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Abstract: Automatic extraction of built-up areas from very high-resolution (VHR) satellite images
has received increasing attention in recent years. However, due to the complexity of spectral and
spatial characteristics of built-up areas, it is still a challenging task to obtain their precise location
and extent. In this study, a patch-based framework was proposed for unsupervised extraction
of built-up areas from VHR imagery. First, a group of corner-constrained overlapping patches
were defined to locate the candidate built-up areas. Second, for each patch, its salient textures and
structural characteristics were represented as a feature vector using integrated high-frequency wavelet
coefficients. Then, inspired by visual perception, a patch-level saliency model of built-up areas was
constructed by incorporating Gestalt laws of proximity and similarity, which can effectively describe
the spatial relationships between patches. Finally, built-up areas were extracted through thresholding
and their boundaries were refined by morphological operations. The performance of the proposed
method was evaluated on two VHR image datasets. The resulting average F-measure values were
0.8613 for the Google Earth dataset and 0.88 for the WorldView-2 dataset, respectively. Compared
with existing models, the proposed method obtains better extraction results, which show more precise
boundaries and preserve better shape integrity.
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1. Introduction

Built-up areas are important land-use types, especially in urban environments. The precise
information about the locations, extents, and distributions of built-up areas is crucial for a wide range
of applications [1,2], such as land use monitoring [3], population estimation and analysis [4,5], building
detection [6], urban heat island analysis [7,8], and slum and poverty monitoring [9,10]. Rapidly
developed high-resolution satellite sensors are currently providing images with a spatial resolution up
to submeter (such as 0.6 m for Quickbird and 0.5 m for WorldView-2). Very high-resolution (VHR)
satellite images have several advantages in describing the details of ground objects at a much finer
scale. Thus, automatic extraction of built-up areas from VHR images has received increasing attention
in recent years.
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However, due to the uncertainty of object representation in feature space caused by spectral
variability, the increased spatial resolution does not mean the improved accuracy for target
classification [11,12], hence it poses a big challenge for built-up areas identification. To address
this challenge, much work has been done by researchers to extract built-up areas from high-resolution
satellite images. They achieved this aim mostly by utilizing spatial features such as textures and
spatial structures [13–15]. Similar to the widely-known ‘vegetation index’, several indices, such as
texture-derived built-up presence index (PanTex) [16,17], morphological building index (MBI) [18,19],
and built-up areas saliency index (BASI) [20], have been proposed for the detection of built-up areas.
However, these indices, which are derived by pixel-wise calculation in the neighborhood of each pixel,
can only describe local textural patterns. They are not always effective in representing built-up areas,
due to the spatial variability of textural patterns in VHR images. In addition, their basic assumption
that there exists high local contrast between a building and its shadow is not always true, especially in
complicated scenes.

Besides texture features, local geometrical structures, such as corners [21–23], edges [24,25], and
line segments [26,27], are another kind of valuable spatial clues for built-up areas identification in VHR
images, because, built-up areas are compound geographical objects containing various man-made
structures and geometrical shapes (e.g., rectangular roof). Nevertheless, most of these methods achieve
the final discrimination between built-up and non-built-up areas solely according to the distribution
density of these local structures [28]. This is insufficient, especially in specific complex scenes where
a large number of local structures can be detected in non-built-up classes (such as farmlands, roads,
and trees). As a consequence, it often leads to false detection. In addition, due to the uneven spatial
distribution of local structures inside a built-up area, missed detection can also occur in such locations
that are with relatively sparse local features. This would make the extracted built-up area incomplete,
e.g., with holes inside it.

Although the above-mentioned texture-based and local-structure-based approaches are effective
in describing the local spatial patterns of built-up areas, the macro characteristics of built-up areas were
usually overlooked or poorly handled. This is because these approaches used low-level pixel-wise
processing for feature representation and discrimination, which cannot provide enough semantic
information of built-up areas. Consequently, it often leads to an incorrect mapping from low-level
features to high-level semantics of built-up areas. Therefore, false or missed detection easily occurs.
On the other hand, in order to get more macro spatial patterns of built-up areas, a larger neighborhood
around a central pixel is required, but this usually results in high computational costs.

To overcome these weaknesses of low-level pixel-based processing in spatial feature extraction and
discrimination, mid-level image partition and feature representation have been adopted for built-up
areas detection in recent years. State-of-the-art methods usually adopt superpixel-based [6,29,30]
or block-based [31–33] processing strategy. In the superpixel-based approaches, the input image
is over-segmented into homogeneous superpixels [34], which has shown many advantages over
pixel-based algorithms; however, the over-segmentation would destroy the spatial patterns and
semantics of built-up areas, and the quality of segmentation also has an important impact on the final
detection results. The block-based approaches are very effective in modeling the complex textures
and spatial patterns, especially for large-scale compound geographical objects, e.g., built-up areas.
For example, Li et al. used multikernel learning to implement the block-level image interpretation, then
fused the results using different block sizes to improve the detection of built-up areas in high-resolution
satellite images [32]. In another study, block-based image features were represented in a multi-scale
framework to capture the macro patterns of built-up areas [33]. Their work benefited from the use of
block-based multi-scale information and training samples. Nevertheless, the hard subdivision of an
image into non-overlapping blocks would also destroy the spatial structure of built-up areas. Moreover,
it would generate a number of mixed blocks near the boundaries of built-up areas. This, thereby,
resulted in large boundary errors in the detection results, especially when the block size was very large.
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The objective of this study is to overcome the abovementioned shortcomings of existing methods
in the representation, organization, and discrimination of spatial characteristics of built-up areas so as
to improve the detection results. To this end, we address these issues from the perspective of visual
perception. Inspired by perceptual grouping mechanism of human visual systems [35], we propose a
patch-based framework for unsupervised extraction of built-up areas. In this framework, we employ
Gestalt laws to describe the spatial relationships inside built-up areas. The major contributions of this
paper are summarized as follows.

(1) The proposed framework takes corner-constrained overlapping image patches as primary
calculation units, which can not only achieve the efficient locating of candidate built-up areas, but can
also be of benefit to further spatial feature representation and semantic mapping of built-up areas. For
each corner-constrained patch, in order to represent its salient spatial characteristics, a set of feature
descriptors are constructed by integrating the low-level high-frequency wavelet coefficients, which can
effectively characterize the local textural patterns of built-up areas.

(2) Inspired by visual perceptual mechanism, a patch-level saliency model is constructed by
incorporating two Gestalt laws of proximity and similarity, which mean that elements tend to be
perceived as a whole if they are close to each other and/or share similar visual features. For each patch,
the proposed model measures its saliency according to both its own salient characteristics and its spatial
relationship with surrounding patches. In this way, it can be enabled to capture the macro-patterns of
built-up areas. To our knowledge, although Gestalt laws have been widely used in target recognition
of natural images, little work has been done to apply them for built-up areas extraction in VHR images.

The rest of this paper is organized as follows. Section 2 presents the proposed approach.
The experimental results and analysis are provided in Section 3. The discussion and conclusion are
given in Sections 4 and 5, respectively.

2. Proposed Method

In this section, we introduce the details of our proposed method for automatic extraction of
built-up areas from VHR satellite imagery. As illustrated in Figure 1, the proposed framework
comprises the following steps. First, for an input VHR image, corners are detected and a group of
corner-constrained patches are defined to locate the candidate built-up areas. Second, for each patch,
its spatial characteristics are represented as a feature vector using integrated high-frequency wavelet
coefficients. Then, the saliency of these patches is modeled by incorporating Gestalt laws of perceptual
grouping. Finally, the extraction results are obtained by performing saliency map thresholding and
refining the boundaries of built-up areas.



Remote Sens. 2019, 11, 3022 4 of 22
Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 21 

 

 

Figure 1. Flowchart of the proposed framework. VHR; very high-resolution. 

2.1. Generating Candidate Patches of Built-Up Areas by Corner Constraint 

Selective mechanism of human visual systems would guide visual attention to the target with 
salient features, so as to quickly complete its locating, organization, and recognition [36,37]. Built-up 
areas are compound man-made objects. In a large geographical scene, they usually present distinctive 
textures and structural characteristics from the background. Among them, corners are significant 
cues for the discrimination of geometric primitives [38]. The spatial distribution of local corners in 
VHR images provides an indication of the presence of built-up areas. Therefore, local corner features 
can be employed to infer the potential locations of built-up areas. 

Up to now, many corner detection methods have been developed, and they as a whole can be 
divided into two categories: Edge-based methods (e.g., CSS [39]) and grayscale-based methods (e.g., 
Harris [40], SUSAN [41], and FAST [42]). In contrast, the methods in the former category are usually 
weak in robustness, as they largely depend on the result of edge extraction or image segmentation. 
Thus, in this study, we employed a method in the latter category, specifically the well-known Harris 
corner detector [40], to extract corner points in images. It has been proved to be very effective in 
corner detection for VHR images [21–23]. Then, a patch-based approach, which takes corners as 
constraint, was introduced to locate the candidate built-up areas. More specifically, given a VHR 
image, we take each detected corner point as the center to define an S*S (S = 2r + 1, and r is a radius 
parameter) rectangular neighborhood (i.e., image patch), which would then be used as the operation 
unit for further processing tasks. Generally speaking, the distribution of corners are aggregated in 
built-up areas; therefore, these image patches defined by corners are also densely distributed. In 
particular, with an appropriate value for radius r, they are able to spatially overlap with each other 
and cover the whole built-up areas. 

To illustrate this process more intuitively, an example is presented in Figure 2, in which Figure 
2a is a raw VHR image with a spatial resolution of 1 m, Figure 2b is the detected corners using Harris 
operator, and Figure 2c presents the generated candidate patches of built-up areas. Obviously, the 
union of all these patches forms a covering of built-up areas, and their potential locations have been 
obtained in an efficient manner. Nevertheless, image patches generated in this way do not all belong 
to built-up areas, because some non-built-up classes (such as roads, farmlands, and trees) may also 
contain a large number of corners (as shown in Figure 2b). Therefore, the main task for the next phase 

Figure 1. Flowchart of the proposed framework. VHR; very high-resolution.

2.1. Generating Candidate Patches of Built-Up Areas by Corner Constraint

Selective mechanism of human visual systems would guide visual attention to the target with
salient features, so as to quickly complete its locating, organization, and recognition [36,37]. Built-up
areas are compound man-made objects. In a large geographical scene, they usually present distinctive
textures and structural characteristics from the background. Among them, corners are significant cues
for the discrimination of geometric primitives [38]. The spatial distribution of local corners in VHR
images provides an indication of the presence of built-up areas. Therefore, local corner features can be
employed to infer the potential locations of built-up areas.

Up to now, many corner detection methods have been developed, and they as a whole can
be divided into two categories: Edge-based methods (e.g., CSS [39]) and grayscale-based methods
(e.g., Harris [40], SUSAN [41], and FAST [42]). In contrast, the methods in the former category
are usually weak in robustness, as they largely depend on the result of edge extraction or image
segmentation. Thus, in this study, we employed a method in the latter category, specifically the
well-known Harris corner detector [40], to extract corner points in images. It has been proved to
be very effective in corner detection for VHR images [21–23]. Then, a patch-based approach, which
takes corners as constraint, was introduced to locate the candidate built-up areas. More specifically,
given a VHR image, we take each detected corner point as the center to define an S*S (S = 2r + 1,
and r is a radius parameter) rectangular neighborhood (i.e., image patch), which would then be used
as the operation unit for further processing tasks. Generally speaking, the distribution of corners
are aggregated in built-up areas; therefore, these image patches defined by corners are also densely
distributed. In particular, with an appropriate value for radius r, they are able to spatially overlap with
each other and cover the whole built-up areas.

To illustrate this process more intuitively, an example is presented in Figure 2, in which Figure 2a
is a raw VHR image with a spatial resolution of 1 m, Figure 2b is the detected corners using Harris
operator, and Figure 2c presents the generated candidate patches of built-up areas. Obviously, the
union of all these patches forms a covering of built-up areas, and their potential locations have been
obtained in an efficient manner. Nevertheless, image patches generated in this way do not all belong
to built-up areas, because some non-built-up classes (such as roads, farmlands, and trees) may also
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contain a large number of corners (as shown in Figure 2b). Therefore, the main task for the next phase
is to first identify built-up patches from these candidate patches and then organize them into complete
targets of built-up areas.
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Figure 2. Candidate patches of built-up areas: (a) raw image; (b) detected corners (highlighted
with yellow dots); and (c) corner-constrained overlapping image patches (highlighted with red
rectangular boxes).

2.2. Representating Each Patch as a Feature Vector Using Integrated High-Frequency Wavelet Coefficients.

In candidate patches, the built-up patches may exhibit similar characteristics to the other ones,
which increase the difficulty for the identification of built-up patches. In VHR images, built-up areas
usually present far richer spatial characteristics such as textures and edges than other object classes.
These spatial signatures provide an effective criterion for the discrimination of building areas. Spatial
features can be represented either in spatial domain or in frequency domain. Frequency-domain-based
methods such as Gabor and wavelet have shown superior performance in modeling the complex
textures and spatial patterns of built-up areas [14,15].

Thus, in our work, we employed frequency-domain-based methods for feature representation.
Specifically, the multi-resolution wavelet [43], which is able to capture the multi-scale spatial information
of built-up areas [15], was selected to measure the local textures and structures for an input image.
Then, by integrating low-level wavelet features, each corner-constrained patch can be represented as a
feature vector. More specifically, let f (x, y) stand for a grayscale image, using multi-resolution wavelet
transformation (WT), the kth level decomposition can be performed as follows:{

[Ak, Hk, Vk, Dk] = WT(Ak−1)

A0 = f
, (1)

where k = 1, 2· · · , L (L ≥ 1 is the maximum number of levels for WT decomposition process); Hk,
Vk, and Dk represent the high-frequency coefficients of horizontal, vertical, and diagonal details,
respectively, and Ak is the low-frequency approximation output. Note that when k = L, it is at the
coarsest resolution [44].

In VHR images, built-up features usually exhibit higher frequency responses than non-built-up
classes due to their rich texture details and edge structures. Therefore, the high-frequency wavelet
coefficients are more informative than the low-frequency ones for built-up areas discrimination [15].
With this consideration, the high-frequency coefficients are adopted to represent the textural intensity
and distribution patterns for each corner-constrained patch. Furthermore, in order to reduce the feature
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dimension, the maximization operator is employed to integrate the multi-directional high-frequency
coefficients. Let Ik denote the integrated result in the kth level, then

Ik = max(Hk, Vk, Dk), (2)

where max stands for the maximization operation, which is implemented in a pixel-wise manner.
The maximization integration is quite effective in capturing the information of directionality of building
features due to their artificial spatial arrangement.

Suppose L-levels decomposition are implemented for an input VHR image. To represent each
corner-constrained patch as a feature vector, we propose the following two feature descriptors at patch
level by integrating the pixel-level high-frequency coefficients.

ave = [ave(I1), . . . , ave(Ik), . . . , ave(IL)], (3)

var = [var(I1), . . . , var(Ik), . . . , var(IL)], (4)

where ave and var denote the two descriptors, Ik is the kth-level high-frequency coefficients within a
patch, and ave(Ik) and var(Ik) are the mean and variance of these coefficients, respectively.

In this study, the two descriptors are combined to describe the spatial features of each
corner-constrained patch. Let X denote the feature vector representing such a patch, then

X = [ave, var], (5)

where both ave and var can measure the textural responses of a patch at multiple scales, thereby
providing more discriminative features for the detection of built-up areas. In particular, the descriptor
ave is a representation of the texture intensity while var is useful in describing the distribution patterns.
In addition, according to our previous research [15], three levels of decomposition are suitable for
built-up areas discrimination in VHR images. Therefore, in this study, L is set to three.

2.3. Modeling Saliency of Patches by Incorporating Gestalt Laws of Perceptual Grouping

The saliency map of built-up areas, which can provide a measure to the feature conspicuity
at every location in a visual field [45], is quite useful for unsupervised extraction of built-up areas.
In fact, saliency modeling is a simulation of selective mechanism of visual attention in the computer
community [45–47]. This mechanism would guide visual attention to the targets with salient features,
so as to quickly complete their locating, organization, and identification. In this process, by imposing
organization on visual elements, perceptual grouping function of human visual systems play a
significant role in target attention and recognition. This has been confirmed by relevant studies in the
domains of neuroscience and cognitive psychology [48,49]. The principles of perceptual grouping
were described by Gestalt psychology [50]. They have proposed a set of laws suitable for perceptual
organization, such as proximity, similarity, continuation, closure, and symmetry, which indicates that
the target in a scene is an organized and non-random structure [35].

In this study, we model the saliency of each corner-constraint patch by incorporating the Gestalt
clues of perceptual grouping, including the laws of proximity and similarity, which can be described as
follow [47,51]:

(1) Proximity means that elements tend to be perceived as a whole if they are close to each other.
(2) Similarity means that elements tend to be grouped together if they share similar appearance of

visual features.

Since built-up areas are composed of a group of spatially connected salient patches, the saliency
of a patch is not only determined by its own characteristics, but also closely related to those of its
surrounding patches. In other words, if a non-salient patch is surrounded by highly salient patches, it
should be assigned a high saliency value. Conversely, a patch surrounded by those with low saliency
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values is more likely to belong to the background, even if this patch is salient; therefore, it should be
assigned a low saliency value.

With this consideration, for each patch, we measure its saliency according to both its own salient
characteristics and its spatial relationship with surrounding patches. Assume the salient characteristics
of the ith patch and its jth adjacent patch can be represented by feature vector Xi and X j, respectively,
then the dissimilarity between them can be measured using the following distance formula:

di j =
(
Xi −X

)(
X j −X

)T
, (6)

where X is the mean of feature vectors of all image patches, while T represents the transposition
of a vector. Note that by subtracting the mean vector, the dissimilarity measure has global
characteristics, which are beneficial to capture global saliency for better extraction of built-up areas
through thresholding.

In addition to similarity, spatial proximity also contributes significantly to the overall saliency
of a patch. In our work, the binary weight matrix wi j(d) is used to measure the proximity between
the ith patch and the jth one, which is defined as follows: If the distance of central points between
the jth patch and the ith one is not more than d, then wi j(d) = 1; otherwise, wi j(d) = 0. Herein, d is a
distance parameter representing the degree of spatial proximity, and its setting would be discussed in
the following sections.

Then, for the ith patch, we propose to employ the following formula to calculate its overall
saliency value, which integrates the measures of both proximity and similarity between this patch and
its neighboring patches.

vi =
n∑

j=1

wi j(d) ∗ exp(−
di j

2σ2 ), (7)

where vi denotes the saliency value of the ith patch, n represents the total number of patches, and σ is
an adjustable parameter (i.e., bandwidth) controlling the radial extent of Gaussian function, which
would be tested in the experimental section. To calculate the spatial weight matrix wi j(d), the distance
parameter d is set as follows:

d = 3 σ, (8)

This is inspired by three-sigma rule of Gaussian distribution, that is, for an approximately normal
data set, the values within three standard deviation of the mean account for about 99.7% of the set [52].
According to our experience, this setting is quite effective for built-up areas extraction, and in particular,
it can decrease by one parameter in the process of implementation of the algorithm.

In addition, Equation (7) can be further expressed as

vi = exp
(
−

dii

2σ2

)
+

n∑
j=1, j,i

wi j(d) ∗ exp(−
di j

2σ2 ), (9)

where the first term represents the feature saliency of the ith patch itself while the second term represents
the saliency produced by its spatial relationship (i.e., proximity and similarity) with surrounding
patches. It can be found by Equation (9) that for each patch, its surrounding patches dominate the
overall saliency, which further demonstrate the fact that patches conforming to Gestalt laws of grouping
have greater visual saliency, thereby making them easier to be correctly identified.

After each patch is assigned a saliency value, the saliency values of all patches are then normalized
to be [0,1] in order to facilitate their comparison. Thus, a patch-level saliency map of built-up areas can
be obtained.
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2.4. Performing Saliency Map Thresholding and Refining the Boundaries of Built-Up Areas

Based on the saliency model above, a saliency value can be obtained for each corner-constrained
image patch. The patches of built-up classes tend to show greater saliency values than other patches,
because built-up areas have more salient textures and stronger spatial organization. Therefore, an
appropriate saliency threshold could be used to distinguish between built-up patches and non-built-up
patches. For threshold selection, although the trial-and-error method can be applied to determining
the optimal value, it is very time-consuming and laborious. Hence, automatic threshold technique
should be given priority so as to achieve the automatic extraction of built-up areas.

Previous studies have shown that Otsu method [53] is an automatic threshold technique, which,
based on the standard of maximum inter-class variance, has shown superior performance in binary
classification problems [54]. In this study, we adopt the Otsu method to binarize the saliency map of
built-up areas. Before the implementation of this algorithm, all values in the saliency map are first
transformed to be [0,255]. After thresholding, each built-up patch is labeled as 1, and the other patches
are labeled as 0. Then, the union of all built-up patches constitutes the target of built-up areas.

The use of patch-based representation can also result in the serrated boundaries. However,
compared with traditional methods based on non-overlapping blocks produced by hard partition of
image, this phenomenon has been weakened by adopting corner-constraint patches in the proposed
method. In order to further deal with this problem, morphological opening-and-closing operation [55]
is employed to smooth the boundaries. One difficulty is the size selection of structuring elements in
morphological operation. In this work, considering the size of corner-constraint patches, the size of
structuring element (denoted by SSE) is defined as the radius of these patches, that is,

SSE = r (10)

With this structuring element, the serrated boundaries can be well smoothed and refined, and
accurate or approximately accurate boundaries can be obtained.

On the basis of the results shown in Figure 2, a further example is presented in Figure 3 to
illustrate the process of built-up areas segmentation and boundary refinement. Figure 3a is a saliency
map of built-up areas constructed using the proposed patch-based saliency model, Figure 3b is the
segmentation result by thresholding the saliency map using the Otsu method, and Figure 3c shows
the final extraction results. Thus, the built-up areas have been successfully extracted based on the
proposed approach, and in particular, they preserve a complete shape and well-defined boundaries.
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3. Experiments and Analysis

3.1. Datasets and Evaluation Metrics

To evaluate the performance of the proposed method, several experiments were conducted on two
VHR remotely sensed image datasets, which cover multiple test sites with various scene characteristics.

The first dataset contains six images downloaded from Google Earth. All of these images consist
of three bands of RGB (i.e., red, green, and blue), with a spatial resolution of about 1 m. These images
cover various geographical scenes, such as mountainous, industrial, and residential areas, and more
detailed information about them is given in Table 1. Since the proposed method was designed for
grayscale images, for each image in this dataset, we first converted its stacked RGB bands into a
grayscale image and then implemented the proposed algorithm for built-up areas extraction.

Table 1. Information about the Google Earth dataset.

Image No. Bands Resolution Size
(Width × Height) Scenes Location

R1

RGB

0.91 m 1280 × 1280
Mountainous areas Beijing, China

R2 0.91 m 1280 × 1024
R3 0.99 m 1280 × 1280 Industrial areas Dengfeng, China
R4 0.99 m 2048 × 1792 Urban suburbs and villages
R5 1.0 m 1280 × 1280

Urban areas Nanjing, China
R6 1.0 m 2048 × 1792

The second one was from WorldView-2 satellite, which was launched on 6 October 2009. The dataset
was constructed using a panchromatic image covering a certain region of Wuhan city, China. A total of
15 images taken from different sites of this region was used for performance evaluation. All of these
images are with a resolution of 0.5 m, and their sizes are varying from 470 by 642 to 2274 by 1786 pixels,
which cover different urban region scenes and contain various types of built-up areas so as to verify
the robustness of our proposed method.

In order to evaluate the results of built-up areas extraction, we also constructed reference
(ground-truth) datasets of the two datasets. For each test image, its reference data were obtained
by visual interpretation. The built-up areas were first delineated manually to form vector polygons,
which were then converted into a binary image. Although it is time-consuming and laborious to
obtain these data, we try to ensure the reliability of results through multiple corrections by different
interpreters. For the Google Earth reference dataset, it contains a total of 3,112,741 built-up pixels and
10,453,211 non-built-up pixels, while for the WorldView-2 reference dataset, the numbers of built-up
and non-built-up samples (pixels) are 7,840,057 and 11,987,963, respectively.

The quantitative performance of the proposed approach on the two datasets is evaluated
based on three widely used metrics: Precision P, recall R, and F-measure Fα as defined below,
respectively [14,29,44].

P =
TP

TP + FP
, (11)

R =
TP

TP + FN
, (12)

Fα =
(1 + α)·P·R
α·P + R

, (13)

where TP, FP, and FN denote the numbers of true positive, false positive, and false negative detected
pixels, respectively. The P and R indices are used to evaluate the detection results from the perspective
of correctness and completeness, respectively. The F-measure (Fα) is an overall performance measure
by the harmonic mean of P and R, where α is a positive parameter to balance the relative importance
between the precision and the recall in performance evaluation. In our experiments, we set α = 1,
because precision and recall are equally important for the extraction of built-up areas [29].
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3.2. Tests on Parameter Values

The main parameters in our proposed method include the patch radius r and the bandwidth σ of
Gaussian function in Equation (7). As previously mentioned, the first parameter is used to determine
the primary calculation units while the second one is closely related to the influence range of an image
patch; therefore, both of them play an important role in the final extracted results of built-up areas.

With different parameter settings, we conducted tests on one image from the first datasets by
fixing one parameter and testing the other one each time. The resulting accuracy assessment curves
are presented in Figure 4, where Figure 4a,b are the test results for parameter r and σ, respectively.
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The patch radius has an important impact on the extraction results. For each fixed parameter
σ (e.g., σ = 10, 11, 12, 13, 14, 15), as shown in Figure 4a, with the increase of patch radius r from a
small value to a large one, the F-measure first increases rapidly to the peak of the curve, and then it
begins to decline and maintains this trend. This can be explained by the fact that with a small patch
radius, the built-up areas cannot be well covered by corner-constraint patches, whereas a large patch
radius would result in more mixed image patches, especially in the boundary between built-up and
non-built-up areas. These two situations would lead to the missed and false detection of built-up areas,
respectively. For the test image, the appropriate value for parameter r can be determined according to
the F-measure assessment results. The patch radius that makes the F-measure reach the maximum is
the optimal. For example, when σ = 12, the optimal value for r is 10. Then this value (i.e., r = 10) can
be used as an empirical value, and it can be directly or by tuning slightly applied to other images with
the same resolution.

Likewise, with fixed patch radius r (e.g., r = 6, 8, 10, 12, 14, 16), the bandwidth parameter σ was
tested on this image. As shown in Figure 4b, the F-measure curves also show a trend of first increasing
and then decreasing as σ increases from two to 20 with a step equals to one. However, compared with
the test results of parameter r, the F-measure curves of σ are less sensitive than those of r, because
after a rapid increase to achieve high accuracies, the F-measure curves then increase slowly until they
reach the maximums, followed by a gradually declining tendency. This can be explained by the fact
that a larger value for σ means that proximity and similarity occur in a lager spatial neighborhood
for each patch; hence, more adjacent patches contribute to the central patch for saliency calculation.
However, when σ exceeds a certain threshold, mixed patches would increase in the neighborhood of
a central patch, thereby resulting in decreased accuracy. With determined patch radius, the optimal
or approximately optimal value for parameter σ can be easily selected by comparing the evaluation
results with different parameter settings. For instance, when r = 10, the optimal value for σ is 12,
because when σ = 12, the F-measure reached the peak of the curve.

3.3. Results and Performance Evaluation

In this section, the proposed built-up areas extraction algorithm was implemented on
aforementioned two datasets so as to verify its effectiveness and robustness. Meanwhile, two
state-of–the-art methods including the PanTex algorithm [16] and Hu’s model [33] were also applied to
the same datasets for performance comparison. In order to make a fair comparison, for the two methods,
we used the optimal results (with maximum F-measure value) after trying different parameter values.

The experimental results for Google Earth images are provided in Figure 5, in which the first
two columns are the original images and ground truths, respectively, while the last three columns
correspond to the results of built-up area extraction using the proposed method, the PanTex procedure
and Hu’s model, respectively. By visual inspection, it can be found that good extraction results were
obtained via the proposed method, which matched very well with the reference data. For each test
image, the built-up areas were successfully identified, and their boundaries were well delineated.
For the PanTex procedure and Hu’s model, although they also achieved the detection of built-up areas,
it seems that they did not perform as well as our method, because their results contain much more
false or missed detection.

To quantitatively evaluate the quality of our method, Table 2 reports the statistical measures of
accuracy assessment, in which the second and third columns are the used parameters, which make the
F-measure reach the optimal or approximate optimal value for each image. The average F-measure
value is 0.8613, while the average precision and recall are 0.8428 and 0.8828, respectively. This indicates
that our proposed method achieves excellent performance for these VHR images.
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Figure 6 presents the accuracy comparison of these methods based on F-measure. Overall, our 
method showed better performance than the other approaches. More specifically, for the images R1 
and R2 (covering complex mountainous areas), the PanTex procedure performed poorly, resulting in 
low F-measure values (F < 0.75). By inspecting the corresponding result maps, it can be found that a 
number of irrelevant texture objects (e.g., ridges) were incorrectly extracted as built-up areas. By 
contrast, both our method and Hu’s model showed stronger robustness to these interferences, 
thereby reducing false detection. For the images R3 and R5 (covering industrial and residential areas, 
respectively), several built-up areas were missed in the result maps of PanTex and Hu’s model; 
however, the missed detection has been significantly improved by using the proposed method, which 
can better keep the shape and outline of the extracted built-up areas. 
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method, the PanTex procedure and Hu’s model, respectively.

Table 2. Parameter settings and accuracy evaluation for the Google Earth dataset.

Image No. Parameter Settings Accuracy Assessment

r σ P R F-Measure

R1 10 12 0.8251 0.9266 0.8729
R2 12 31 0.8691 0.8551 0.8620
R3 13 12 0.8466 0.9140 0.8790
R4 12 11 0.8510 0.8015 0.8255
R5 17 15 0.8536 0.9678 0.9071
R6 17 12 0.8116 0.8316 0.8215

Average - - 0.8428 0.8828 0.8613
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Figure 6 presents the accuracy comparison of these methods based on F-measure. Overall, our
method showed better performance than the other approaches. More specifically, for the images R1 and
R2 (covering complex mountainous areas), the PanTex procedure performed poorly, resulting in low
F-measure values (F < 0.75). By inspecting the corresponding result maps, it can be found that a number
of irrelevant texture objects (e.g., ridges) were incorrectly extracted as built-up areas. By contrast, both
our method and Hu’s model showed stronger robustness to these interferences, thereby reducing
false detection. For the images R3 and R5 (covering industrial and residential areas, respectively),
several built-up areas were missed in the result maps of PanTex and Hu’s model; however, the missed
detection has been significantly improved by using the proposed method, which can better keep the
shape and outline of the extracted built-up areas.
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To further evaluate the performance of our method, the WorldView-2 datasets were used for
built-up areas extraction. Experimental results using the proposed method and the other two
approaches are listed in Figure 7. Although these image scenes contain complex textures and spatial
patterns due to increased spatial resolution, good extraction results with well-defined boundaries were
still obtained via the proposed method, which are quite close to the ground truths.
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Based on P, R, and F-measure, the quantitative evaluation results of our method on this dataset are
shown in Table 3, in which the second and third columns are the corresponding parameters (optimal
or approximate optimal). The average precision, recall, and F-measure values are 0.8899, 0.873, and
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0.88, respectively. This indicates that our proposed method can effectively achieve the extraction of the
built-up areas from this dataset with high correctness and completeness.

Table 3. Parameter settings and accuracy evaluation for the WorldView-2 dataset.

Image No. Parameter Settings Accuracy Assessment

r σ P R F-Measure

WV1 18 25 0.8664 0.8786 0.8725
WV2 12 20 0.9178 0.8837 0.9004
WV3 9 16 0.8823 0.9186 0.9001
WV4 9 20 0.9072 0.8824 0.8947
WV5 10 19 0.9110 0.9161 0.9135
WV6 12 15 0.9557 0.8564 0.9034
WV7 18 15 0.8707 0.9452 0.9065
WV8 14 42 0.9402 0.9373 0.9388
WV9 14 15 0.8796 0.8287 0.8534

WV10 20 36 0.7542 0.8530 0.8006
WV11 11 20 0.9222 0.8625 0.8914
WV12 10 18 0.8266 0.8631 0.8445
WV13 18 18 0.9200 0.8733 0.8960
WV14 14 20 0.8923 0.7068 0.7888
WV15 12 20 0.9021 0.8887 0.8954

Average - - 0.8899 0.8730 0.8800

The overall performance comparison is depicted in Figure 8. As can be seen, the proposed method
achieves the highest F-measure values for almost all images in this dataset, which further demonstrates
its superiority over the other two approaches. For example, for images of number one and number
seven, which are covered by complex urban buildings with various types and spatial distributions, the
resulting F-measure values of the PanTex procedure are relatively low, due to high missed detection
rate as shown in Figure 7. Another obvious example is the image of number 12, in which built-up
areas are surrounded by farmlands, resulting in great interference to built-up area detection, because
some farmlands share similar spectral and spatial features to built-up areas. Consequently, neither the
PanTex nor Hu’s model performed well, and the former output an enlarged built-up area boundary
while the latter produced high missed detection. By contrast, the proposed method performed best
and obtain better extraction result.
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4. Discussion

The above experiments and comparisons demonstrate the effectiveness of our proposed method,
and overall, it shows better performance than both the PanTex procedure and Hu’ model in terms of
F-measure values.

In the proposed method, we adopted the corner-constrained overlapping image patches as the
basic processing units, which play an important role in the efficient locating of candidate built-up areas.
Compared with previously used non-overlapping superpixels or hard-partitioned blocks [29–33],
the overlapping image patches have shown more compact spatial relationships in built-up areas.
This would benefit to their grouping by incorporating more valuable spatial clues. To represent
each patch, we considered two aspects of spatial characteristics: Its own textural patterns and its
spatial relationships with surrounding patches, which were described by using the multi-resolution
wavelet and Gestalt laws of proximity and similarity, respectively. The performance improvement of
the proposed approach supports our argument that there are greater advantages using patch-based
representation and incorporating Gestalt laws than those of the traditional methods using spatial
information for built-up areas detection. On the other hand, this also confirms the previous findings
that spatial information, such as textures [14–20], structures [13,21–27], and context [15,33], is very
valuable for built-up areas identification from VHR images. Particularly, the potential of Gestalt laws
in guiding target recognition is further verified, which can well describe the spatial relationships of
built-up areas. It should be noted that apart from proximity and similarity, some other Gestalt laws
(continuity, closure, figure and ground, background connectivity, etc.) could also be used to guild
the detection of built-up areas. In addition, the proposed method adopted the Otsu algorithm to
binarize the calculated saliency map in pursuit of automatic detection of built-up areas. Although
satisfying extraction results have been obtained on the test datasets, for some images, the Otsu’s
optimal thresholds do not necessarily produce the best segmentation results. In other words, the
extraction results could be further improved by optimizing the selection of thresholds.

In our experiment, it can be found that using the proposed method, built-up areas can be extracted
from sub-images of an image. Therefore, for a large image, it can be divided into a series of small
sub-images which may contain different parts of built-up areas, and then implement our method on
each sub-image separately. The final extraction result can be obtained by uniting each individual one.
In this way, if the image covers a very large area (e.g., a city), it may take a long time to complete the
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extraction of built-up areas from the entire image. However, this calculation task can be accelerated by
using parallel processing.

When implementing our method on a sub-image, many factors can affect the implementation time.
Among them, the number of corners detected and the bandwidth parameter σ have significant impacts
on the calculation time. This is because the former determines the number of the basic processing units
(i.e., corner-constrained patches) while the latter determines the neighborhood size of a patch for its
saliency calculation. Take the first image (1280 pixels by 1280 pixels) in the Google Earth dataset for
example, in order to change the number of corners detected, we first used Gaussian filters with different
parameters to obtain several smoothed images, which were then used as the inputs to implement
the proposed method, respectively. The proposed method was executed on a computer with 4 GB
RAM and Dual core 2.6 GHz Intel CPU, and the coding platform is MATLAB (R2010b). With different
numbers of corners detected, the corresponding calculation time to complete the extraction of built-up
areas is shown in Table 4. As can be seen, the increase (decrease) of the number of corners leads
to a significant increase (decrease) in calculation time. The effect of bandwidth parameter σ on the
calculation time is shown in Table 5. Obviously, the change of this parameter also has a great effect
on the calculation time. For example, when σ = 3, it needs only 39.9 s to complete the extraction
task, while when σ = 15, the implementation time is increased to 102.6 s. In contrast, for PanTex and
Hu’ model, which were also executed on the computer mentioned above but with C++ for coding,
it took 115.7 s and 18.6 s to obtain the detection results (as shown in Figures 5 and 6), respectively.
Besides the calculation time, Table 4 also reports the F-measure values under these conditions. It can
be found that the difference in the number of corners detected could result in the variation in detection
accuracy. In fact, not only the number of corners, their locations and spatial distributions could also
affect the final detection of built-up areas. Therefore, the proposed method can be further improved by
optimizing the detection of corners.

Table 4. The effect of the number of corners on the calculation time and the detection accuracy (r = 10,
σ = 12).

Number of Corners Calculation Time F-measure

668 36.2 s 0.8332
967 43.3 s 0.8561

1299 56.1 s 0.8711
1429 64.1 s 0.8670
1582 74.6 s 0.8674
1617 77.4 s 0.8747
1738 82.6 s 0.8729

Table 5. The effect of the bandwidth σ on the calculation time (r = 10).

σ Calculation Time

3 39.9 s
6 43.3 s
8 59.8 s

10 70.9 s
12 82.6 s
14 98.2 s
15 102.6 s

In addition, it should be pointed out that although the datasets contain images of various
scenes, they only cover small areas compared with some practical applications at urban, regional,
or even global scales. The improvement of the proposed method in built-up extraction is very
relevant to the development of global built-up mapping products. Up to now, there are several
relevant products [56], such as 500 m Map of Global Urban Extent (MOD500) [57], 30 m Global
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Land Cover (GlobeLand30) [58], Global Human Settlement Layer (GHSL) [59], and Global Urban
Footprint (GUF) [60,61]. The resolutions of GHSL and GUF are 38 m and 12 m, respectively. The
availability of high-spatial-resolution images makes it possible to map this product at a finer resolution.
For this purpose, the aforementioned PanTex has been successfully applied to obtain GHSL using VHR
images [2,62]. Since our method has shown superior performance over the PanTex procedure at local
scales, we think it also has the potential to be applied to develop built-up mapping products at global
scales. In terms of computational costs, PanTex calculates local textural patterns in a pixel-wise manner,
and for VHR images, they usually need a large neighborhood window for each pixel, which would
increase the computational costs. This has also been confirmed by previous studies [29,33]. In contrast,
our method adopts a patch-based processing strategy, which would require less calculation time than
PanTex. In future studies, we will further improve our method for quick and effective built-up areas
mapping at global scales.

5. Conclusions

In this paper, we proposed a novel framework for unsupervised extraction of built-up areas
from VHR satellite imagery. The proposed method used a group of corner-constrained patches to
locate the candidate built-up areas, and for each patch, its spatial characteristics were represented
using integrated high-frequency wavelet coefficients. Then, a patch-level saliency model of built-up
areas was constructed by incorporating Gestalt laws of grouping, and built-up areas were segmented
by thresholding the saliency map, followed by boundary refinement to obtain the final extraction
results. By using the proposed method, the extracted built-up areas had more precise boundaries and
showed a better shape integrity than those of the other methods. Thus, the proposed patch-based
representation strategy and saliency model can be used for built-up areas mapping in VHR satellite
imagery. Furthermore, it can be concluded that visual cognition and Gestalt laws of grouping can play
a significant role in guiding the automatic extraction of built-up areas.

In future studies, the following aspects are going to be focused on so as to further improve the
current work. (1) The proposed patch-based strategy can be further improved by considering the type,
size and distribution of buildings and optimizing the detection of corners. Thus, the candidate built-up
areas would be better located. (2) Besides proximity and similarity, more Gestalt laws of grouping, such
as continuity, closure, and background connectivity, would be considered and incorporated into our
saliency model in order to further increase its robustness. (3) The possibility of applying the proposed
method to large-scale built-up areas mapping will be investigated and evaluated so that relevant urban
and regional applications can be served.
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