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Abstract: The growing popularity of Unmanned Aerial Vehicles (UAVs) in recent years, along with
decreased cost and greater accessibility of both UAVs and thermal imaging sensors, has led to
the widespread use of this technology, especially for precision agriculture and plant phenotyping.
There are several thermal camera systems in the market that are available at a low cost.
However, their efficacy and accuracy in various applications has not been tested. In this study,
three commercially available UAV thermal cameras, including ICI 8640 P-series (Infrared Cameras Inc.,
USA), FLIR Vue Pro R 640 (FLIR Systems, USA), and thermoMap (senseFly, Switzerland) have been
tested and evaluated for their potential for forest monitoring, vegetation stress detection, and plant
phenotyping. Mounted on multi-rotor or fixed wing systems, these cameras were simultaneously
flown over different experimental sites located in St. Louis, Missouri (forest environment), Columbia,
Missouri (plant stress detection and phenotyping), and Maricopa, Arizona (high throughput
phenotyping). Thermal imagery was calibrated using procedures that utilize a blackbody, handheld
thermal spot imager, ground thermal targets, emissivity and atmospheric correction. A suite of
statistical analyses, including analysis of variance (ANOVA), correlation analysis between camera
temperature and plant biophysical and biochemical traits, and heritability were utilized in order to
examine the sensitivity and utility of the cameras against selected plant phenotypic traits and in the
detection of plant water stress. In addition, in reference to quantitative assessment of image quality
from different thermal cameras, a non-reference image quality evaluator, which primarily measures
image focus that is based on the spatial relationship of pixels in different scales, was developed.
Our results show that (1) UAV-based thermal imaging is a viable tool in precision agriculture and
(2) the three examined cameras are comparable in terms of their efficacy for plant phenotyping.
Overall, accuracy, when compared against field measured ground temperature and estimating power
of plant biophysical and biochemical traits, the ICI 8640 P-series performed better than the other two
cameras, followed by FLIR Vue Pro R 640 and thermoMap cameras. Our results demonstrated that
all three UAV thermal cameras provide useful temperature data for precision agriculture and plant
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phenotying, with ICI 8640 P-series presenting the best results among the three systems. Cost wise,
FLIR Vue Pro R 640 is more affordable than the other two cameras, providing a less expensive option
for a wide range of applications.

Keywords: thermal imaging; ICI 8640 P-series; FLIR Vue Pro R 640; thermoMap; Unmanned Aerial
Vehicles; vegetation monitoring; plant phenotyping; heritability analysis

1. Introduction

Temperature is one of the most important environmental variables that affect plant physiological
processes, including transpiration, leaf water potential, and photosynthesis. Under adequate water
supply, rising temperatures may increase stomatal conductance and enhance the evaporative cooling
of transpiring leaves [1]. However, water stress reduces leaf stomatal conductance and transpiration
rate and, consequently, increases the leaf/canopy temperature [2,3], because stomatal closure induced
a reduction in water evaporation from the leaf limits heat dissipation and it thus alters the energy
balance of the plant. Subtle changes in canopy temperature, which is a function of the temperatures
of the leaves of a plant canopy, can be measured with a thermal imaging camera, also known as
an infrared camera or infrared thermography, which forms a temperature image using emitted long
wave radiation.

For decades, satellite-based thermal imaging cameras have been extensively used to monitor
vegetation and crop conditions on a regional scale [4], estimate energy fluxes and soil moisture [5–9],
detect plant water stress [10,11], predict yield [12], and monitor regional drought [13–16]. However,
their usefulness in precision agriculture and small area phenotyping has been mixed due to the fact
that their spatial resolution and the homogeneity of data with large pixels is typically not suitable for
precision agriculture. In addition, long revisit period [17,18] and cloud cover remain as significant
challenges in satellite based remote sensing, thus limiting its applications [19].

Plant phenotyping refers to a quantitative estimation of the plant characteristics, including
morphological, ontogenetical, physiological, and biochemical properties, such as shape, canopy
structure, leaf size, and color [20,21]. These phenotypes are determined by the plant’s genetic code,
the so-called genotype, and its interactions with environmental factors [21,22]. High-throughput plant
phenotyping generally refers to technology based, and the sometimes automated, characterization
of plant phenotypic traits [8,23,24]. High-throughput phenotyping is a rapidly growing area of
research that considers hundreds of genotypes, which are often grown in different environmental or
management conditions (either irrigation, pesticides, or fertilizers), to facilitate genetic studies and
accelerate the breeding of advanced crop varieties to ensure food, feed, fiber, and/or energy security.

In recent years, rapid advances in Unmanned Aerial Systems (UAVs) have boosted the
use of near-earth aerial imaging in various fields, providing low-cost data acquisition at high
spatial-, spectral-, and temporal resolutions. Today, UAVs have become important cost-effective
and high-throughput phenotyping platforms [23,25–28]. Thermal remote sensing cameras that were
mounted on versatile and affordable UAVs have been increasingly used in precision agriculture [19]
for detecting water stress and irrigation scheduling [29–37], as well as for plant phenotyping [38–41].
Maimaitijiang et al. demonstrated that thermal and multispectral data fusion provided the best
estimate for nitrogen concentration and chlorophyll a (Chl a) content, while thermal imagery that was
fused with red, green, and blue (RGB) band data was found to be the best predictor for phenotypes,
such as biomass and leaf area index (LAI) [26].

Significant progress has been made in UAV-based plant phenotyping and plant stress detection;
however, thermal imaging has remained an underexploited sensing domains for high throughput
phenotyping. One of the challenges in effectively using thermal imaging is appropriate calibration
and atmospheric/emissivity correction, particularly as the wide variety of cameras that are currently
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available in the market offer different calibration procedures at different prices and capabilities
(i.e., thermal sensitivity and temperature resolution). These cameras include ICI 8640 P-series
(Infrared Cameras Inc., Beaumont, TX, USA), FLIR Vue Pro R 640 (FLIR Systems, Wilsonville, OR, USA),
and thermoMap (senseFly, Cheseaux-sur-Lausanne, Switzerland). Differences among thermal imaging
cameras reduce the uniformity among datasets from different platforms and, when coupled with post
processing of the imagery, the datasets will further deviate. Additionally, no systematic review has
been found in literature regarding the quality of the images in a comparative setting in the context
of precision agriculture and plant phenotyping. Therefore, an evaluation of the accuracy, image
quality, and applicability, as well as the potential of these thermal cameras for precision agriculture
and plant phenotyping, can provide important insights. Objectives of this contribution include:
(1) examine the potential of UAV-based thermal imaging for plant phenotyping and water deficit stress
detection and (2) evaluate the accuracy and image quality of the three most popular UAV-friendly
thermal cameras. The remainder of this paper is structured, as follows. Section 2 is the detailed
description of the UAVs and thermal cameras that were used in this study. Section 3 introduces the
three test sites, experimental setup, and ground and UAV data collection. Methodology regarding
UAV image processing, thermal image calibration, image quality assessment, and statistical analysis is
presented in Section 4. The results and discussion are in Sections 5 and 6, respectively. The last section
provides conclusions.

2. UAVs and Thermal Cameras

In this study, three thermal cameras that were specifically designed for UAV applications were
evaluated (Figure 1). The technical specifications for each respective camera are displayed in Table 1.
These thermal cameras utilize microbolometer detectors that measure infrared and thermal radiation
from 7–14 µm. When the radiation strikes the detector material, it is heated and it thus changes the
electrical resistance that is measured and processed into temperature values. The three cameras were
equipped with the same pixel pitch, sensor resolution, and radiometric resolutions. For convenience,
we use ICI and FLIR interchangeably with ICI 8640 P and FLIR Vue Pro R 640, respectively, for the rest
of this manuscript.
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Figure 1. Unmanned Aerial Systems (UAVs) and thermal cameras. Sony RGB and ICI cameras integrated
on DJI M600 Pro hexa-copter (a), Headwall hyperspectral and FLIR cameras integrated on DJI M600
Pro hexa-copter (b), DJI S1000 octocopter and ICI camera (c), DJI S1000 octocopter and FLIR & camera
array (d), and eBee UAV and thermoMap camera (e,f). Note: eBee UAV and thermoMap camera photos
are obtained from this site: https://www.sensefly.com/.
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Table 1. ICI 8640 P, FLIR Vue Pro R 640 and thermoMap (UAV-based) and FLIR TG167 (ground-based)
thermal camera specifications.

Parameters ICI 8640 P FLIR Vue Pro R 640 thermoMap FLIR TG167

Spectral Range 7–14 µm 7.5–13.5 µm 7.5–13.5 µm 8–14 µm
Frame Rate 30 Hz 30 Hz 7.5 Hz 9 Hz
Accuracy (+/−) 1 ◦C (+/−) 5 ◦C (+/−) 5 ◦C (+/−) 1.5 ◦C

Data Format jpeg, 16-bit TIFF,
32-bit TIFF

Radiometric jpeg,
14-bit TIFF 16-bit TIFF bitmap

Sensor Resolution 640 × 512 640 × 512 640 × 512 80 × 60
Radiometric Resolution 14 bit 14 bit 14 bit N/A

Power Consumption <1 W 2.1 W 5W N/A
Pixel Pitch 17 um 17 um 17 um N/A

Thermal Sensitivity (NETD) 0.02 ◦C 0.05 ◦C 0.1 ◦C 0.15 ◦C
Focus Manual focused to infinity focused to infinity focused to infinity

Focal length 13 mm 13 mm 9 mm N/A
f-stop 1.0 1.25 1.4 N/A

Weight (g) 74.5 92.0–113.0 134.0 312

2.1. ICI 8640 P

Manufactured and sold by Infrared Cameras Inc. (Beaumont, TX, USA), the ICI 8640 P is
a radiometric thermal camera that is designed to offer high sensitivity and accuracy while operating
at a low (<1 W) power rate and compact size/weight (74.5 g). With a claimed accuracy of (+/−)
1 ◦C and Noise Equivalent Temperature Difference (NETD) thermal sensitivity of 0.02 ◦C the ICI
camera provides robust thermal information that is ideal for UAV applications, such as precision
agriculture. Each ICI camera is individually calibrated under a range of environmental conditions,
further enhancing the overall accuracy. Equipped with a 13 mm focal length the ICI camera has a f-stop
value of 1.0, which represents the amount of energy that is allowed into the entrance pupil of the
camera. This in turn allows for focused thermal energy to enter the camera, in part determining the
sensitivity of the detector. The ICI camera was also equipped with a manual focus lens that allows the
user to adjust the camera’s focus based on the flight altitude and target distance. Being designed to
be used for a range of applications, the ICI camera can be operated with a single USB cable. In this
study, the ICI camera was custom integrated on both the DJI S1000 + Octocopter and the DJI M600 Pro
hexacopter on a three-axis gimbal for increased stability in flight. The ICI camera utilized an onboard
sensor control module that allows for customizable data collection and parameterization while in
the field. Connected to the DJI M600 Pro flight controller, the sensor control module ingests GPS
information from the UAV navigation system and then geo-tags the captured thermal images in
an automated fashion. The custom integration of the ICI camera also allows for remote control over
data capture and sensor settings from the UAV controller. Data can be recorded by a range of methods
that are based on time interval, GPS location, manually from the UAV controller, or triggered from
waypoints ingested from the UAV flight plan.

2.2. FLIR Vue Pro R 640

With nearly an identical weight and sensor design as the ICI camera, the FLIR Vue Pro R 640,
as manufactured by FLIR Systems, Inc. (Wilsonville, OR, USA), is also a small sized radiometric thermal
sensor designed for UAV integration and data collection. The FLIR camera costs approximately half
the price of the other two sensors and it represents a relatively affordable thermal sensor. The FLIR
Vue Pro R 640 has a claimed accuracy of (+/−) 5 ◦C and thermal sensitivity of 0.05 ◦C. Containing
an f-stop value of 1.25 and a 13 mm fixed lens focused to infinity, the FLIR Vue Pro R 640 is an easy
to operate radiometric thermal imager. The FLIR camera connects to the UAV by a single USB cable
and it does not require a sensor control module. The FLIR camera was also integrated on similar DJI
S1000+ and DJI M600 Pro platforms with a three-axis gimbal enabling camera stability throughout the
data collection flights. The FLIR camera can be triggered based on time intervals or from waypoints
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within the UAV flight plan. The configuration that was used in this study utilized the FLIR mobile
application that connects to the camera via Bluetooth to set all camera and data capture settings.
Data collected by the FLIR camera is non-geotagged and it does not record GPS locations for each
image during collection.

2.3. thermoMap

Encompassing a slightly larger footprint, the thermoMap, as manufactured by the SenseFly
Company (Cheseaux-sur-Lausanne, Switzerland), weighs 134 g and it has a power consumption of 5 W.
The thermoMap also has a claimed accuracy of (+/−) 5 ◦C and a thermal sensitivity of 0.1 ◦C. It has
9 mm lens and f-stop of 1.4. The thermoMap camera comes fully integrated on the eBee fixed wing
UAV. Like the other cameras, the thermoMap can be triggered by time interval or based on waypoint
information from the onboard autopilot system. The thermoMap camera was hard mounted into the
under-side of the UAV. Data was captured via waypoints from the pre-programmed UAV flight plan.
Like the ICI camera, the data is geo-tagged using the onboard UAV flight controller’s GPS information.

2.4. FLIR TG167

The FLIR TG167 is a handheld thermal spot imager, as manufactured by FLIR Systems, Inc.
(Wilsonville, OR, USA), which is a hybrid between a single spot infrared thermometer and a thermal
imager. Designed to be highly portable the TG167 only weighs 312 g including the battery. The FLIR
TG167 has a field of view (FOV) of 25◦ × 19.6◦ making it ideal for short range applications. This thermal
device has a claimed accuracy of (+/−) 1.5 ◦C and a thermal sensitivity of 0.15 ◦C. The FLIR TG167
was used for ground-based thermal data collection and it was manually operated.

3. Test Sites and Case Studies

The experiments were conducted at three test sites representing different vegetation and climate
conditions (Figure 2). The details of field setup, experimental design, and data collection for each case
study are provided in the corresponding sections.
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3.1. Case Study 1: Vegetation Monitoring in Forest Park, St. Louis, Missouri

In this case study, we focus on investigating the ICI and FLIR cameras with detailed analysis of
thermal heat patterns that were observed over a heterogeneous terrain with land-cover and land-use,
including buildup area, forest, grass, and water. Both of the cameras were mounted on DJI Matrice 600
Pro UAV (Figure 1a,b).

Field preparations were made prior to the UAV flights. A black and white reference panel was
placed in the middle of the field, acting as an identifiable central point. Each corner of the field
was marked with an unmovable point: a 1.8 m by 0.9 m grey tarp secured to the ground with stakes.
Combined, these five points served as ground control points (GCPs). Flight paths were preprogrammed
specifically for the study area using UgCS (SPH Engineering SIA, Latvia). UgCS is software that allows
for precise flight planning for a variety of UAV systems.

The DJI Matrice 600 Pro UAVs (Figure 1a,b) were flown over a portion of Forest Park, in St. Louis,
Missouri, USA on September 10th, 2018. The weather for the day was a high of 26.7 ◦C and a low of
15 ◦C, with mostly clear skies. The temperatures near the time of the ICI flight was 21.7 ◦C and 23.9 ◦C
for the FLIR flight. The time difference between flights was approximately 1 h; the ICI flight started at
12:20 PM and the FLIR flight was at 11:23 AM. Due to the tall trees in the park, the UAV flights were
conducted at 80 m height.

3.2. Case Study 2: Plant Phenotyping and Early Stress Detection near Columbia, Missouri

3.2.1. Experimental Setup

The experiment was conducted at the Bradford Research Center located near Columbia, Missouri,
USA. The imaged field measures approximately 77 m in length and 65 m in width, and it has been
modified to limit the maximum rooting depth of plants to different depths in different parts of the
field, as described previously [42]. Briefly, approximately 6 m wide bands of soil were excavated
perpendicular to the length of the field to either 0.3, 0.45, 0.6, 0.75, or 0.9 m depth, and a plastic barrier
was installed to limit the rooting depth prior to refilling the excavated channels. On the north and
the south ends, as well as between each of the rooting depth treatments, the soil profile was not
disturbed, such that those areas represent normal field conditions at this site (Figure 3). Weed control
was applied prior to soybean (Glycine max) planting on 18th April 2017. Soybean varieties ‘MO4301M’,
‘Dwight’, and ‘Pana’, and the two plant introductions, (PI) 398223 and 567201A, were planted in four
row wide passes (0.76 m between rows) along the entire length (north-south orientation) of the field.
Four replications, including one four-row pass of each entry, were planted with randomized entry
location within replication. No insect or pest control was used. Unique plot identifiers were assigned
for each entry x rooting depth treatment and replication. Temperatures on the day of data collection,
4th August 2017, were a high of 26 ◦C, a low of 14 ◦C, and an average of 20 ◦C. No significant rainfall
occurred during that week.



Remote Sens. 2019, 11, 330 7 of 29

Remote Sens. 2019, 11 FOR PEER REVIEW  7 

 

 
Figure 3. Experimental field with modifications restricting plant roots to different depth and 
undisturbed areas on the northern and southern ends as well as between rooting depth treatments. 

3.2.1. Data Collection 

UAV images were collected using both ICI and FLIR cameras that were mounted onto custom- 
built DJI S1000+ platforms (Figure 1c,d). The ICI camera’s sensor lens was manually focused to the 
flight altitude (30 m). Camera capture settings were set at 1 s intervals. For the FLIR camera, a single 
image of the blackbody was taken in both the radiometric jpeg and 14-bit tiff formats. The camera 
was then set to also capture at 1 s intervals, but in a 14-bit tiff format. For both cameras, the gimbal 
was set to nadir. The ICI flight started at 11:50 AM and the FLIR flight at 12:30 PM on August 4th, 
2017. Both of the UAVs were flown at an altitude of 30 m with 80% side and front overlap. A DJI 
Mavic Pro (DJI, China) was flown soon after for RGB imagery acquisition from this field. 

Ground based plant phenotypic traits were measured simultaneously during the UAV flights 
(Figure 4). For precise ground truthing of UAV data, the sampling locations within each plot were 
marked with wooden sticks for the duration of the experiment. Leaf Area Index (LAI) was measured 
using the LAI-2200C Plant Canopy Analyzer (LI-COR Inc., USA). This instrument allows for the user 
to operate under full sun conditions without any other requirements for sun angle. Measurements 
were conducted along a diagonal transect by placing the sensor on the ground between the row 
marked with the stakes and a neighboring row using the view restrictor to hide the user from the 
sensor Field of View (FOV). Two above canopy readings at the beginning and end of the rows were 
also made. 

Plant height was measured for each plot, and the above ground plant biomass samples were 
collected by cutting the stems approximately 2 cm above the soil in the selected plots. After fresh 
weight determination, the plants were oven-dried at 60 °C until weights stabilized and dry samples 
were weighed to obtain above ground dry biomass.  

Non-destructive measurements of leaf pigments were obtained on the uppermost, fully 
expanded trifoliate leaf at each sampling point using a DUALEX 4 Scientific (Force-A, France) 
handheld sensor from a plant within the marked sampling location. The leaf chlorophyll index (Chl), 
flavonol index (Flv), and Nitrogen Balance Index (NBI) are determined using the DUALEX 4 
Scientific. The leaf chlorophyll index is calculated using (T850 − T710)/T710, where T is leaf transmittance 
and the subscripts are wavelengths in nanometers (nm). The NBI is determined using [(ChlAD + 
ChlAB)/2]/(FlvAD + FlvAB), where the Flv is expressed as log(FRFR/FRFUV) using the far-red Chl 
fluorescence (FRF) emission excited by Red (R) or Ultra-Violate (UV) light. The subscripts AD and 
AB stand for adaxial and abaxial sides of the leaf, respectively. In this study, NBI was used as a 
measure of the plant nitrogen concentration.  
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3.2.2. Data Collection

UAV images were collected using both ICI and FLIR cameras that were mounted onto custom-
built DJI S1000+ platforms (Figure 1c,d). The ICI camera’s sensor lens was manually focused to the
flight altitude (30 m). Camera capture settings were set at 1 s intervals. For the FLIR camera, a single
image of the blackbody was taken in both the radiometric jpeg and 14-bit tiff formats. The camera was
then set to also capture at 1 s intervals, but in a 14-bit tiff format. For both cameras, the gimbal was
set to nadir. The ICI flight started at 11:50 AM and the FLIR flight at 12:30 PM on 4th August 2017.
Both of the UAVs were flown at an altitude of 30 m with 80% side and front overlap. A DJI Mavic Pro
(DJI, China) was flown soon after for RGB imagery acquisition from this field.

Ground based plant phenotypic traits were measured simultaneously during the UAV flights
(Figure 4). For precise ground truthing of UAV data, the sampling locations within each plot were
marked with wooden sticks for the duration of the experiment. Leaf Area Index (LAI) was measured
using the LAI-2200C Plant Canopy Analyzer (LI-COR Inc., USA). This instrument allows for the user to
operate under full sun conditions without any other requirements for sun angle. Measurements were
conducted along a diagonal transect by placing the sensor on the ground between the row marked
with the stakes and a neighboring row using the view restrictor to hide the user from the sensor Field
of View (FOV). Two above canopy readings at the beginning and end of the rows were also made.

Plant height was measured for each plot, and the above ground plant biomass samples were
collected by cutting the stems approximately 2 cm above the soil in the selected plots. After fresh
weight determination, the plants were oven-dried at 60 ◦C until weights stabilized and dry samples
were weighed to obtain above ground dry biomass.

Non-destructive measurements of leaf pigments were obtained on the uppermost, fully expanded
trifoliate leaf at each sampling point using a DUALEX 4 Scientific (Force-A, France) handheld sensor
from a plant within the marked sampling location. The leaf chlorophyll index (Chl), flavonol index (Flv),
and Nitrogen Balance Index (NBI) are determined using the DUALEX 4 Scientific. The leaf chlorophyll
index is calculated using (T850 − T710)/T710, where T is leaf transmittance and the subscripts are
wavelengths in nanometers (nm). The NBI is determined using [(ChlAD + ChlAB)/2]/(FlvAD + FlvAB),
where the Flv is expressed as log(FRFR/FRFUV) using the far-red Chl fluorescence (FRF) emission
excited by Red (R) or Ultra-Violate (UV) light. The subscripts AD and AB stand for adaxial and
abaxial sides of the leaf, respectively. In this study, NBI was used as a measure of the plant
nitrogen concentration.
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Figure 4. The process for gathering thermal data, UAV imagery, and plant trait data. In the left photo,
FLIR TG167 was used to take ground temperature readings over a thermal target, and Trimble Catalyst
Differential GPS system was used to record accurate coordinates of ground control targets. In the
middle, the UAV system was collecting data over the test site located in Bradford Research Extension
Center, Columbia, Missouri. Right photo shows a LI-6400XT Portable Photosynthesis System being
used to collect photosynthesis and stomatal conductance.

3.3. Case Study 3: High throughput Phenotyping at the Maricopa Agricultural Center

3.3.1. Experimental Setup

The third test site is the TERRA-REF field scanalyzer field at the Maricopa Agricultural Center,
Maricopa, Arizona, USA. The dimensions of the field are 219 m long and 28 m wide. Details of
the experimental site can be found in [43]. The site was planted with 168 recombinant inbred lines
of Sorghum bicolor from the cross of parents SC56 and Tx7000. The experiment was arranged as a
three replication row-column design. A custom plot grid was created to show the boundaries of
each plot in the field, as shown in the RGB image of Figure 16 (Section 5.3.1). Metadata for the plots
included unique identification numbers to distinguish between different genotypes and treatment
areas. All plots on the edges were considered to be boundary plots and they were not factored when
performing analytics. Thermal targets were placed on the outer perimeters of the field. Different from
previous trials, plastic targets were used instead of the wooden variants.

3.3.2. Data Collection

UVA flights over the sorghum field were conducted on 11th October 2018. The temperature
that day reached a high of 27.8 ◦C and a low of 16.7 ◦C, and averaged 22.2 ◦C. No rainfall was
recorded. Relative humidity was approximately 57% during the flights. All three cameras (ICI, FLIR,
and thermoMap) were used at this site. ICI and FLIR cameras were mounted on two DJI Matrice 600
Pro UAV systems (Figure 1a,b). The thermoMap camera was on the eBee (senseFly, USA) UAV system
(Figure 1e,f). The thermoMap flight was performed at 10:45 AM, and subsequent flights by the FLIR
and ICI sensors at were conducted at 11:30 AM and 11:45 AM, respectively. Images from a Sony RX10
(Sony Corporation, Japan; RGB imagery) and a RedEdge-M camera (MicaSense, Inc., Seattle, USA)
were taken together with the ICI images, as all three cameras were mounted on the same platform
(Figure 1a). The images from the Sony RX10 camera were used to classify and remove soil from the
thermal images. All UAVs were flown at an altitude of 40 m. With the exception of the FLIR camera,
all of the images were geotagged with proper spatial references during the flights.
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During the UAV flight, ground thermal data was collected using the FLIR TG167 handheld
thermal spot imager, with five readings per target. Ground based plant phenotypic traits, such as
plant height, LAI, leaf nitrogen balance index (NBI), and Chlorophyll index (Chl), were measured from
selected plots in each replication. The same instruments and procedures, as described for case study 2,
were employed for plant traits measurement (see Section 3.2.1). Plant height, LAI, NBI, and Chl data
were gathered over a period of three days, from 10th October to 12th October 2018.

4. Methods

4.1. UAV Image Pre-Processing

Mosaicking for the UAV thermal, RGB and multispectral images were performed using Pix4D
(Pix4D S.A., Switzerland) software. Pix4D was specifically designed to process UAV data and it utilizes
techniques that are rooted in both computer vision and photogrammetry to overcome the lack of
precise sensor information, such as Global Position System (GPS) and Inertial Measurement Unit
(IMU), information common in UAV data [44]. Different parameter adjustments, including changes to
number of keypoints, image scale, and a targeted number of keypoints were used to produce optimal
mosaics. Each mosaic was assessed for visual accuracy after processing.

Georeferencing and image registration was performed separately for each image using ground
control point (GCP) coordinates that were collected using the Trimble Catalyst differential GPS system
with <2 cm accuracy. The RGB imagery was georeferenced to GCPs of the field using ArcMap 10.4
(ESRI, USA). Thermal and multispectral images were then georeferenced using the aforementioned
RGB image as a baseline.

4.2. Thermal Image Calibration

At-sensor radiometric temperature that is captured by UAV integrated thermal cameras often needs
to be converted to surface temperature in degrees Celsius (◦C) or Fahrenheit (◦F) by means of atmospheric
and emissivity corrections for further applications. Radiometric distortions due to the atmospheric
influence can be considered to be negligible in the case of low flight altitudes [45–47], e.g., at less than
30 m altitude above the ground level. A variety of approaches have been employed to convert at-sensor
radiometric temperature to surface temperature in previous studies. Calibration equations/algorithms
that were provided by the sensor vendor or processing software have been applied to achieve surface
temperature information [48,49]. In addition, the empirical line method that is based on the linear
relationship between at-sensor radiometric temperature and the corresponding surface temperature
has been used in a variety of studies [47,50]. It is worth noting that radiometric calibration is sensitive
to the environment, air temperature, humidity, and the temperature of other objects, which would
have a substantial impact on the perceived temperature of the vegetation [51–53]. Moreover, uncooled
microbolometer sensors also suffer from instability when the camera body temperature changes [47].
Accounting for the environmental conditions during UAV imagery acquisition in the thermal
radiometric calibration procedure is very important for improved accuracy [51].

It is also essential to determine the optimal image-format in which to collect the data, and to
develop an efficient workflow to pre-process the images into a format that is ready to be processed for
orthomosaics. In this study, different strategies and procedures were employed for the radiometric
calibration of ICI, FLIR, and thermoMap imagery, respectively.

Radiometric calibration for ICI thermal imagery was conducted using the IR-Flash tool that was
provided by Infrared Cameras Inc. (https://infraredcameras.com/thermal-infrared-products/ir-flash-
professional-thermal-imaging-software/). The IR-Flash tool provides batch processing for multiple
images and then applies radiometric calibration using an internally installed factory calibration
process. Additionally, the IR-Flash tool allows for the users to adjust environmental condition
and imaging target related parameters, such as emissivity, transmission, and ambient temperature.
We applied environment condition parameters that were obtained from nearby on-site weather stations.

https://infraredcameras.com/thermal-infrared-products/ir-flash-professional-thermal-imaging-software/
https://infraredcameras.com/thermal-infrared-products/ir-flash-professional-thermal-imaging-software/
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The radiometric JPG format images captured from the UAV integrated ICI camera were converted to
32 bit TIFF format with IR-Flash tool for further processing.

The FLIR camera provides radiometric JPEG and 14-bit TIFF imaging modes. The at-sensor
radiometric values can be converted to temperature values in ◦C or ◦F using FLIR Tools that
were provided by FLIR® Systems, Inc. (https://www.flir.com/products/flir-tools/). FLIR Tools
is an open-source software package that allows users to import, edit, visualize, and analyze images,
and to conduct radiometric calibration. In addition, the FLIR Tools software provides options to adjust
environmental conditions and imaging targets related parameters, such as emissivity, atmospheric
temperature, relative humidity, and the distance between the camera and target. However, only the
radiometric JPEG format imagery that has temperature data embedded in each pixel can be accessed
by FLIR Tools and can be converted to radiometrically corrected temperature values in the TXT file
format. Furthermore, FLIR Tools does not support converting multiple images in bulk; it only allows
for the conversion of a single image at a time. Thus, in this study, the following procedures were
employed to achieve radiometric calibration in bulk.

First, one image of the Model 1000 blackbody (Everest Interscience, Inc.) and the background
scene was taken in radiometric JPEG. This was followed by taking one 14-bit tiff format image
from the same scene immediately before the flight. The Model 1000 operates on a 9V Alkaline
Transistor Battery. Its absolute measurement accuracy is 0.3 ◦C and thermal sensitivity is 0.1 ◦C
(InfraredThermometry.com). Second, the radiometric JPEG image was loaded to FLIR Tools
and relevant environmental parameters (air temperature, humidity, emissivity) were set using
measurements from the respective weather stations. The converted and extracted temperature values
were exported to TXT files [54,55]. The bias between the blackbody and image temperature was also
determined. Lastly, each pixel value (radiometric value) in the 14-bit TIFF image was correlated to
the corresponding value in the TXT file, which resulted in a linear model being used as a radiometric
calibration equation (Figure 5, Equation (1)). It is worth noting that there is no single equation that can
be used for images that are collected at different times and test sites, as environmental conditions vary
significantly. Therefore, different equations were developed to account for changing environmental
conditions at different study sites and times for every flight.

T(◦C) = 0.04 × R − 267.68 (1)

where T(◦C) is the absolute temperature in degree Celsius and R is the radiometric value of FLIR
thermal images.
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The thermoMap camera captures radiometric TIFF imagery, and it has an integrated shutter for
in-flight radiometric calibration (https://www.sensefly.com/camera/thermoMap/). It briefly closes
its shutter at each waypoint, takes a photo of the back of the shutter, and automatically calibrates
itself during the mission. To calibrate the level of grey in the photos, that photo is then compared
to the temperature that was measured by the built-in temperature sensor [49,56,57]. In this case,
the radiometric TIFF image was converted to temperature in degree Celsius directly with the equation
designated for this camera with the Pix4DMapper software package [48,49]. The specific equation is
as follows:

T(◦C) = 0.01 × R − 100 (2)

where T(◦C) is the absolute temperature in Celsius degree and R is the radiometric value of thermoMap
thermal images.

The ground measured temperatures from the various surfaces were compared with the
corresponding temperatures in the radiometrically calibrated thermal imagery to evaluate the
effectiveness of the calibration procedures along with temperature accuracy that was captured by
different thermal cameras. Moreover, the thermal imagery was further corrected using the empirical
line method based on ground temperature measurements [39,50].

4.3. Image Quality Assessment

The quality of the images was evaluated with respect to image naturalness and focal blur or
motion blur using three no-reference based evaluation metrics, namely Vollath’s Correlation (VC) [58],
Blur Metric (BM) [59], and Naturalness Image Quality Evaluator (NIQE) [60]. The VC, denoted as F4 in
Equation (3), is based on an autocorrelation function and it provides good performance in the presence
of noise [61], and it is computed as

F4 =
M−1

∑
x=1

N

∑
y=1

f (x, y) f (x + 1, y)−
M−2

∑
x=1

N

∑
y=1

f (x, y) f (x + 2, y) (3)

In terms of image quality assessment, f (x, y) represents the pixel value in the input image f at
the location (x, y) with a dimension of M × N.

The BM was derived from the blur discrimination of human perception by computing pixel
intensity variations between the neighboring pixels. The general form of BM can be expressed as

BM = max(b_Fv, b_Fh) (4)

where b_Fv and b_Fh are the normalized sum of coefficients that were derived from vertical and
horizontal directions, respectively. They can be calculated, as follows:

b_Fv =
∑M−1,N−1

x,y=1 DFv(x,y) − ∑M−1,N−1
x,y=1 DVv(x,y)

∑M−1,N−1
x,y=1 DFv(x,y)

(5)

and

b_Fh =
∑M−1,N−1

x,y=1 DFh(x,y) − ∑M−1,N−1
x,y=1 DVh(x,y)

∑M−1,N−1
x,y=1 DFh(x,y)

(6)

where DFv(x,y), DVv(x,y), DFh(x,y), and DVh(x,y) are the absolute difference images that were computed
from the neighboring pixels in vertical and horizontal directions [59] using the original input image
and blurred image with low-pass filters.

The NIQE is based on the construction of “quality aware” features derived from natural scene
statistics (NSS) and fitting them to a multivariate Gaussian (MVG) model [60]. The final quality of the
input image can be expressed as

https://www.sensefly.com/camera/thermoMap/
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D(v1, v2, Σ1, Σ2) =

√
(v1 − v2)

T
(

Σ1 + Σ2

2

)−1

(v1 − v2) (7)

where v1, v2 and Σ1, Σ2, respectively, represent the mean vectors and covariance matrices of natural
and the distorted MVG models.

Since the VC metric does not take into account focus measures from different scales in terms
of the pixel neighborhood correlation, we propose a Multiscale VC (MVC) in this paper. The focal
length of thermoMap is different than the other two cameras and it may lead to inaccurate image focus
measures. The MVC is derived based on VC, however, it considers the correlation from multiple pixel
distances, as expressed by

FMAC =
1

K − 1

K

∑
k=2

(
M−1

∑
x=1

N

∑
y=1

f (x, y) f (x + 1, y)−
M−k

∑
x=1

N

∑
y=1

f (x, y) f (x + k, y)

)
(8)

where k is a constant that represents the scale (i.e., pixel distance) during VC computation and K is
the maximum scale for computing MVC. In our experiments, we empirically set three scales for k,
such that K = 4.

4.4. Processing of Images to Remove Non-Vegetation Pixels

For the most accurate canopy temperature data per plot, the thermal images required filtering
of extraneous data. Areas that were outside of the study field itself were cropped. Due to the
differences in flight heights and the pixel resolutions among the cameras the proportion of exposed soil
varied among the test sites/flights. We used a machine learning based classification to eliminate
soil (Figure 6). The vegetation was extracted from the RGB image by using a Support Vector
Machine (SVM) based classifier following similar procedures to those that were outlined in [26].
The classification types were vegetation, exposed soil, shaded soil, and other (ground targets, metal
objects, equipment). The classified results were then tested using approximately 50,000 training
samples per class, with an overall accuracy of 97.3% and a Kappa coefficient of 0.97.
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Figure 6. Removal of non-vegetation pixels using Support Vector Machine (SVM) classification.

For case study 2 and 3, zonal statistics were performed per genotype using a grid shapefile created
specifically for each plot representing a genotype. Metadata of the grid included row id and genotype
name. The row id is a unique number that is given to a single rectangular plot. To run the zonal
statistics process, the filtered thermal images and grid were selected as inputs, and they were run in
separate instances. The outputs were tables containing the average temperature of each numbered
plot. Border rows, acting as boundaries between different depth limits in case study 2, were excluded.
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4.5. Statistical Analysis

4.5.1. ANOVA Test and Correlation Analysis

To quantitatively assess the results of the zonal statistics, one-way analysis of variance (ANOVA),
followed by an honest significant difference (HSD) Tukey test (α = 0.05) was conducted to test
the significant differences of crop genotypes and water treatment based on canopy temperature.
In addition, Pearson’s correlation analysis were conducted between canopy temperature and plant
traits. ANOVA tests and Pearson correlation analysis were performed using SPSS Statistics (IBM, USA).
The plant traits used were biomass, LAI, grain yield, plant height, and stomatal conductance,
depending on the test site and data availability for that test site. Each plant trait was used with
the respective plot mean temperatures of thermal cameras for the analyses. For each parameter,
however, plots where plant traits data was unavailable had to be excluded. The overall workflow of
the statistical analysis process is shown in Figure 7.
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To evaluate the accuracy of thermal imagery temperature against ground measured temperature,
the coefficient of determination (R2), root mean square error (RMSE), and relative RMSE (RMSE%)
were determined. These can be determined, as follows:

RMSE =

√
∑n

i=1(yi − ŷi)
2

n − 1
(9)

RMSE% =
RMSE

yi
× 100 (10)

where yi and ŷi are the measured and the predicted variables, respectively. yi is the mean of measured
value and n is the total number of samples.

4.5.2. Heritability Analysis for Case Study 3

Heritability indicates the degree of variation in a phenotypic trait due to genetic variation
within a specific population [62]. The heritability of a given trait at an individual environment is
calculated as the ratio of genotypic variance to the total phenotypic variance [63]. A heritability
value of 1.0 means that all of the variance in a population is caused by genetic differences among
entries without any environmental or error effects. When heritability is zero, it is expected that all
variation in the population is the result of environmental or error influences acting upon the individuals.
We used the VHERITABILITY function available with GenStat from VSN International Ltd. (VSNi, UK),
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which calculates the generalized heritability for random terms in residual (or restricted) maximum
likelihood (REML) analysis. The REML analysis utilizes linear models that can contain both fixed
and random effects with several error terms that cannot be analyzed by ANOVA. The input table was
a spreadsheet with plot numbers, genotypes, and the mean plot temperatures from the three flights.
Coordinate for each plot was also included. The resulting value would then be applied with a function
to determine the heritability percentage of the field with the different thermal cameras.

5. Results

5.1. Case Study 1: Vegetation Monitoring in Forest Park, St. Louis, Missouri

Figure 8 shows ICI, FLIR, and RGB imagery of the Forest Park study site. The findings from the
comparison are the following:
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The ICI imagery offered greater clarity in comparison to the FLIR. To maintain a comparative 
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maximum temperature for both camera images, i.e., 14 °C to 59 °C. Overall, ICI imagery appeared to 
be visually smooth and sharp (see Figure 8 close-up views), which may be attributed to the fact that 
the ICI has a smaller NETD thermal sensitivity (0.02 °C) than the FLIR (0.05 °C). NETD thermal 
sensitivity, also called temperature resolution, measures how well a thermal imaging camera is able 

Figure 8. An overview of the Forest Park, St. Louis, USA location on the right the black boxes that
indicate the target area which is zoomed into on the left. The items within the target area are two
thermal targets, four different colored targets, a grey level tarp, and a ground control points (GCP).
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The ICI imagery offered greater clarity in comparison to the FLIR. To maintain a comparative
visual reading, the temperature range for both of the cameras was set to observed minimum and
maximum temperature for both camera images, i.e., 14 ◦C to 59 ◦C. Overall, ICI imagery appeared
to be visually smooth and sharp (see Figure 8 close-up views), which may be attributed to the fact
that the ICI has a smaller NETD thermal sensitivity (0.02 ◦C) than the FLIR (0.05 ◦C). NETD thermal
sensitivity, also called temperature resolution, measures how well a thermal imaging camera is able to
distinguish between very small differences in thermal radiation. A lower NETD thermal sensitivity
means that ICI should demonstrate better discrimination power and less noise, especially for low
temperature areas (e.g., tree canopies and water) in the image in contrast to the image taken with the
FLIR camera with higher NETD thermal sensitivity. In Figure 8a, the close-up target area is clearly
defined in the ICI image, whereas the FLIR image is more pixilated, which is evident from Figure 8b,
causing distortion of the targets in the data.

Regarding the temperature range over this test site, temperatures that were extracted from the
FLIR images were higher overall with 17.46 ◦C to 58.48 ◦C, compared to 14.72 ◦C to 55.69 ◦C for those
of the ICI imagery. The differences were in part due to the time differences between the two flights
(Figure 9), and in part due to the FLIR camera’s reported temperature accuracy, which is +/− 5 ◦C.
This contrasts with a much higher accuracy for the ICI (+/− 1 ◦C), offering more precise imagery.

Remote Sens. 2019, 11 FOR PEER REVIEW  15 

 

to distinguish between very small differences in thermal radiation. A lower NETD thermal sensitivity 
means that ICI should demonstrate better discrimination power and less noise, especially for low 
temperature areas (e.g., tree canopies and water) in the image in contrast to the image taken with the 
FLIR camera with higher NETD thermal sensitivity. In Figure 8a, the close-up target area is clearly 
defined in the ICI image, whereas the FLIR image is more pixilated, which is evident from Figure 8b, 
causing distortion of the targets in the data.  

Regarding the temperature range over this test site, temperatures that were extracted from the 
FLIR images were higher overall with 17.46 °C to 58.48 °C, compared to 14.72 °C to 55.69 °C for those 
of the ICI imagery. The differences were in part due to the time differences between the two flights 
(Figure 9), and in part due to the FLIR camera’s reported temperature accuracy, which is +/− 5 °C. 
This contrasts with a much higher accuracy for the ICI (+/− 1 °C), offering more precise imagery.  

 
Figure 9. Air temperatures over the course of the day in Forest Park, St. Louis, Missouri, USA on 
09/10/2018. The red and blue lines indicate to the approximate starting times of the flights with ICI 
(11:20 AM) and FLIR (12:20 PM) cameras. 

In addition to visual assessment, the temperature accuracy captured by thermal cameras was 
evaluated as well. Figure 10 shows the comparison of the thermal camera temperature values over 
the ground thermal target location against the handheld thermal spot imager data taken on the 
ground. Using all eight temperature readings, an average was compiled for each target. This average 
value was then compared to the temperature value of the corresponding pixels within the thermal 
targets from the UAV images. Overall, the ICI produced a higher R2 value (0.95) and 10% RMSE% as 
compared to the FLIR (R2 = 0.92, RMSE% = 15%). 

 
(a) (b) 

Figure 9. Air temperatures over the course of the day in Forest Park, St. Louis, Missouri, USA on
09/10/2018. The red and blue lines indicate to the approximate starting times of the flights with ICI
(11:20 AM) and FLIR (12:20 PM) cameras.

In addition to visual assessment, the temperature accuracy captured by thermal cameras was
evaluated as well. Figure 10 shows the comparison of the thermal camera temperature values over the
ground thermal target location against the handheld thermal spot imager data taken on the ground.
Using all eight temperature readings, an average was compiled for each target. This average value was
then compared to the temperature value of the corresponding pixels within the thermal targets from
the UAV images. Overall, the ICI produced a higher R2 value (0.95) and 10% RMSE% as compared to
the FLIR (R2 = 0.92, RMSE% = 15%).
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Figure 10. Comparison of ground-based temperatures of thermal targets obtained with a handheld
temperature and temperatures of the ground targets based on ICI and FLIR imagery. (a) is the correlation
between ICI camera and ground thermal target temperature values, and (b) shows the correlation
between FLIR camera and ground thermal target temperature values.

5.2. Case Study 2: Plant Phenotyping and Early Stress Detection near Columbia, Missouri

5.2.1. Visual Evaluation and Comparison

After mosaicking and calibration, both the ICI and FLIR images displayed acceptable data with
both cameras allowing for visual differentiation of soybean genotypes. The ICI image exhibited slightly
more detail, exhibiting more exposed soil than the FLIR image (Figure 11). This was corroborated by
comparisons to the RGB image. Additionally, the ICI camera covers a wider spectral range, meaning
that the differences in temperature were more visually enhanced as displayed in Figure 11. The FLIR
image also displayed a variety of anomalies with the overall image that it provided. The northwestern
corner, while mild when seen from the ICI camera, was considered “hot” by the FLIR camera.
In addition to the corner, the center region of the field was unusually cool, which was displayed
more consistently by the ICI camera. The study area did not undergo major changes between the
flights, thus a sudden cooling within the field was considered to be unlikely.
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Figure 11. A comparative view of the Bradford test site in Columbia using different cameras. Solid
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Post flight calibration procedures for both thermal cameras were not identical, as each camera
had its own specific process. ICI utilizes proprietary software, which converts the JPEG images to
32-bit TIFF files in an effective manner. The FLIR images required a separate calibration process using
the FLIR Tools (FLIR Systems, USA) software.

5.2.2. Temperature Accuracy Assessment

To validate the UAV derived temperatures from study site 2, a comparison was made with thermal
data collected from ground thermal targets using the handheld thermal spot imager. Both thermal
cameras showed high correlations, exhibiting R2 values of 0.95 and 0.95, for the ICI and FLIR data sets,
respectively (Figure 12). However, RMSE is 2.29 ◦C and 3.49 ◦C for the ICI and FLIR data, respectively,
which is consistent with relative camera specifications that were claimed by manufacturers. It is
worth noting that Figure 12 demonstrates the comparison between UAV-based thermal camera with
ground-based thermal spot imager, each of which has its own accuracy and uncertainty. For example,
the manufacturer claimed accuracy for each sensor are +/− 1 ◦C, +/− 5 ◦C, and +/− 1.5 ◦C for ICI,
FLIR camera, and FLIR TG167 handheld thermal spot imager (ground truth), respectively. Each ground
temperature measurement was compared to the corresponding pixel area that was seen in the UAV
image. Minor differences between the ground and camera-derived temperatures were observed in
absolute values, especially within lower temperature ranges. Both ICI and FLIR imagery resulted in an
overestimation of temperatures at the higher temperature ranges, the deviation from the ground-based
temperature measurements were greater for the FLIR (a better alignment along the 1:1 line for ICI than
for FLIR).
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Figure 12. A comparison of ground and UAV thermal data over the Bradford, Columbia test site. (a) is
the correlation between ICI camera and ground thermal target temperature values, and (b) shows the
correlation between FLIR camera and ground thermal target temperature values.

5.2.3. ANOVA Test for Different Soybean Genotypes and Rooting Depth Treatments

Figures 13 and 14 show the overall single factor ANOVA results for both cameras, as categorized
by genotype and rooting depth/water availability treatment. Statistical significance was also labeled,
primarily for categories with notable statistical differences. Statistical significance was determined by
performing additional ANOVA tests where specific category pairs were selected. Asterisks represent
the statistical significance, primarily through the different p-values that were received from the paired
ANOVA tests. A p-value of less than 0.05 is considered to be one asterisk, while a p-value less than
0.01 is considered to be two asterisks. A p-value smaller than 0.001 is considered to be three asterisks,
which indicates the greatest statistical significance within the comparison. As shown by Figures 13
and 14, both of the cameras can confidently differentiate the PI398223 and PI567201A genotypes.
Statistical significance for PI398223 when compared to other genotypes yielded results above the 95%
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confidence interval. For the depth categorization, there were large discrepancies that were visible from
the FLIR data. Despite the larger differences in temperatures, the p-value results for many FLIR pairs
were larger than 0.05. Outputs that were above the 95% confidence threshold were only attainable for
the ICI data when comparing the treated depths to the control. Comparisons that yielded a p-value
greater than 0.05 were labeled Not Significant.

Remote Sens. 2019, 11 FOR PEER REVIEW  18 

 

  
(a) (b) 

Figure 13. ICI (a) and FLIR (b). The bars represent the average temperature of each genotype, with 
asterisks representing statistical significance tiers above. The number of asterisks represent p-value 
of 0.05 (one asterisk), 0.01 (two asterisks), and 0.001 (three asterisks). 

  
(a) (b) 

Figure 14. ICI (a) and FLIR (b). The bars represent the average temperature of each water 
treatment/depth, with statistical significance tiers above. The number of asterisks represents p-value 
of 0.05 (one asterisk), 0.01 (two asterisks), and 0.001 (three asterisks). NS refers to the results are not 
statistically significant. Note the large differences in temperature for the unobstructed region. In 
addition, the temperatures for other depths also had notable differences. 

5.2.4. Correlation Analysis between Canopy Temperature and Plant Phenotypes 

Table 2 and Figure 15 below show the results of the correlation analyses between canopy 
temperature and other phenotypes across all genotypes and rooting depth treatments. Canopy 
temperature and shoot biomass correlations were not significant (p > 0.05). Aside from biomass, the 
ICI data were significantly correlated with all other phenotypes. The FLIR data were correlated (p < 
0.05) grain yield, plant height, and stomatal conductance. Both of the cameras achieved the 99% 
confidence threshold for plant height, despite having a lower correlation coefficient when compared 
to grain yield and stomatal conductance. The ICI data exhibited the strongest correlation and 
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with asterisks representing statistical significance tiers above. The number of asterisks represent
p-value of 0.05 (one asterisk), 0.01 (two asterisks), and 0.001 (three asterisks).
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Figure 14. ICI (a) and FLIR (b). The bars represent the average temperature of each water
treatment/depth, with statistical significance tiers above. The number of asterisks represents p-value
of 0.05 (one asterisk), 0.01 (two asterisks), and 0.001 (three asterisks). NS refers to the results are
not statistically significant. Note the large differences in temperature for the unobstructed region.
In addition, the temperatures for other depths also had notable differences.

5.2.4. Correlation Analysis between Canopy Temperature and Plant Phenotypes

Table 2 and Figure 15 below show the results of the correlation analyses between canopy
temperature and other phenotypes across all genotypes and rooting depth treatments. Canopy
temperature and shoot biomass correlations were not significant (p > 0.05). Aside from biomass,
the ICI data were significantly correlated with all other phenotypes. The FLIR data were correlated
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(p < 0.05) grain yield, plant height, and stomatal conductance. Both of the cameras achieved the 99%
confidence threshold for plant height, despite having a lower correlation coefficient when compared to
grain yield and stomatal conductance. The ICI data exhibited the strongest correlation and significance
level with stomatal conductance, while the FLIR data performed similarly with yield.

Table 2. Correlation coefficient between canopy temperature and soybean phenotypic traits.

Cameras Biomass (g) LAI Grain Yield (g) Height (cm) SC (mmol/m2·s)

ICI (◦C) 0.15 −0.23 * −0.52 * −0.26 ** −0.68 **
FLIR (◦C) −0.07 −0.03 −0.41 ** −0.28 ** −0.37 *

SC: Stomatal Conductance; *, **, *** represent significance levels of 0.05, 0.01, and 0.001 respectively.
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5.3. Case Study 3: High Throughput Phenotyping at Maricopa Agricultural Center

5.3.1. Visual Evaluation and Comparison

Figure 16 shows the qualitative comparison of the ICI, FLIR, and thermoMap cameras.
The temperature ranges for each of the images varied due to the difference in capture time and
as a result of the cameras being deployed on separate systems. One may expect that the FLIR and ICI
camera should show higher temperatures than the thermoMap, since the FLIR and ICI flights were one
hour later than the thermoMap. However, the ICI camera demonstrates a relatively cooler temperature
gradient for the field, even though it was flown at approximately noon (thermoMap: 10:45 AM, FLIR:
11:30 AM, and ICI: 11:45 AM). This may be attributed to its smaller NETD thermal sensitivity and
lower noise floor of ICI camera, which allows the detection of low temperature objects. Despite the
temperature variations, all of the images could accurately discern between soil and plant canopy.
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Unlike the test sites that were located in Missouri, the Maricopa, Arizona site represents an arid,
semi-arid biome, and climate. During the time of data capture, more soil was exposed at the Maricopa
site than at the other two sites. Given these considerations, a direct comparison of ground thermal
measurements with UAV data was not conducted because surface temperature experienced significant
change during the flights.

5.3.2. Heritability Analysis and Phenotype Estimation

After the soil pixels were removed using the machine learning based masks that were produced
from the RGB imagery, zonal statistics were applied to gather average plot temperatures. The extracted
data was then concatenated and loaded into Genstat, which is agriculture focused statistical analysis
software from VSN International Ltd. (VSNi), UK. Extracted plot mean temperatures exhibited high
heritability for ICI, FLIR, and thermoMap cameras, with values of 0.756, 0.744, and 0.729, respectively.
Higher heritability indicates that a greater portion of plant trait variations is the result of genetic
differences. All three cameras demonstrated that a significant portion of variability in plot temperatures
(over 72%) was accounted for by genetic differences. Among the three cameras, ICI produced the
highest heritability, which was followed by the FLIR and thermoMap.

Table 3 shows a Pearson’s correlation coefficient between plot level mean temperature values
from the cameras and in-situ phenotypes, including LAI, canopy height, NBI, and Chl. Since LAI
and canopy height are canopy structure information, a mixed pixel with soil component was used for
analysis. NBI and Chl are leaf biochemical variables and soil was removed for NBI and Chl analysis.
Thus, results were produced with and without soil information for comparative analysis. Overall, ICI
temperature with soil was best correlated with LAI and canopy height at 0.01 significance. When soil
effects were removed, the ICI temperature was still the strongest predictor of LAI and canopy height,
with statistical significance at the 99% confidence interval. Following ICI, the FLIR results were superior
to thermoMap for estimating LAI but they demonstrated the weakest correlation with canopy height
among the three cameras. However, the relationship between leaf biochemical variables (NBI and
Chl) and plot mean temperature was strongest with FLIR, which was followed by ICI. No statistically
significant relationship was found between thermoMap temperature and LAI, NBI, and Chl, which was
probably due to coarse ground sampling distance and larger NETD thermal sensitivity.

Table 3. Pearson’s correlation coefficient between plot level mean temperatures and in-situ phenotypes.

Parameters LAI Height (cm) NBI Chl

Samples 193 237 165 165

Cameras With soil No soil With soil No soil With soil No soil With soil No soil

ICI −0.266 ** −0.261 * −0.597 ** −0.520 ** 0.212 ** 0.290 ** 0.165 * 0.253 **
FLIR −0.196 ** −0.142 * −0.427 ** −0.263 ** −0.219 ** −0.359 ** −0.239 * −0.373 **

thermoMap −0.130 −0.132 −0.440 ** −0.465 ** −0.081 −0.060 −0.110 −0.078

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

5.4. Image Quality Assessment and Comparison

Table 4 shows a quantitative comparison of image quality of ICI, FLIR, and thermoMap captured
images (i.e., 100 raw images for each camera) from three different test sites and Table 5 shows image
quality comparison using the mosaicked images generated from ICI, FLIR, and thermoMap cameras.
The value of NIQE demonstrates the relationship between quantified image naturalness and perceptual
image quality, while BM quantifies the image artifacts, including focal blur or motion blur [61]. Lower
values of both NIQE and BM indicate better image quality than high values. In contrast, VC and
MVC are image focus measures based on the autocorrelation. The higher the value of VC and MVC,
the better the focus of the input images.
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Table 4. Quantitative assessment of image quality on 100 raw images for each test site. Note that the
lower values of Naturalness Image Quality Evaluator (NIQE) and Blur Metric (BM), and higher values
of Vollath’s Correlation (VC) and Multiscale VC (MVC) indicate a better image quality. The best score
is highlighted in boldface.

Test Site Cameras
Evaluation Metric

NIQE BM VC MVC

Forest Park,
St. Louis, MO

ICI 3.312 0.340 201.451 400.034
FLIR 4.031 0.355 163.206 337.699

Bradford,
Columbia, MO

ICI 3.911 0.316 161.337 325.846
FLIR 4.404 0.329 193.204 390.599

Maricopa, AZ
ICI 4.449 0.346 272.267 552.679

FLIR 4.592 0.345 268.672 539.110
thermoMap 5.678 0.3180 188.5250 382.812

VC: Vollath’s Correlation; BM: Blur Metric; NIQE: Naturalness Image Quality Evaluator; MVC: Multiscale VC.

From Tables 4 and 5, it can be seen that the performance of each camera is varied for each test site,
although ICI and FLIR exhibited very competitive performance. More often than not, ICI provided
better quality scores than FLIR (Tables 4 and 5), which may be due to a joint contribution of its smaller
f-stop and thermal sensitivity (Table 1). For raw images, ICI outperformed FLIR and thermoMap in
almost all of the image quality metrics that were considered; however, FLIR showed overall smaller
BM for mosaicked data, which was likely due to its better focus to infinity. Note that all images were
normalized between 0 and 1 prior to the quality assessment, since the range of pixel intensity of these
cameras varies.

Table 5. Quantitative assessment of image quality on mosaicked images. Note that the lower values of
NIQE and BM, and higher values of VC and MVC indicate a better image quality. The best score is
highlighted in boldface.

Test Site Cameras
Evaluation Metric

NIQE BM VC MVC

Forest Park,
St. Louis, MO

ICI 3.059 0.359 838.689 1690.026
FLIR 3.555 0.293 188.537 362.207

Bradford,
Columbia, MO

ICI 4.100 0.330 688.574 1408.620
FLIR 4.082 0.321 580.750 1,156.152

Maricopa, AZ
ICI 4.175 0.401 338.970 695.624

FLIR 4.634 0.366 313.269 638.899
thermoMap 8.481 0.489 102.327 242.439

VC: Vollath’s Correlation; BM: Blur Metric; NIQE: Naturalness Image Quality Evaluator; MVC: Multiscale VC.

6. Discussion

6.1. Thermal Cameras for Plant Phenotyping

The results of the current study demonstrated the value of thermal cameras mounted on UAVs to
estimate a range of plant traits. Within the field of precision agriculture, the usage of UAV based thermal
remote sensing has been proven to be beneficial for gathering data and providing useful analytics for
plant related issues [38,64]. For genotype differentiation, the results of this study showed that thermal
cameras could be used for this purpose, as demonstrated by Figures 13 and 14. Due to differences in
canopy architecture, leaf morphology, and physiology, different genotypes have individual properties
that can contribute to differences in the emitted heat, which can be used to identify genotype differences.
Among the five genotypes that were considered in the Columbia, MO test site, the ICI camera
specifically identified greater genotype differences with the PI398223 soybean genotype, showing
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a higher average temperature as compared to the averages of others. Temperature variations among
all of the genotypes were effectively explained by genotype difference and water treatment (Figures 14
and 15), which is consistent with previous work [65] that utilized a similar method to differentiate
between 92 different maize genotypes for screening drought adaptations.

Correlation analysis between plot average temperature and various plant traits demonstrated that
there was no strong relationship or significance between temperatures and most of the plant traits that
were considered, including LAI, biomass, and height for soybean growth at the Columbia, MO test site.
However, the negative correlations between the extracted temperatures and yield were significant for
both ICI and FLIR (Table 2), which is consistent with [40] and comparable to the results from [26,40].
Correlations of canopy temperature with canopy height and stomatal conductance were significant for
both ICI and FLIR. The ICI exhibited the strongest correlation with stomatal conductance at 0.68 with
a 99% confidence interval (Table 2).

6.2. Water Stress Detection

Plant water stress was identifiable from each image from the Columbia, MO study, which clearly
showed the 0.3 m rooting depth treatment. As access to water is reduced, plants exhibit higher canopy
temperature. For the ANOVA tests regarding the depth treatment factor, neither camera produced
a conclusive image that was comparable to the genotype differentiation. A common factor was the
0.3 m row, but the other treatment rows had no similarities in relation to each other. An area of
interest was the control row, which had no depth limit hindering root growth. The difference in
average temperature for the control per image was greater than 1 ◦C. Hypothetically, the temperature
of this region would be assumed as being constant or stable for both images, and, as each treatment
gets deeper, the lower the temperature. The FLIR data showed that the control region was almost
as hot as the 0.3 m region. In addition, the intermediate rows showed a much lower and probable
range. From the ICI results of the ANOVA test, the middle rows exhibited the opposite of the FLIR,
with all treatments being closer in temperature, with exception to the control area. The results were
inconclusive regarding depth treatment differentiability. Neither camera in this case could accurately
perform this function.

6.3. Impact of Camera Focal Length and Ground Sampling Distance

Spectral vegetation indices (VIs) are related to crop biochemical and biophysical traits, and they
have been widely used to monitor crop growth and health [66–69]. In order to further investigate
the impact of camera focal length and ground sampling distance on canopy temperature and crop
phenotyping, Pearson’s correlation analysis between plot-level mean canopy temperature and several
commonly used vegetation indices was applied for each camera at the Maricopa, AZ test site.
Vegetation indices, including normalized difference vegetation index (NDVI), Green Normalized
Difference Vegetation Index (GNDVI), and normalized difference red edge index (NDRE), respectively,
were calculated using RedEdge-M camera (MicaSense, Inc., Seattle, USA). The correlation analysis was
conducted under both with and without removing background soil.

Table 6 shows the Pearson’s correlation coefficient (r) between canopy temperature and VIs
with and without soil information. Canopy temperature from the ICI camera yielded the strongest
correlation with all VIs in both with/without soil removal analyses, indicating that the ICI camera has
greater potential in crop monitoring to some extent. The ICI camera is followed by the thermoMap
camera in terms of canopy temperature and VIs correlation coefficient. The FLIR camera provided
the weakest correlation among the cameras when compared to all VIs in both cases. However, it is
worth mentioning that the FLIR camera presented slightly weaker but comparable performance with
the thermoMap camera when soil was included in the analysis. In addition, the correlation coefficient
between canopy temperature and VIs dropped significantly for the ICI and FLIR cameras when soil was
removed, whereas it decreased only slightly for the thermoMap camera. This might be attributed to the
relatively low ground sampling distance due to its 9 mm focal length and the larger thermal sensitivity
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of thermoMap. All of the flights were conducted at 40 m altitude, which produced approximately 5
cm ground sampling distance for both ICI and FLIR, and 10 cm for thermoMap imagery. This means
that the thermoMap has a larger proportion of mixed pixels when compared to the ICI and FLIR
with varying degree of soil information, which contributed to the greater variation in temperature
values, even after soil removal. In other words, soil removal had little effect on the temperature-VI
relationship for thermoMap. In contrast, the temperature-VI relationship was significantly changed
after soil removal due to a greater proportion of removed soil signal as the result of the smaller ground
sampling distance (spatial resolution) of the ICI and FLIR cameras. This was also evident from Table 3
that soil removal did not significantly affect the relationship between the thermoMap temperature
and canopy structural (LAI, Height) and biochemical (NBI, Chl) variables. For both of the variables,
change was significant for ICI and FLIR cameras due to the removal of soil information.

Table 6. Correlation coefficient between plot mean temperature and vegetation indices.

VIs NDVI GNDVI NDRE

Cameras With soil No soil With soil No soil With soil No soil

ICI −0.857 ** −0.720 ** −0.846 ** −0.631 ** −0.803 ** −0.626 **
FLIR −0.632 ** −0.371 ** −0.642 ** −0.341 ** −0.615 ** −0.302 **

thermoMap −0.763 ** −0.749 ** −0.775 ** −0.631 ** −0.637 ** −0.468 **

** Correlation is significant at the 0.01 level (2-tailed).

6.4. Limitations of the Study

To increase the diversity of experimental setup, we collected data at different altitudes.
The Columbia, MO study site data was collected by UAV flights at an altitude of 30 m. In comparison,
the Forest Park location was flown at approximately 80 m and the Maricopa site at 40 m. Although
different topography required altitude changes, such as the tall trees that are present in Forest Park,
a uniform flight height may provide consistency regarding data quality over different landscapes.
When combined with the need to compare UAV imagery temperatures to ground measured
temperatures, an inconsistent data collection method can hamper comparability of thermal image
quality among different sites and ecosystems.

Thermal imaging cameras record longwave radiation or heat emitted from objects, which can
be converted to a visible temperature map. The intensity of the radiation is determined by kinetic
temperature of an object, emissivity, environmental (e.g., wind speed, humidity), and atmospheric
(e.g., absorption from atmospheric water vapor, changes in upwelling and downwelling radiations)
conditions. For UAV-based near surface thermal imaging, the effects of environmental conditions
may have more considerable effects than atmospheric conditions that should be carefully treated and
eliminated. Changes in sunlight conditions during multiple flights may alter kinetic temperature of
the ground objects depending on climatic zones and the time length between the flights. In our study,
due to the potential for an unwanted collision, the UAVs were not flown at the same times. The timing
was evident for the Forest Park site, with a one-hour difference in flight time for the FLIR and ICI
cameras. To minimize these effects for plant phenotyping, flights were scheduled to be continuous and
there was an average of 15 min in between flight start times. Time differences can produce contrasting
data with discrepancies in absolute temperature values. However, we found no significant effects of
15-min flight differences on the phenotype results and heritability analysis.

Correlating with the flight limitations were the differences between a copter and fixed-wing
platforms. The flights in 2017 were conducted using two custom built DJI S1000+ octocopter platforms,
which were integrated with an open source Pixhawk Autopilot. For the remainder of flights, the DJI
Matrice 600 Pro UAV systems were used in conjunction with the ICI and FLIR cameras. The thermoMap
camera was built within the eBee fixed-wing platform. A fixed-wing platform can offer similar
performance and a longer flight time to gather more data, but it lacks the ability to hover and it
requires a unique launch. Fixed-wing UAVs also lack the ability to carry relatively cumbersome
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gimbals that further enhance image stability as incorporated in the octo and hexacopter systems.
With the combined differences of platforms, flight methods, and flight protocols, a more consistent
approach in the future may prove superior.

Climate and geography, with regards to this study, was both a limitation and a benefit.
For limitation, the Maricopa site was an outlier in terms of being an arid and hotter area in comparison
to the more moderate and humid conditions of the Columbia and Forest Park sites. As displayed
in Figure 16, the Maricopa site is located in a dry setting, lacking the grass and trees that are seen
in the other sites. Despite the focus on the crop canopy, a dry surrounding can affect the thermal
images that were collected by having a warmer air temperature and ground temperature, as the
cameras utilize non-uniformity correction and flat field correction during the flights. This was evident
by the lack of correlation with the UAV sensed target temperatures to the ground collected target
temperatures. Combined with flight time differences and rising ground temperatures in a short time
period, the comparison of data becomes more problematic, both with respect to comparisons among
UAV-deployed cameras, as well as with ground truth data. Despite these limitations, the addition of
a site with a vastly different climate was beneficial in illustrating the power of thermal cameras for
plant phenotyping and vegetation monitoring.

Software and camera properties necessitated different calibration methods for the different
systems. Furthermore, each camera has its’ own unique and proprietary onboard calibration system,
including a non-uniformity correction (NUC), which may involve the use of methods, such as empirical
line correction and other noise reduction techniques. This forces each dataset from the three cameras to
be calibrated and the temperature to be converted differently. These differences may have contributed
to the temperature variations, in addition to the flight time offsets due to flight logistics.

For a more advanced future project, using different crops for analysis could prove to be valuable
for thermal based phenotyping. Only pure soybean and sorghum were analyzed for this study,
with their respective genotypes. In a controlled setting, the thermal cameras have proven to be capable
of discerning genotypes. In a more real-world application, a camera may be used to differentiate
species of plants. By adding different crops, this can enhance the viability of utilizing thermal imagery
for such purposes.

Last but not the least, it was not possible to draw an absolute conclusion in terms of image
quality due to the fact that image quality can be distorted during acquisition, processing, compression,
storage, and transmission procedures [70], as well as many other factors, such as weather condition,
atmospheric effects, solar illumination, etc. Therefore, a more comprehensive evaluation would be
required regarding image quality assessment to more directly evaluate sensors’ performance.

7. Conclusions

This study demonstrates that thermal cameras provide critical information for vegetation
monitoring and plant phenotyping. Overall, all three thermal cameras considered (ICI 8640 P, FLIR Vue
Pro R 640, and thermoMap) proved useful in vegetation monitoring and plant phenotyping. The main
conclusions include:

1. The ICI and FLIR cameras provided good image quality. The ICI camera provided the best score
in terms of Naturalness Image Quality Evaluator (NIQE), while FLIR yielded better Blur Metric
(BM) and Vollath’s Correlation (VC) scores. The ICI provided a more consistent and visually
appealing result than the FLIR, but, as indicated by the quality tests, both of the cameras are
capable of providing different sets of high-quality data.

2. The ICI camera provided the best results for plant phenotyping, as its discerning ability was
shown to be higher than those of the FLIR and thermoMap. Although respectable results were
achieved by the FLIR, the ICI provided a more thorough and accurate result.

3. Higher heritability indicates that a greater portion of plant trait variations is the result of
genetic differences. The heritability of plot mean temperatures was highest when calculated
based on the ICI camera, followed by FLIR and then thermoMap, with values of 0.756, 0.744,
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and 0.729, respectively. All three cameras demonstrated that over 72% of variability in plot mean
temperatures was accounted for by genetic differences.

4. The best overall thermal camera for precision agriculture and phenotyping based on this study
was the ICI, as it performed well, with appealing spatial data, a close performance in image
quality, with the highest value being exhibited for heritability. This is consistent with the relative
camera specifications that were claimed by manufacturers.
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