological building index. Remote Sens. 2018, 10, 1287. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Zhang, L.; Sun, Z.; Meng, F.; Wang, L.; Sun, Y. Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China. Remote Sens. Environ. 2018, 204, 826–837. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Kit, O.; Lüdeke, M. Automated detection of slum area change in Hyderabad, India using multitemporal satellite imagery. ISPRS J. Photogramm. Remote Sens. 2013, 83, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Duque, J.C.; Patino, J.E.; Ruiz, L.A.; Pardo-Pascual, J.E. Measuring intra-urban poverty using land cover and texture metrics derived from remote sensing data. Landsc. Urban Plan. 2015, 135, 11–21. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2013, 51, 257–272. [Google Scholar] [CrossRef]
- Lv, Z.; Zhang, P.; Benediktsson, J.A. Automatic object-oriented, spectral-spatial feature extraction driven by Tobler’s first law of geography for very high resolution aerial imagery classification. Remote Sens. 2017, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Zhong, P.; Wang, R. Using combination of statistical models and multilevel structural information for detecting urban areas from a single gray-level image. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1469–1482. [Google Scholar] [CrossRef]
- Zhang, L.; Li, A.; Zhang, Z.; Yang, K. Global and local saliency analysis for the extraction of residential areas in high-spatial-resolution remote sensing image. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3750–3763. [Google Scholar] [CrossRef]
- Chen, Y.; Lv, Z.; Huang, B.; Jia, Y. Delineation of built-up areas from very high-resolution satellite imagery using multi-scale textures and spatial dependence. Remote Sens. 2018, 10, 1596. [Google Scholar] [CrossRef] [Green Version]
- Pesaresi, M.; Gerhardinger, A.; Kayitakire, F. A robust built-up area presence index by anisotropic rotation-invariant textural measure. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 180–192. [Google Scholar] [CrossRef]
- Pesaresi, M.; Gerhardinger, A. Improved textural built-up presence index for automatic recognition of human settlements in arid regions with scattered vegetation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 16–25. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L.P. A Multidirectional and Multiscale Morphological Index for Automatic Building Extraction from Multispectral GeoEye-1 Imagery. Photogramm. Eng. Remote Sens. 2011, 77, 721–732. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L. Morphological Building/Shadow Index for Building Extraction from High-Resolution Imagery Over Urban Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 161–172. [Google Scholar] [CrossRef]
- Shao, Z.; Tian, Y.; Shen, X. BASI: A new index to extract built-up areas from high-resolution remote sensing images by visual attention model. Remote Sens. Lett. 2014, 5, 305–314. [Google Scholar] [CrossRef]
- Tao, C.; Tan, Y.; Zou, Z.; Tian, J. Unsupervised detection of built-up areas from multiple high-resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1300–1304. [Google Scholar] [CrossRef]
- Kovacs, A.; Szirányi, T. Improved Harris feature point set for orientation-sensitive urban-area detection in aerial images. IEEE Geosci. Remote Sens. Lett. 2013, 10, 796–800. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Qin, K.; Jiang, H.; Wu, T.; Zhang, Y. Built-up area extraction using data field from high-resolution satellite images. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing, Beijing, China, 10–15 July 2016; pp. 437–440. [Google Scholar]
- Hu, X.; Shen, J.; Shan, J.; Pan, L. Local edge distributions for detection of salient structure textures and objects. IEEE Geosci. Remote Sens. Lett. 2013, 10, 466–470. [Google Scholar] [CrossRef]
- Shi, H.; Chen, L.; Bi, F.; Chen, H.; Yu, Y. Accurate urban area detection in remote sensing images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1948–1952. [Google Scholar] [CrossRef]
- Ning, X.; Lin, X. An index based on joint density of corners and line segments for built-up area detection from high resolution satellite imagery. ISPRS Int. J. Geo-Inf. 2017, 6, 338. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Huang, X.; Zhang, G. Urban area extraction by regional and line segment feature fusion and urban morphology analysis. Remote Sens. 2017, 9, 663. [Google Scholar] [CrossRef] [Green Version]
- Sirmacek, B.; Ünsalan, C. Urban area detection using local feature points and spatial voting. IEEE Geosci. Remote Sens. Lett. 2010, 7, 146–150. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Tan, Y.; Deng, J.; Wen, Q.; Tian, J. Cauchy graph embedding optimization for built-up areas detection from high-resolution remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2078–2096. [Google Scholar] [CrossRef]
- Ma, L.; Du, B.; Chen, H.; Soomro, N.Q. Region-of-interest detection via superpixel-to-pixel saliency analysis for remote sensing image. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1752–1756. [Google Scholar] [CrossRef]
- Weizman, L.; Goldberger, J. Urban-area segmentation using visual words. IEEE Geosci. Remote Sens. Lett. 2009, 6, 388–392. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Tan, Y.; Li, Y.; Qi, S.; Tian, J. Built-up area detection from satellite images using multikernel learning, multifieldintegrating, and multihypothesis voting. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1190–1194. [Google Scholar]
- Hu, Z.; Li, Q.; Zhang, Q.; Wu, G. Representation of block-based image features in a multi-scale framework for built-up area detection. Remote Sens. 2016, 8, 155–174. [Google Scholar] [CrossRef] [Green Version]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Susstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, S.; Boyer, K.L. Perceptual organization in computer vision: A review and a proposal for a classificatory structure. IEEE Trans. Syst. Man Cybern. 1993, 23, 382–399. [Google Scholar] [CrossRef]
- Watson, S.E.; Kramer, A.F. Object-based visual selective attention and perceptual organization. Percept. Psychophys. 1999, 61, 31–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholl, B.J. Object and attention: The state of the art. Cognition 2001, 80, 1–46. [Google Scholar] [CrossRef]
- Martinez-Fonte, L.; Gautama, S.; Philips, W.; Goeman, W. Evaluating corner detectors for the extraction of man-made structures in urban areas. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing, Seoul, Korea, 25–29 July 2005; pp. 237–240. [Google Scholar]
- He, X.; Yung, N. Curvature scale space corner detector with adaptive threshold and dynamic region of support. In Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 23–26 August 2004; pp. 791–794. [Google Scholar]
- Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the 4th Alvey Vision Conference, Manchester, UK, 31 August–2 September 1988; pp. 147–151. [Google Scholar]
- Smith, S.M.; Brady, J.M. SUSAN—A new approach to low level image processing. Int. J. Comput. Vis. 1997, 23, 45–78. [Google Scholar] [CrossRef]
- Rosten, E.; Porter, R.; Drummond, T. Faster and better: A machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 32, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Mallat, S.G. A theory for multi-resolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- İmamoğlu, N.; Lin, W.; Fang, Y. A saliency detection model using low-level features based on wavelet transform. IEEE Trans. Multimed. 2013, 15, 96–105. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Itti, L.; Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci. 2001, 2, 194–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Xia, G.; Gao, C.; Samal, A. A computational model for object-based visual saliency: Spreading attention along gestalt cues. IEEE Trans. Multimed. 2016, 18, 273–286. [Google Scholar] [CrossRef]
- Wannig, A.; Stanisor, L.; Roelfsema, P.R. Automatic spread of attentional response modulation along Gestalt criteria in primary visual cortex. Nat. Neurosci. 2011, 14, 1243–1244. [Google Scholar] [CrossRef] [Green Version]
- Chen, L. The topological approach to perceptual organization. Vis. Cogn. 2015, 12, 553–637. [Google Scholar] [CrossRef]
- Turker, M.; Kok, E.H. Field-based sub-boundary extraction from remote sensing imagery using perceptual grouping. ISPRS J. Photogramm. Remote Sens. 2013, 79, 106–121. [Google Scholar] [CrossRef]
- Yan, Y.; Ren, J.; Sun, G.; Zhao, H.; Han, J.; Li, X.; Marshall, S.; Zhan, J. Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement. Pattern Recognit. 2018, 79, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Pukelsheim, F. The three sigma rule. Am. Stat. 1994, 48, 88–91. [Google Scholar]
- Otsu, N.A. Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Lv, Z.; Liu, T.; Zhang, P.; Benediktsson, J.A.; Tao, L.; Zhang, X. Novel adaptive histogram trend similarity approach for land cover change detection by using bi-temporal very-high-resolution remote sensing images. IEEE Trans. Geosci. Remote Sens. 2019. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson Education Limited: New York, NY, USA, 2018; pp. 648–656. [Google Scholar]
- Liu, C.; Huang, X.; Zhu, Z.; Chen, H.; Tang, X.; Gong, J. Automatic extraction of built-up area from ZY3 multi-view satellite imagery: Analysis of 45 global cities. Remote Sens. Environ. 2019, 226, 51–73. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Pesaresi, M.; Ehrlich, D.; Ferri, S.; Florczyk, A.; Freire, S.; Halkia, M.; Julea, A.; Kemper, T.; Soille, P.; Syrris, V. Operating Procedure for the Production of the Global Human Settlement Layer from Landsat Data of the Epochs 1975, 1990, 2000, and 2014; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Esch, T.; Marconcini, M.; Felbier, A.; Roth, A.; Heldens, W.; Huber, M.; Schwinger, M.; Taubenböck, H.; Müller, A.; Dech, S. Urban footprint processor—Fully automated processing chain generating settlement masks from global data of the TanDEM-X mission. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1617–1621. [Google Scholar] [CrossRef] [Green Version]
- Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J.; Dech, S.; Strano, E. Breaking new ground in mapping human settlements from space—The global urban footprint. ISPRS J. Photogramm. Remote Sens. 2017, 134, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Pesaresi, M.; Ehrlich, D.; Caravaggi, I.; Kauffmann, M.; Louvrier, C. Toward global automatic built-up area recognition using optical VHR imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 923–934. [Google Scholar] [CrossRef]
Image No. | Bands | Resolution | Size (Width × Height) | Scenes | Location |
---|---|---|---|---|---|
R1 | RGB | 0.91 m | 1280 × 1280 | Mountainous areas | Beijing, China |
R2 | 0.91 m | 1280 × 1024 | |||
R3 | 0.99 m | 1280 × 1280 | Industrial areas | Dengfeng, China | |
R4 | 0.99 m | 2048 × 1792 | Urban suburbs and villages | ||
R5 | 1.0 m | 1280 × 1280 | Urban areas | Nanjing, China | |
R6 | 1.0 m | 2048 × 1792 |
Image No. | Parameter Settings | Accuracy Assessment | |||
---|---|---|---|---|---|
r | σ | P | R | F-Measure | |
R1 | 10 | 12 | 0.8251 | 0.9266 | 0.8729 |
R2 | 12 | 31 | 0.8691 | 0.8551 | 0.8620 |
R3 | 13 | 12 | 0.8466 | 0.9140 | 0.8790 |
R4 | 12 | 11 | 0.8510 | 0.8015 | 0.8255 |
R5 | 17 | 15 | 0.8536 | 0.9678 | 0.9071 |
R6 | 17 | 12 | 0.8116 | 0.8316 | 0.8215 |
Average | - | - | 0.8428 | 0.8828 | 0.8613 |
Image No. | Parameter Settings | Accuracy Assessment | |||
---|---|---|---|---|---|
r | σ | P | R | F-Measure | |
WV1 | 18 | 25 | 0.8664 | 0.8786 | 0.8725 |
WV2 | 12 | 20 | 0.9178 | 0.8837 | 0.9004 |
WV3 | 9 | 16 | 0.8823 | 0.9186 | 0.9001 |
WV4 | 9 | 20 | 0.9072 | 0.8824 | 0.8947 |
WV5 | 10 | 19 | 0.9110 | 0.9161 | 0.9135 |
WV6 | 12 | 15 | 0.9557 | 0.8564 | 0.9034 |
WV7 | 18 | 15 | 0.8707 | 0.9452 | 0.9065 |
WV8 | 14 | 42 | 0.9402 | 0.9373 | 0.9388 |
WV9 | 14 | 15 | 0.8796 | 0.8287 | 0.8534 |
WV10 | 20 | 36 | 0.7542 | 0.8530 | 0.8006 |
WV11 | 11 | 20 | 0.9222 | 0.8625 | 0.8914 |
WV12 | 10 | 18 | 0.8266 | 0.8631 | 0.8445 |
WV13 | 18 | 18 | 0.9200 | 0.8733 | 0.8960 |
WV14 | 14 | 20 | 0.8923 | 0.7068 | 0.7888 |
WV15 | 12 | 20 | 0.9021 | 0.8887 | 0.8954 |
Average | - | - | 0.8899 | 0.8730 | 0.8800 |
Number of Corners | Calculation Time | F-measure |
---|---|---|
668 | 36.2 s | 0.8332 |
967 | 43.3 s | 0.8561 |
1299 | 56.1 s | 0.8711 |
1429 | 64.1 s | 0.8670 |
1582 | 74.6 s | 0.8674 |
1617 | 77.4 s | 0.8747 |
1738 | 82.6 s | 0.8729 |
σ | Calculation Time |
---|---|
3 | 39.9 s |
6 | 43.3 s |
8 | 59.8 s |
10 | 70.9 s |
12 | 82.6 s |
14 | 98.2 s |
15 | 102.6 s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Lv, Z.; Huang, B.; Zhang, P.; Zhang, Y. Automatic Extraction of Built-Up Areas from Very High-Resolution Satellite Imagery Using Patch-Level Spatial Features and Gestalt Laws of Perceptual Grouping. Remote Sens. 2019, 11, 3022. https://doi.org/10.3390/rs11243022
Chen Y, Lv Z, Huang B, Zhang P, Zhang Y. Automatic Extraction of Built-Up Areas from Very High-Resolution Satellite Imagery Using Patch-Level Spatial Features and Gestalt Laws of Perceptual Grouping. Remote Sensing. 2019; 11(24):3022. https://doi.org/10.3390/rs11243022
Chicago/Turabian StyleChen, Yixiang, Zhiyong Lv, Bo Huang, Pengdong Zhang, and Yu Zhang. 2019. "Automatic Extraction of Built-Up Areas from Very High-Resolution Satellite Imagery Using Patch-Level Spatial Features and Gestalt Laws of Perceptual Grouping" Remote Sensing 11, no. 24: 3022. https://doi.org/10.3390/rs11243022
APA StyleChen, Y., Lv, Z., Huang, B., Zhang, P., & Zhang, Y. (2019). Automatic Extraction of Built-Up Areas from Very High-Resolution Satellite Imagery Using Patch-Level Spatial Features and Gestalt Laws of Perceptual Grouping. Remote Sensing, 11(24), 3022. https://doi.org/10.3390/rs11243022