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Abstract: An adjusted satellite-based model was proposed with the aim of improving spatially
distributed evapotranspiration (ET) estimates under plant water stress conditions. Remote sensing
data and near surface geophysics information, using electrical resistivity tomography (ERT), were
used in a revised version of the original dual crop coefficient (Kc) FAO-56 approach. Sentinel 2-A
imagery were used to compute vegetation indices (VIs) required for spatially estimating ET. The
potentiality of the ERT technique was exploited for tracking the soil wetting distribution patterns
during and after irrigation phases. The ERT-derived information helped to accurately estimate
the wet exposed fraction (few) and therefore the water evaporated from the soil surface into the
dual Kc FAO-56 approach. Results, validated by site-specific ET measurements (ETEC) obtained
using the eddy covariance (EC) technique, showed that ERT-adjusted ET estimates (ETERT) were
considerably reduced (15%) when compared with the original dual Kc FAO-56 approach (ETFAO), soil
evaporation overestimation being the main reason for these discrepancies. Nevertheless, ETFAO and
ETERT showed overestimations of 64% and 40% compared to ETEC. This is because both approaches
determine ET under standard conditions without water limitation, whereas EC is able to determine
ET even under soil water deficit conditions. From the comparison between ETEC and ETERT, the
water stress coefficient was experimentally derived, reaching a mean value for the irrigation season
of 0.74. The obtained results highlight how new technologies for soil water status monitoring can be
incorporated for improving ET estimations, particularly under drip irrigation conditions.

Keywords: sentinel data; near surface geophysics; irrigation; eddy covariance; soil water balance

1. Introduction

Soil surface evaporation (E) and crop transpiration (T) play a crucial role in terrestrial water
balance. Their estimation results are critical for understanding crop water use efficiency (WUE) and
improving decision-making for soil and crop water management [1–3]. In this sense, improving the
methods used for determining these components (T and E) is needed. While T represents the water
used directly by crops, E is considered as an unproductive portion of WUE, which can range from
10% [4] to 59% [5] of the seasonal water balance. In general, two strategies are addressed with the
aim of enhancing WUE: (i) increase T or; (ii) reduce E losses. Numerous authors have proposed
different mechanisms to increase the proportion of water that is transpired by crop rather than E
losses, including: early sowing [6,7], enhancing crop vigorousness [8,9], using narrow row spacing [10],
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applying high plant densities [11], and adopting mulching, stubble retention, and a proper weed
management [12,13].

Evapotranspiration (ET), which consists of the sum up of both T and E components, can be
determined at different spatial and temporal resolutions through different techniques (e.g., lysimeter;
eddy covariance, EC; scintillometry). However, partitioning among E and T components is not an
easy task. For this reason, it is usual to resort to models, such as the FAO-56 approach [14], which is
used as reference. This model includes a simple approach (single crop coefficient, Kc), where T and
E are considered together, and a more complex methodology (dual Kc FAO-56), where both T and
E components are determined separately (i.e., basal crop coefficient Kcb and evaporation coefficient
Ke). Both models can be combined with spectral data provided using remote sensors in order to
provide spatially distributed ET estimates [15]. Although Kcb represents a specific crop characteristics
index that varies only to a limited extent with climate, Ke can vary considerably depending on the
time interval between wetting events, the magnitude of the wetting event, and the E power of the
atmosphere. Nevertheless, these aspects are not deeply addressed in the FAO-56 approach. Thus, the
use of alternative techniques is required in order to obtain more accurate Ke estimates.

Moreover, the calculation of Ke needs to take into account the spatial and temporal distribution
of irrigation-wetting patterns that are governed by static and dynamic conditions, such as soil
characteristics (e.g., hydraulic parameters, texture, structure, initial water content), irrigation systems
(types, emitter spacing, discharge rate, and irrigation frequency), and root distribution. In general,
soil wetting patterns can be obtained using in situ soil water (SW) measurements. Caution needs
to be applied on the use of SW measurements, since site conditions (compaction layers or surface
soil conditions) may be quite site-specific, and installation of instrumentation can affect the soil
wetting patterns being measured [16]. Undisturbed methods, such as dye tracers, often combined
with flow and/or transport modeling, have been used to describe infiltration from a point/line
source; however, models do not at present fully reflect the current state of process understanding and
empirical knowledge of preferential flow [17]. A number of near surface geophysics methods have
been adopted for image irrigation wetting patterns [18]. Among these minimally invasive methods,
electrical resistivity tomography (ERT) has the main advantage of being sensitive in monitoring
soil-plant interactions in terms of SW relationships with high-resolution scale both in two and/or three
dimensions [19–22]. Furthermore, ERT can provide useful information on soil wetting patterns both
spatially and temporally distributed if applied in time-lapse mode.

Therefore, the main objective of this work was to explore the potentialities of incorporating ERT
derived surface wetting patterns into a satellite-based dual Kc FAO-56 approach for estimating E and
assessing its influence on ET by comparison with EC measurements.

2. Materials and Methods

In this study, the assessment of an updated satellite-based procedure based on a dual Kc FAO-56
approach is proposed. A schematic summary of the adopted methodology is reported in Figure 1.

The original satellite dual Kc FAO-56 approach [14] was adjusted with ERT-derived data that
provided site-specific information on the exposed wetting fraction (few). This parameter represents the
fraction of soil that is both exposed and wetted (from which most evaporation occurs). As reported
in [14], few contributes in the definition of the soil evaporation coefficient (Ke, Equation (2)) and as
well in ET determination (see Equation (1)). ERT surveys provided few that was incorporated as a
parameter into the soil water balance (SWB) model (Equation (4)) within the dual Kc FAO-56 approach,
permitting the obtainment of an ERT-adjusted evaporation coefficient (Ke,ERT) and evapotranspiration
estimates (ETERT).

A validation of ET estimates obtained using both the original dual Kc FAO-56 (ETFAO) and the
ERT-adjusted model (ETERT) was performed with EC-based ET measurements (ETEC) collected in situ.
In the following sub-sections, the materials and methods are described in detail.
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2.1. Original Model Description

The original dual Kc FAO-56 approach determines crop evapotranspiration (ETFAO) based on the
concepts of reference evapotranspiration (ET0) and separate coefficients for crop T (represented by the
basal crop coefficient, Kcb) and E (Ke), as follows:

ETFAO = (Kcb + Ke)·ET0 (1)

where ET0 (mm d−1) is estimated by using the Penman–Monteith equation with hourly weather data
(see 1.2) supplied by a weather station located close to the study site.

Ke depends on the water available in the surface layer of the topsoil and its estimation requires a
daily water balance (SWB) computation for the surface soil layer in order to determine the cumulative
E or depletion from the wet condition, as follows:

Ke = Kr(Kc,max − Kcb) (2)

where Kc,max is the maximum crop coefficient value following rain or irrigation while Kr represents
the reduction applied to E depending on the amount of water evaporated from the soil, as follows:

Kr =
TEW − De,i

TEW − REW
(3)

where TEW = 1000 (θFC − 0.5 θWP) Ze is the total evaporable water (i.e., maximum depth of water
that can be evaporated from the soil surface layer), with θFC and θFC measured soil field capacity and
wilting point (see 2.3) at the study site and Ze equal to 0.1, as reported in [14]; REW is the readily
evaporable water (fixed at 10 mm for the study site soil, i.e., sandy loam [14]); and De,i is the cumulative
depth of evaporation from the topsoil (mm) at the end of the 1-th day, and it is solved as follows:

De,i = De,i−1 − (Pi − ROi)−
Ii

fw
+

Ei

few
+ Tew,i + DPe,i (4)

where De,i−1 is the cumulative depth of E following complete wetting from the exposed and wetted
fraction of the topsoil at the end of day i − 1 (mm); Pi is precipitation on day i (mm); ROi is precipitation
runoff from the soil surface on day i (mm); Ii is irrigation depth on day i that infiltrates the soil (mm); Ei

is evaporation on day i (i.e., Ei = Ke ET0) (mm); Tew,i is depth of T from the exposed and wetted fraction
of the soil surface layer on day i (mm); DPe,i is deep percolation loss from the topsoil layer on day i if
SW exceeds θFC (mm); fw is the fraction of soil surface wetted by irrigation (0.35 for drip irrigation [14]);
few is exposed and wetted soil fraction, computed as the lowest value between the average exposed
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soil fraction not covered (or shaded) by vegetation and fw [14]. Therefore, few calculation within the
SWB depends also on the occurrence of irrigation and precipitation and it is calculated differently for
each scenario as: (1) if the surface is wetted by irrigation, then fw is the fw for the irrigation system,
and therefore few is equal to 0.35 (this value is obtained from [14]); (2) if the surface is wetted by
significant rain (i.e., >3 to 4 mm) with no irrigation, fw = 1 and therefore few is (1 − fc); and (3) if there
is neither irrigation nor significant precipitation, few is the few of the previous day. However, the value
of 0.35 considered in this approach, as it is a general theoretical few procedure, may not reflect the
site-specific conditions, which could be more accurately determined performing local measurements
(as the ERT-adjustment described in Section 2.2 “ERT-adjusted model parameter”).

2.2. ERT-Adjusted Model Parameter

As stated in Section 2.1, few values proposed in [14] can be adjusted in order to account for the
site specificities (such as soil type and depth, and dripper flow and density, among others). This is the
case of the novel ERT-adjusted dual Kc FAO-56 approach proposed herein. In this approach, Kr,ERT

(Equation (3)) and Ke,ERT (Equation (2)) were calculated by solving the SWB model (Equation (4)) using
the few information provided by ERT instead of using the FAO-56 proposed few value as in the original
FAO-56 model, thus ETERT was derived by including the modified Ke,ERT term in Equation (1).

ERT (see [23]) is an active source geophysical method that uses a low-frequency electrical current,
galvanically injected into the ground between a pair of current source electrodes, and measures the
potential between two or more different potential electrodes. A cross section or a volume distribution
of electrically resistive or conductive regions in the subsurface is the result obtained by repeating the
patterns through many combinations of transmitting and receiving electrodes along a line or grid (or
with borehole electrodes). The current, voltage, electrode spacing, and electrode configuration are
used to calculate the electrical resistivity (ER, i.e., the inverse of electrical conductivity).

ERT surveys were carried out in 2017 (15th and 18th September) at the experimental site. A
three-dimensional (3-D) set-up (made of 72 surface and borehole electrodes) was used to monitor
the unsaturated soil volume (1.3 × 1.3 × 1.2 m) around the root-zone of two trees, one irrigated by
micro-drippers at full rate, T1, and the other one supplied at 50% of T1 by PRD strategy, T2. A full
description of the 3-D ERT set-up and data processing is reported in [22].

The electrical resistance (ohm, Ω) dataset was collected at T1 and T2, with short-term repetitions
during and after irrigation phases, in order to get dynamic information about sub-surface processes
(for further details refer to [24]). Table 1 displays the acquisition time during the irrigation phase for
T1 and T2.

Table 1. Three-dimensional (3-D) electrical resistivity tomography (ERT) data collection time
(local time).

T1 T2

Time Id State Starting Time Ending Time Starting Time Ending Time

00 no irrigation 9.17 9.46 9.29 10.02

01 during the
irrigation phase

10.42 11.11 11.01 11.35
02 11.39 12.09 11.58 12.30

03 after the
irrigation phase

12.55 13.24 12.57 13.30
04 13.47 14.16 13.52 14.24
05 14.41 15.09 14.43 15.17

Time-lapse inversions were adopted to produce images of ER changes (ER ratio in %) before,
during, and after irrigation phase. These relative inversions (time-lapse) are calculated from ratios (dr,
Equation (5)) between the electrical resistances collected before and after irrigation:

dr =
dt

d0
·F(σohm) (5)
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where dt and d0 are the electrical resistance values (Ω) at time t and time 0 (initial condition), and
F(σohm) is the electrical resistance (Ω), obtained by running the forward model for an arbitrary ER of
100 Ω m. This calculation was performed simultaneously for T1 and T2 using a 5% error level [22].

Soil wetting distribution patterns (i.e., surface and depth of the soil layer dried by E) were
identified based on ER decreasing in respect to the initial condition (no irrigation) by applying a
threshold corresponding to a reduction in ER equal to or greater than 10%.

The few parameter used to set the SWB model (Equation (4)) within the ERT-adjusted dual Kc

FAO-56 approach was retrieved from the volume derived by ERT. From the entire volume, the ER ratio
values corresponding uniquely to the first 10 cm were extracted, since it was assumed that it is mainly
at this depth where soil evaporation occurs. Once the data corresponding to the first 10 cm were
extracted, few was determined by recognizing the soil wetting patterns (i.e., extracting all the values
corresponding to the fixed threshold) at the different acquisition times after the irrigation beginning
(Figure 2a and Table 1). Finally, the constant few value used in the ERT-adjusted approach was obtained
as an average of all instantaneous values retrieved in each acquisition time (Figure 2a and Table 1).
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Figure 2. Evolution of the exposed wetted area (few) (a) and evolution of the infiltration front depth (m)
in T1 and T2 during and after an irrigation phase (b). Time is expressed in minutes after the irrigation
start. The grey area represents the irrigation phase period.

2.3. Satellite-Based Dual Kc Approach

The dual Kc FAO-56 approach (original and ERT-adjusted), applied in this study, incorporates
data derived from remote sensing in order to obtain spatially distributed estimates of Ke (Ke,FAO and
Ke,ERT), Kcb (Equations (2) and (6)), and ET (ETFAO and ETERT) (Equation (1)).

Sentinel 2-A (L-1C) data offered by the European Space Agency (ESA), with a spatial resolution of
10 m in the visible and near-infrared (VNIR) region and available every 10 days, were selected on the
basis of clear sky condition and irrigation application.
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Table 2 displays the dates of the satellite imagery used within the reference period
June–September 2017.

Table 2. Sentinel images used in the study.

Acquisition Dates Day of the Year (DOY)

7 June 2017 158
27 June 2017 178
12 July 2017 193
17 July 2017 198

1 August 2017 213
6 August 2017 218
11 August 2017 223
16 August 2017 228
26 August 2017 238

5 September 2017 248
15 September 2017 258

Remote sensing data were used to determine Kcb (Equations (1) and (2)) as a function of the soil
adjusted vegetation index (SAVI) following the methodology proposed by [25,26]:

Kcb =
Kcb,max

Fc,max

(
SAVI − SAVImin

SAVImax − SAVImin

)
(6)

where SAVImax and SAVImin refer to the maximum and minimum SAVI values for each image, and
Fc,max is the maximum value of fractional vegetation cover (fc) within the study site for which Kcb
reaches its maximum value (as in [14]).

The SAVI index is calculated as follows:

SAVI =
(

ρNIR − ρRED
ρNIR + ρRED + L

)
(1 + L). (7)

where ρNIR and ρRED are the infrared and red reflectance of Sentinel images and L is a soil normalization
factor, generally taken to be 0.5 [27].

In order to compute Fc,max (Equation (6)) and few [14], fc is calculated as reported in [28]:

fc =

(
NDVI − NDVImin

NDVImax − NDVImin

)
(8)

with NDVI derived from Sentinel reflectance data as NDVI = (ρNIR − ρRED)/(ρNIR + ρRED) [29]. The
value of NDVImax (set to 1) corresponds with the NDVI when fc is maximum (fc = 1) whereas NDVImin

(set to 0) refers to the NDVI value when the surface is without vegetation (fc ≈ 0). Within the study
period, the fc at the study site ranged between 0.337 and 0.646, with an average value of 0.483.

2.4. Ancillary Weather and Soil Data

The ground-based information implemented into the dual Kc FAO-56 model consists of weather
observations and soil hydraulic characteristics referring to an experimental orange orchard of 0.7 ha
located in southern Italy (Lentini, SR) and managed by Centro di Ricerca Olivicoltura, Frutticoltura e
Agrumicoltura of the Italian Council for Agricultural Research and Agricultural Economics Analyses
(CREA-OFA, Acireale). The orange orchard has been treated by deficit irrigation strategies, including
partial root-zone drying (PRD) and regulated deficit irrigation (RDI), since 2010. The complete
description of the experimental site and the irrigation strategies applied are reported in [21,30,31].

Hourly and daily weather data were provided by a meteorological station (37.35◦N, 14.91◦E,
50 m a.s.l.) located about 2 km from the experimental site and managed by Servizio Informativo
Agrometeorologico Siciliano (SIAS; www.sias.regione.sicilia.it).

www.sias.regione.sicilia.it
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Weather data (air temperature, Tair, ◦C; relative humidity, RH, %; precipitation, P, mm; wind speed,
u, m s−1; and reference evapotranspiration, ET0, mm), were analyzed in order to initiate/calibrate and
implement the SWB model within the dual Kc FAO-56 model.

The temporal evolution of the main weather parameters (ET0, maximum Tair and P) is shown in
Figure 3.

The soil hydraulic parameters (i.e., θFC = 0.28 m3 m−3 and θWP = 0.14 m3 m−3) were obtained by
laboratory analyses on soil samples collected at the experimental site [21,32] and incorporated into the
SWB model within the dual Kc FAO-56 approach.FIGURE 3 

 
Figure 3. Temporal evolution of weather parameters used to implement the soil water balance (SWB)
model within the dual Kc FAO-56 approach. Values refer to the reference period (April 2016–October
2017). P is the precipitation (mm); ET0 is the reference evapotranspiration (mm); and Tair is the air
temperature (◦C).

2.5. Evapotranspiration Validation Using EC

The eddy covariance (EC) method is a direct measurement of a turbulent flux density of a scalar
across horizontal wind streamlines [33]. At the experimental site, an EC system is mounted on a
tower at 7 m above the surface (about two times the canopy height). The EC system consisted of a
three-dimensional sonic anemometer (CSAT3-3D, Campbell Scientific Inc.) and an infrared open-path
gas analyzer (Li-7500, Li-cor Biosciences Inc.) to obtain high frequency measurements of the three
wind components and the H2O and CO2 concentrations, respectively. The sample frequency for the
raw data was 10 Hz (high frequency data) [31]. Low frequency data (30-min) were obtained for: net
radiation (Rn, W m−2, net radiometer CNR-1 Kipp & Zonen, located 7 m above the ground) and soil
heat flux (G, W m−2), obtained using self-calibrated soil heat flux plates (HFP01SC, Hukseflux) placed
in the exposed, half-exposed, and shadowed soil at a depth of about 0.05 m.

High and low frequency data were recorded and stored in a CR1000 logger (Campbell
Scientific Inc.).

EC permits to obtain ET rates (ETEC) by the direct measurements of latent heat flux (λET, W m−2)
exchanged within the soil-plant-atmosphere continuum, using the following equation:

λETEC = λ·σwq (9)

where λ (J g−1) is the latent heat of vaporization and σwq (g m−2 s−1) is the covariance between the
vertical wind speed and water vapour density.

EC sensible heat flux (H, W m−2) is computed as:

H = ρ·cp·σwT (10)

where ρ (g m−3) is the air density, cp (1004 J g−1 K−1) is the air specific heat capacity at constant
pressure, and σwT (m s−1 K) is the covariance between the vertical wind speed and air temperature.
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The standard EUROFLUX rules [34] were adopted for EC measurements and data processing.
Common errors in the measured high frequency data, such as running means for detrending, three
angles coordinate rotations, and despiking, were removed during the post processing by quality
checks. The stationarity of the surface flux layer and the surface energy balance closure were also
evaluated [35]. The surface energy balance closure ratio (CR) is expressed as:

CR =
(H + λET)
(Rn − G)

(11)

and allows for determining how well the turbulent fluxes of heat and water vapor account for the
available energy. The ratio, as suggested by [36], was performed only when Rn is greater than
100 W m−2. In this study, the CR was forced according to the procedure proposed by [37], in order to
maintain the observed Bowen ratio between H and LE as constant.

Thirty-minute fluxes data were aggregated to a daily scale, and latent heat fluxes, acquired in
W m−2, were then transformed to equivalent depth of ET (mm d−1). In this study, ETEC measurements
were used as a reference to compare the ET estimates obtained by the original satellite-based dual
Kc FAO-56 (ETFAO) approach and the ET estimates (ETERT) obtained by the adjusted model with
ERT-derived parameters (few).

Using the ETEC measures (mm d−1) and ET0 by weather station (mm d−1), the crop coefficient
using EC (Kc,EC) was estimated, as in the following:

Kc,EC =
ETEC

ET0
. (12)

2.6. Water Stress Coefficient Determination

The above described dual Kc FAO 56 approaches (both the original and ERT-adjusted) compute
ET under standard conditions (i.e., water stress coefficient, Ks, equal to 1), whereas ET measured using
the EC technique (ETEC) incorporates soil water stress condition (ETEC = Ks Kc,EC ET0; Kc,EC being the
hypothetical Kc value that will be measured by EC in the absence of water stress). Thus, assuming that
Kc,ERT is equal to Kc,EC, Ks can be empirically derived as:

Ks =
ETEC

ETERT
=

Ks·KC,EC·ET0

KcERT·ET0
. (13)

3. Results

3.1. Evapotranspiration Rates using EC

The temporal evolution of daily scale ETEC rates within the reference period (June–September
2017) is shown in Figure 4. ETEC rates ranged between 0.94 and 3.50 mm day−1, with a mean value of
2.24 mm d−1. Prior to the CR adjustment, the slope of the regression forced through the origin of the
CR was around 0.82, with a determination coefficient (R2) of about 0.90.
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Figure 4. Temporal evolution of daily evapotranspiration measurements (ETEC) rates using eddy
covariance (EC).



Remote Sens. 2019, 11, 373 9 of 16

3.2. Soil Wetting Distribution Patterns Using ERT

Figures 5 and 6 show the changes in ER ratio (at the surface: a–e; transects under the irrigation
pipeline: f–j; and 3-D volumes: k–o) observed during and after the irrigation phase (Table 1), compared
to the initial condition (no irrigation), in T1 and T2. A value of 100% indicates no change in ER terms
with respect to the initial condition; values higher and lower than 100% indicate increases (drying
patterns) and decreases of ER (wetting patterns), respectively. Both in T1 and T2, the main phenomenon
occurring within the explored ERT volume was an ER ratio decreasing (soil wetting patterns), even
if localized areas (less than 1% of the overall explored volume) were characterized by ER increasing
(drying patterns) with respect to the initial condition (Table 1).Remote Sens. 2018, 10, x FOR PEER REVIEW    10  of  17 
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Figure 2a shows the evolution of the exposed wetted area (few) during and after the irrigation
phase in T1 and T2. The mean few value obtained from both T1 and T2 was 0.1. This value was used
for running the SWB model within the ERT-adjusted dual Kc FAO-56 approach.

At the surface level, the main ER decreasing patterns are localized close to the active irrigation
pipeline, both T1 and T2, during the irrigation phase (Figure 5a,b, Figure 6a,b and Figure 2a).
Nevertheless, once the irrigation phase finished (after about 88 min from the irrigation start, Table 1),
patterns in ER decreasing are always observed (time 03, Figures 5c, 6c and 2a). At times 04–05 (Table 1,
Figure 2a) the same patterns became quite steady showing a slight increase.

Figure 2b shows the evolution of the infiltration front depth (m) during and after the irrigation
phase in T1 and T2. Analyzing the ER changes from the top soil to the bottom-layer (Figures 5f–j
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and 6f–j), two phases were identified. During the irrigation phase, an increase of the infiltration front
depth was observed both in T1 and T2, but with different magnitudes. In fact, in T1, where the full
irrigation is applied, the wetting patterns distribution reached greater depths than T2 (supplied at 50%
in respect to T1 irrigation rate) with a maximum of 0.8 and 0.6 m, respectively. After the irrigation end,
the infiltration front remained almost constant or even evidenced a slight depth reduction (Figure 5f–j,
Figures 6f–j and 2b).

At 3-D level (Figures 5k–o and 6k–o), during the irrigation phase (times 01 and 02 in Table 1;
and Figure 5k,l and Figure 6k,l), a marked decrease in ER ratio (values equal to or less than 90%) was
observed. ER reductions ranged from 5% to 16% on average of the overall explored volume in T1 and
T2, due to progression of the irrigation front in correspondence with the active irrigation pipelines
(2 drip irrigation emitters on the surface of T1 and T2 within the ERT explored volume). After the
irrigation phase (time 03 in Table 1; and Figures 5m and 6m), the wetting volumes became quite stable,
around 16% of the total volume, followed by a slight decrease until 12–13% (times 04 and 05 in Table 1;
and Figures 5n–o and 6n–o).

3.3. Satellite dual Kc Approach

3.3.1. Maps of original and ERT-adjusted dual Kc FAO-56

Figure 7 shows an example of spatially distributed estimates of dual Kc (Kc,FAO and Kc,ERT; a,b)
and ET (ETFAO and ETERT; c,d) obtained for the study area by the original and ERT-adjusted dual Kc

FAO-56 approach for DOY 193 (under ET0 conditions of 8.56 mm day−1). The dual Kc values derived
from FAO-56 and ERT-adjusted approaches were 0.69 and 0.59, respectively, resulting in ET values of
5.91 (ETFAO) and 5.06 mm (ETERT).
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Figure 7. Dual crop coefficient (Kc,FAO and Kc,ERT; a,b) and ET (ETFAO and ETERT; c,d) estimates
obtained by the original and ERT-adjusted dual Kc FAO-56 approach for DOY 193 (under ET0 conditions
of 8.56 mm day−1).

3.3.2. ET Comparison: Original and ERT-Adjusted Dual Kc FAO-56 vs EC

Figure 8 shows the scatterplot between the daily measured ETEC, the original (ETFAO), and the
ERT-adjusted (ETERT) dual Kc FAO-56 approaches satellite ET estimates.
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Figure 8. Comparison between modelled ETFAO and ETERT versus measured ETEC. The black solid
line represents the 1:1 relationship.

Daily modelled ET values (ETFAO and ETERT, with average values of 4.07 and 3.46 mm,
respectively) resulted in an average 64% and 40% greater than the measured ETEC fluxes (average
value of 2.47 mm), with root mean square errors (RMSE) of 1.74 and 1.17 mm day−1 and coefficients
of determination (R2) of 0.48 and 0.62, respectively. The slope terms were 1.64 and 1.41 for ETFAO

and ETERT respectively, reflecting that ET discrepancies with respect to ETEC were greater for high ET
values. The average T component was 3.19 mm for both original and ERT-adjusted dual Kc FAO-56
approaches, whereas E term was 0.88 mm and 0.27 mm, respectively.

3.3.3. Crop Coefficients Comparison and Ks Estimation

Figure 9 shows the crop coefficients (Kcb + Ke) obtained from EC (Kc,EC) and from the original
(Kc,FAO) and ERT-adjusted (Kc,ERT) dual Kc FAO-56 approaches. Within the reference period
(June–September 2017), the observed Kc using EC (Kc,EC) was 0.40 ± 0.08. For the same period,
Kc,FAO and Kc,ERT resulted in 0.64 ± 0.12 and 0.54 ± 0.11, respectively.

Temporal evolution of water stress coefficient (Ks) obtained as Equation (13) is reported in Figure 9.
Ks values ranged from 0.55 to 1.00 with an average of 0.74.
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4. Discussion

The need of accurate ET estimates from remote sensing data calls for simplified methods to be
applied at a wide range of spatial resolutions [38]. The lack of useful applications may be overcome
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by combining different multi-platforms data [39] or by using modelling [40,41], as in this study,
by combining remote sensing data with geophysical information.

The most remarkable features of the ERT time-lapse inversions in Figures 5 and 6 are the
decreasing of ER ratio (wetting patterns) that seem to change substantially over time. As irrigation
occurs in a very contained portion of the area monitored by ERT, it is not surprising that ER tends to
decline largely in correspondence to drippers activity, creating consistent soil wetting patterns that
extend from the surface to the bottom of the monitored soil volume (1.2 m depth) during irrigation and
tends to become steady or decrease at the end of the irrigation phase (Figures 5 and 6). The different
magnitude of these changes among treatments at localized depths is explained by the different
irrigation rates applied in T1 (full irrigation) and T2 (deficit irrigation under PRD). Drying patterns
(increasing of ER ratio) observed close to the surface can be attributed to direct evaporation from the
top soil or root-water-uptake processes [22] or to inversion artefacts [42]. Due to the complexity of
the hydrological processes that act within the soil-root system, an integration of hydrological and
geophysical modelling might improve the analysis of recorded ER patterns [43].

The few information retrieved using ERT were herein included in the adjusted satellite dual
Kc FAO-56 approach. The obtained results showed that ERT improved ET estimates (and E), with
respect to the estimates obtained by the original dual Kc FAO-56 approach, when compared with the
site-specific ETEC rates measured at the experimental site by EC. In fact, the comparison between
Kc,FAO and Kc,ERT reveals that Kc,ERT was always lower than Kc,FAO, this discrepancy being due to the
more accurate estimation of few performed in the ERT-adjusted approach. Consequently, with the
ERT-adjusted approach, the E term, and therefore ET, was considerably reduced (15%) when compared
with the original dual Kc FAO-56 approach [14]. Nevertheless, ET obtained from both approaches,
even considering the ERT-adjustment, remained substantially higher than ET measured in EC (64%
and 40%, respectively). Such overestimations could be due to the assumption taken in this study of
considering few constant during the day, since it is well known that few progressively diminish after an
irrigation event. Additionally, the presence of different irrigation treatments within the footprint of the
EC tower may introduce some uncertainties in the results obtained. In addition, the spatial resolution
of Sentinel does not allow the separation of regions irrigated differentially. Therefore, this limitation
could be solved by using high spatial resolution images, such as those acquired by unmanned aerial
vehicles, which would allow the few of each irrigation treatment to be considered separately instead of
averaging both of them, as done for mixed pixels. Similar to the results obtained in this study, several
authors have found ET overestimation ranging from 12% to 42% when comparing ET from the FAO 56
approach with ET provided by EC in heterogeneous orchards under drip irrigation [44,45] indicating
that the overestimation was even worse when examining only the irrigated period [46]. These authors
pointed out that the values of Kcb suggested by [14,45,46] and the high soil evaporation predicted
following the FAO-56 approach [45,46] as the main reasons for these overestimations. In general, the
magnitude of such overestimations was lower than the one obtained in this study probably due to the
water stress expected in our experiment as consequence of the deficit irrigation conditions applied
at the experimental site. Deficit irrigation strategy played a strategic role in altering the normal ratio
between the energy balance surface fluxes, determining a fairly high sensible heat flux and an ET
reduction or underestimation due to the imposed water stress conditions [31]. This behavior was
poorly captured by the original and the ERT-adjusted Kc FAO-56 approaches, whereas it was taken into
account in the ETEC value obtained using the EC technique, as indicated by the calculated Ks (≈0.74).

Despite the good results obtained using 3-D ERT for helping to estimate ET, future developments
of this technique should attempt for speed operational applications (e.g., the need for real time data).
Additionally, future research should address the mid–long term temporal evolution of few to better
characterize changes in soil water conditions and subsequently evaporation, in order to incorporate
dynamic few values into the approach instead of using a constant one. At this stage, ERT may be
considered a useful tool for precision irrigation strategies, in particular for identifying the soil wetting
patterns distribution and also allowing a better characterization of the wet bulb, which may therefore
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improve the efficiency of irrigation [21]. Currently, the scope of ERT is limited to scientific research or
as a validation method for calibrating other methods that can be more easily incorporated into the
daily activities of farmers and technicians. In the future, more commercially oriented applications
of ERT technologies could be derived in order to facilitate the implementation of this technique for
agriculture water management applications.

5. Conclusions

The main conclusions to be drawn from this study can be summarized as follows:

• Spatially distributed ET rates can be obtained by incorporating VIs computed using remote
sensing technologies into the dual Kc FAO-56 approach.

• The integration of 3-D ERT methodology into the dual Kc FAO-56 approach considerably reduced
errors in ET estimates. This technology allowed the tracking of the wetting distribution patterns,
helping to accurately estimate few and therefore the water evaporated from the soil surface.

• The dual Kc FAO-56 approach determines ET under standard conditions where no limitations are
placed on crop growth or ET, whereas EC measures ET even for non-standard conditions (e.g.,
under soil water stress conditions). From the comparison between the ET measured from the EC
tower and the ET estimated from the ERT-adjusted dual Kc FAO-56 approach, the Ks term can be
experimentally derived.
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