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Abstract: Automatic extraction of building footprints from high-resolution satellite imagery has
become an important and challenging research issue receiving greater attention. Many recent studies
have explored different deep learning-based semantic segmentation methods for improving the
accuracy of building extraction. Although they record substantial land cover and land use information
(e.g., buildings, roads, water, etc.), public geographic information system (GIS) map datasets have
rarely been utilized to improve building extraction results in existing studies. In this research,
we propose a U-Net-based semantic segmentation method for the extraction of building footprints
from high-resolution multispectral satellite images using the SpaceNet building dataset provided in
the DeepGlobe Satellite Challenge of IEEE Conference on Computer Vision and Pattern Recognition
2018 (CVPR 2018). We explore the potential of multiple public GIS map datasets (OpenStreetMap,
Google Maps, and MapWorld) through integration with the WorldView-3 satellite datasets in four
cities (Las Vegas, Paris, Shanghai, and Khartoum). Several strategies are designed and combined
with the U-Net–based semantic segmentation model, including data augmentation, post-processing,
and integration of the GIS map data and satellite images. The proposed method achieves a total
F1-score of 0.704, which is an improvement of 1.1% to 12.5% compared with the top three solutions
in the SpaceNet Building Detection Competition and 3.0% to 9.2% compared with the standard
U-Net–based method. Moreover, the effect of each proposed strategy and the possible reasons for the
building footprint extraction results are analyzed substantially considering the actual situation of the
four cities.

Keywords: building extraction; deep learning; semantic segmentation; data fusion; high-resolution
satellite images; GIS data

1. Introduction

High-resolution remote sensing images have been increasingly popular and widely used in many
geoscience applications, including automatic mapping of land use or land cover types, and automatic
detection or extraction of small objects such as vehicles, ships, trees, roads, buildings, etc. [1–6]. As one
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of these geoscience applications, the automatic extraction of building footprints from high-resolution
imagery is beneficial for urban planning, disaster management, and environmental management [7–10].
The spatial distributions of buildings are also essential for monitoring urban settlements, modeling
urban demographics, updating the geographical database, and many other aspects [11,12]. Due to the
diversity of buildings (e.g., in color, shape, size, materials, etc.) in different regions and the similarity of
buildings to the background or other objects [9], developing reliable and accurate building extraction
methods has become an important and challenging research issue receiving greater attention.

Over the past few decades, many building extraction studies were based on traditional image
processing methods, such as shadow-based methods, edge-based methods, object-based methods,
and more [13–15]. For instance, Belgiu and Drǎguţ [16] proposed and compared supervised and
unsupervised multi-resolution segmentation methods combined with the random forest (RF) classifier
for building extraction using high-resolution satellite images. Chen et al. [17] proposed edge regularity
indices and shadow line indices as new features of building candidates obtained from segmentation
methods, and employed three machine learning classifiers (AdaBoost, RF, and support vector machine
(SVM)) to identify buildings. Huang and Zhang [18] proposed the morphological shadow index (MSI)
to detect shadows (used as a spatial constraint of buildings) and proposed dual-threshold filtering to
integrate the information from the morphological building index with the one from MSI. Ok et al. [19]
proposed a novel fuzzy landscape generation method that models the directional spatial relationship of
the building and its shadow for automatic building detection. These studies were based on traditional
methods and focused on extracting buildings in a relatively small study region. However, the methods
have not been evaluated in complex regions with a high diversity of buildings.

In recent years, deep learning methods have been broadly utilized in various remote sensing
image–based applications, including object detection [2,3,20], scene classification [21,22], land cover,
and land use mapping [23,24]. Since it was proposed in 2014, deep convolutional neural network
(CNN)-based semantic segmentation algorithms [25] have been applied to many pixel-wise remote
sensing image analysis tasks, such as road extraction, building extraction, urban land use classification,
maritime semantic labeling, vehicle extraction, damage mapping, weed mapping, and other land cover
mapping tasks [5,6,26–31]. Several recent studies used semantic segmentation methods for building
extraction from remote sensing images [9–12,32–38]. For example, Shrestha et al. [10] proposed a fully
connected network-based building extraction approach combined with the exponential linear unit
(ELU) and conditional random fields (CRFs) using the Massachusetts building dataset. Lu et al. [32]
employed the richer convolutional features network–based approach to detect building edges using
the Massachusetts building dataset. Xu et al. [12] proposed a building extraction method based
on the Res-U-Net model combined with guided filters using the ISPRS (International Society for
Photogrammetry and Remote Sensing) 2D semantic labeling dataset. Sun et al. [7] proposed a building
extraction method that combines the SegNet model with the active contour model using the ISPRS
Potsdam dataset and the proposed Marion dataset. These existing studies demonstrated the excellent
performance of the semantic segmentation algorithms for building extraction tasks.

As an essential part of the semantic segmentation algorithms, the public semantic labeling datasets
used in previous state-of-the-art building extraction studies can be summarized as follows: (1) The
Massachusetts building dataset [39] (used in References [10,32,35]) contains 151 aerial images (at
100 cm spatial resolution, with red/green/blue (RGB) bands, each with a size of 1500 × 1500 pixels)
of the Boston area. (2) The ISPRS Vaihingen and Potsdam datasets [40] (used in References [7,12])
contain 38 image patches (at 5 cm resolution, each at a size of around 6000 × 6000 pixels) and 33 image
patches (at 9 cm resolution, each with a size of around 2500 × 2500 pixels) with the near infrared, red,
and green bands and the corresponding digital surface model (DEM) data. (3) The Inria dataset [41]
(used in References [36,37]) contains aerial images covering 10 regions in the USA and Austria (at
30 cm resolution, with RGB bands). (4) The WHU (Wuhan University) building dataset [42] (used in
Reference [38]) includes an aerial dataset containing 8189 image patches (at 30 cm resolution, with RGB
bands, each with a size of 512 × 512 pixels) and a satellite dataset containing 17,388 image patches (at
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270 cm resolution, with the same bands and size as the aerial dataset). (5) The AIRS (Aerial Imagery
for Roof Segmentation) dataset [43] contains aerial images covering the area of Christchurch city in
New Zealand (at 7.5 cm resolution, with RGB bands).

In this study, our proposed building extraction method is trained and evaluated based on the
SpaceNet building dataset [44] proposed in 2017 and further explored in the 2018 DeepGlobe Satellite
Image Understanding Challenge [11]. The SpaceNet building dataset provided in the DeepGlobe
Challenge contains WorldView-3 multispectral imagery and the corresponding building footprints of
four cities (Las Vegas, Paris, Shanghai, and Khartoum) located on four continents. The buildings in the
SpaceNet dataset are much more diverse compared with the five datasets mentioned above. Details of
the SpaceNet dataset are described in Section 2.

In addition, many studies employed data-fusion strategies that integrate different data to improve
the building extraction results. Airborne light detection and ranging (LiDAR) data are among
the most broadly utilized data in numerous building extraction studies [7,45–53]. For instance,
Awrangjeb et al. [52] proposed a rule-based building roof extraction method from a combination
of LiDAR data and multispectral imagery. Pan et al. [53] proposed a semantic segmentation
network–based method for semantic labeling of the ISPRS dataset using high-resolution aerial images
and LiDAR data. However, public and free LiDAR datasets are still very limited. On the other hand,
GIS data (e.g., OpenStreetMap) has been utilized in several building extraction and semantic labeling
studies [54–57] as either the reference map of the labeled datasets [54,55] or auxiliary data combined
with satellite images [56,57]. For instance, Audebert [56] investigated different ways of integrating
OpenStreetMap data and semantic segmentation networks for semantic labeling of aerial and satellite
images. Du et al. [57] proposed an improved random forest method for semantic classification of urban
buildings, which combines high-resolution images with GIS data. Nevertheless, OpenStreetMap data
still cannot provide enough building information for many places in the world, including the selected
regions in Las Vegas, Shanghai, and Khartoum of the SpaceNet building dataset used in our study.

In this research, we propose a semantic segmentation–based building footprint extraction method
using the SpaceNet building dataset provided in the CVPR 2018 DeepGlobe Satellite Challenge.
Several public GIS map datasets (OpenStreetMap [58], Google Maps [59], and MapWorld [60]) are
integrated with the provided WorldView-3 satellite datasets to improve the building extraction results.
The proposed method obtains an overall F1-score of 0.704 for the validation dataset, which achieved
fifth place in the DeepGlobe Building Extraction Challenge. Our main contributions can be summarized
as follows:

(1) To the best of our knowledge, this is the first attempt conducted to explore the combination of
multisource GIS map datasets and multispectral satellite images for building footprint extraction in
four cities that demonstrates great potential for reducing extraction confusion caused by overlapping
objects and improving the extraction of building outlines.

(2) We propose a U-Net–based semantic segmentation model for building footprint extraction.
Several strategies (data augmentation, post-processing, and integration of GIS map data and satellite
images) are designed and combined with the semantic segmentation model, which increases the
F1-score of the standard U-Net–based method by 3.0% to 9.2%.

(3) The effect of each proposed strategy, the final building footprint extraction results, and
the potential causes are analyzed comprehensively based on the actual situation of four cities.
Even compared with the top three solutions in the SpaceNet Building Detection Competition, our
proposed method improves the total F1-score by 1.1%, 6.1%, and 12.5%.

The rest of the paper is organized as follows. Section 2 introduces the study area and the datasets
of this research, including the SpaceNet building dataset provided in the DeepGlobe Challenge and the
auxiliary GIS map data. Section 3 introduces our proposed method, including data preparation and
augmentation, the semantic segmentation model for building footprint extraction, and the integration
and post-processing of results. Section 4 describes the building footprint extraction results of the
proposed method. Section 5 discusses and analyzes the building footprint extraction results obtained
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from different methods and proposed strategies, and the potential causes for each city. Section 6
summarizes the conclusions of this research.

2. Study Area and Datasets

2.1. SpaceNet Building Dataset Provided in the DeepGlobe Challenge

In this research, we used the SpaceNet building dataset provided in the CVPR 2018 DeepGlobe
Satellite Challenge. The study area of this dataset includes four cities (Las Vegas, Paris, Shanghai, and
Khartoum), which covers both urban and suburban regions. The whole labeled dataset contains
24,586 image scenes in which each has a size of 200 m × 200 m. A total of 302,701 building
footprint polygons were fully annotated in the whole study area by a GIS team at the DigitalGlobe.
In the DeepGlobe challenge, a total of 10,593 image scenes were publicly provided with labeled
files (in geojson format). For the other image scenes, the labeled files were not published in the
challenge and the prediction results could only be evaluated during the challenge. Thus, we selected
the 10,593 image scenes with labeled files as the dataset for this study. Table 1 shows the number of
image scenes and annotated building footprint polygons of each city. The image scenes of each city
were further divided randomly into 70% training samples and 30% validation samples for training
and evaluation of the proposed method.

Table 1. Number of image scenes and annotated building footprint polygons of each city.

City Las Vegas Paris Shanghai Khartoum Total

Number of images 3851 1148 4582 1012 10,593
Number of buildings 108,328 16,207 67,906 25,046 217,487

The source dataset of this study is WorldView-3 satellite imagery, including the original
single-band panchromatic imagery (0.3 m resolution, 650 pixels× 650 pixels), the 8-band multi-spectral
imagery (1.24 m resolution, 163 pixels × 163 pixels), and the Pan-sharpened 3-band RGB and 8-band
multispectral imagery (0.3 m resolution, 650 pixels × 650 pixels). We selected the Pan-sharpened
8-band multispectral imagery as the satellite dataset for our proposed method. The annotation dataset
contains a summary file of the spatial coordinates of all annotated building footprint polygons and
geojson files corresponding to each image scene. These files were converted into single-band binary
images as the labeled dataset for our proposed method, in which values of 0 and 1 indicate that pixels
belong to nonbuilding and building areas, respectively. In the SpaceNet building dataset provided
in the DeepGlobe Challenge, small building polygons with an area equal to or smaller than 20 pixels
were discarded because these were actually artifacts generated from the image tiling process (e.g.,
one building divided into multiple parts by a tile boundary). Examples of the satellite images and
annotated building footprints can be found in Figure 1.

2.2. Auxiliary Data Used in Our Proposed Method

Besides the multispectral satellite imagery, we also used several public GIS map datasets as the
auxiliary data for our proposed method because of the extra useful information they provide for
building footprint extractions. Contrary to previous studies that used single-source auxiliary GIS
data, we selected the map dataset with the most abundant information from several public GIS map
datasets for each city. For Las Vegas, we selected the Google Maps dataset [59], which contains more
information than the OpenStreetMap [58]. For Paris, we selected the popular OpenStreetMap dataset
because of its abundant information. For Shanghai, we selected the MapWorld dataset [60] because it
contains abundant information on buildings and there is no coordinate shifting between that dataset
and the satellite imagery. For Khartoum, we selected the OpenStreetMap dataset, which is slightly
more informative than the Google Maps dataset but still lacks building information for most areas.
All of the map datasets were collected in a raster image format, according to the geospatial information
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of their corresponding satellite images (i.e., longitude, latitude, and spatial resolution) and resized into
650 × 650 pixels for further integration with the satellite imagery. Examples of the multi-source GIS
map images and corresponding satellite images can be found in Figure 1.
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Figure 1. Examples of WorldView-3 satellite images, annotated building footprints (denoted by yellow
polygons), and multi-source geographic information system (GIS) map images of four cities.

3. Materials and Methods

In this study, we designed a semantic segmentation–based approach for building footprint
extraction. Figure 2 shows the overall flowchart of the proposed approach. It consists of 3 main
stages including data preparation and augmentation, semantic segmentation for building footprint
extraction, and integration and post-processing of results. In the first stage, we designed a data
fusion method to make full use of both the satellite images and the extra information of GIS map
data. We applied data augmentation (rescaling, slicing, and rotation) to our dataset in order to
avoid potential problems (e.g., overfitting), which resulted from insufficient training samples, and to
improve the generalization ability of the model. In the second stage, we trained and evaluated the
U-Net–based semantic segmentation model, which is widely used in many remote sensing image
segmentation studies. In the third stage, we applied the integration and post-processing strategies
for further refinement of the building extraction results. Details of each stage are described in the
following sections.
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3.1. Data Preparation and Augmentation

3.1.1. Integration of Satellite Data and GIS Map Data

As mentioned in Section 2, besides the WorldView-3 multispectral satellite imagery provided in
the SpaceNet dataset, we also used multiple public GIS map datasets as the auxiliary data for our
proposed method. Although these public GIS map datasets provide extra information for building
footprint extraction, it is unreasonable to train a separate deep neural network using the 3-band map
datasets. The main reason is that many buildings are not displayed on the map image (especially tiny
buildings and those in Khartoum city). In many regions, the building areas or outlines displayed in
map images are not consistent with the ground truth buildings annotated based on the satellite images.

In this research, the training and validation datasets were preprocessed into two collections for
each city. The first collection contained the eight-band multi-spectral satellite images while the second
collection integrated the multi-spectral satellite images and the GIS map dataset. In order to unify the
structure of the semantic segmentation network for the 2 dataset collections and enable the model
trained by one dataset collection to be used as the pre-trained model for the other, we stacked the first
5 bands (red, red edge, coastal, blue, and green) of each WorldView-3 satellite image with the 3 bands
(red, green, and blue) of its corresponding map image to generate an 8-band integrated image.

3.1.2. Data Augmentation

Data augmentation was proven to be an effective strategy to avoid potential problems (e.g.,
overfitting) resulting from insufficient training samples and to improve the generalization ability
of deep learning models in many previous studies [9,10,32]. Considering the large number of
hyper-parameters in the semantic segmentation model and the relatively small number of training
samples in the SpaceNet building dataset (fewer than 5000 samples for each city), we applied the
following data augmentation strategy (rescaling, slicing, and rotation) in order to increase the quantity
and diversity of training samples and semantic segmentation models. Each dataset collection described
in Section 3.1.1 was further preprocessed into 2 formats of input images for the training of each semantic
segmentation model. First, each image with a size of 650 × 650 pixels was rescaled into an image of
256 × 256 pixels. Second, each image with a size of 650 × 650 pixels was sliced into 3 × 3 sub-images
of 256 × 256 pixels. Moreover, we further augmented the training dataset through four 90◦ rotations.
Consequently, we obtained 4 collections of preprocessed and augmented input datasets for each city,
which we used for training and evaluating each deep convolutional neural network.

3.2. Semantic Segmentation Model for Building Footprint Extraction

3.2.1. Architecture of Semantic Segmentation Model for the Building Extraction

In this study, the semantic segmentation model for the building extraction is based on the
U-Net architecture [61]. U-Net is a popular deep convolutional neural network architecture for
semantic segmentation and has been used in several satellite image segmentation studies [5,12,30,62].
Since U-Net was initially designed for the binary segmentation of biomedical images with a relatively
small number of training samples, it is a good choice for the building extraction task in this study
as well. We modified the size of layers in the U-Net architecture to fit our building extraction task.
We also added a batch normalization layer behind each convolutional layer.

Figure 3 shows the architecture of the semantic segmentation model for our building extraction
task, including the name and size of each layer. It consists of the following 6 parts: (1) the convolutional
layers for feature extraction through multiple 3 × 3 convolution kernels (denoted by Convolution);
(2) the batch normalization layer for accelerating convergence during the training phase (denoted
by Batch Normalization); (3) the activation function layer for nonlinear transformation of the feature
maps, in which we used the widely used rectified linear unit (ReLU) in this study (denoted by
Activation); (4) the max-pooling layer for downsampling of the feature maps (denoted by Max-pooling);
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(5) the upsampling layer for recovering the size of the feature maps that are downsampled by the
max-pooling layer (denoted by Upsampling); and (6) the concatenation layer for combining the
upsampled feature map in deep layers with the corresponding feature map from shallow layers
(denoted by Concatenation).

For the last batch-normalized layer of the semantic segmentation model (in the same size as
the input image), we applied the sigmoid function as the activation function layer and obtained the
pixel-wise probability map (indicating the probability that a pixel belonged to the building type).
Lastly, we binarized the probability map using a given threshold (0.5 in common cases) to obtain the
predicted building footprint extraction result (the output of the semantic segmentation network), and
vectorized the output image to obtain a list of predicted building polygons.
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3.2.2. Training and Evaluation of Semantic Segmentation Model

To train the semantic segmentation model, we selected Adam as the optimization method and the
binary cross entropy as the loss function. Due to the limited size of GPU memory, the batch size in the
training phase was set to 8 in this study. The learning rate was set to 0.001 and the maximum number
of epochs was set to 100. Moreover, we monitored the average Jaccard coefficient as an indicator for
early stopping in order to avoid the potential problem of overfitting. Formula (1) shows the calculation
process of the average Jaccard coefficient (denoted by J), in which y(i)

gt denotes the ground truth label of

the ith pixel, y(i)
pred denotes the predicted label of the ith pixel, and n denotes the total number of pixels.

The training phase was terminated before reaching the maximum number of epochs if the average
Jaccard coefficient had no improvement for more than 10 epochs.

J =
1
n ∑n

i=1(y
(i)
gt × y(i)

pred / (y(i)
gt + y(i)

pred − y(i)
gt × y(i)

pred)) (1)

During the training phase, the semantic segmentation model was evaluated by the validation
dataset at the end of each epoch. Besides the pixel-based accuracy that is commonly used in semantic
segmentation tasks, we also recorded the object-based accuracy of the validation dataset in each epoch
since it was the evaluation metric of the DeepGlobe challenge. For pixel-based accuracy, we compared
the binarized building extraction image results predicted from the semantic segmentation model
with the rasterized ground truth image. For object-based accuracy, we compared the vectorized
building extraction image results (a list of predicted building polygons) with the ground truth
building polygons (details are described in Section 3.4). As described in Section 3.1, for each city,
4 preprocessed and augmented dataset collections were used for the training and evaluation of the
semantic segmentation model. For each dataset collection, the predicted building extraction results
with the highest object-based accuracy were used for further integration and post-processing, which is
described in the following section.
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3.3. Integration and Post-Processing of Results

After training and evaluating the semantic segmentation model based on each of the 4 dataset
collections, we obtained 4 groups of probability maps (each with a size of 256 × 256 pixels) for each
validation sample. The value of each pixel in the probability map indicates the predicted probability
that the pixel belongs to the building area. For each validation sample, the 4 groups of probability maps
were obtained from (1) the satellite image with a rescaling strategy, (2) the satellite image with a slicing
strategy, (3) the satellite + map image with a rescaling strategy, and (4) the satellite + map image with a
slicing strategy, respectively. For the first and third groups, we rescaled the single probability map
into the one at the original sample size. For the second and fourth groups, we combined 9 probability
maps into a single map corresponding to the complete image. As a result, we obtained 4 probability
maps (each with a size of 650 × 650 pixels) for each validation sample.

We proposed a 2-level integration strategy for integrating the results obtained from each model
into the final building footprint extraction results. At the first level, for both the satellite and satellite +
map image–based dataset collections, we averaged the pixel values of 2 probability maps (obtained
from 2 preprocessing methods) into an integrated probability map. At the second level, the 2 integrated
probability maps (obtained from the 2 dataset collections) were further averaged into the final building
probability map.

After obtaining the integrated building probability map, we applied 2 post-processing strategies to
optimize the final predicted results. In the first strategy, we adjusted the threshold of the probability
(indicating whether a pixel belongs to a building area or a nonbuilding area) from 0.45 to 0.55 for each
city. The optimized probability threshold was then used for vectorizing the probability map into the
binary building extraction image result. In the second strategy, in order to filter out potential noise in the
building extraction image results, we adjusted the threshold of the polygon size (indicating the minimal
possible size of a building polygon) from 90 to 240 pixels for each city. The optimized thresholds of
probability and polygon size of the validation dataset were also applied to the test dataset for each city.

3.4. Evaluation Metric

The building extraction results can be evaluated by several methods including the pixel-based
and object-based methods that are the most broadly used in existing building extraction studies [7,63].
In the pixel-based evaluation method (used in References [9,10,12]), the binary building extraction
image result (predicted from the semantic segmentation network) is directly compared with the
binary ground truth image. In the object-based evaluation method (often used in building edge or
footprint detection studies, such as in Reference [32]), the building extraction image result needs to
be converted into the predicted building polygons for comparison with the ground truth building
polygons. The DeepGlobe challenge selected the object-based method to evaluate the building footprint
extraction results. Compared with the pixel-based method, the object-based method emphasizes not
only the importance of accurate detection of building areas, but also the complete identification of
building outlines.

In the DeepGlobe challenge, the ground truth dataset for evaluating building extraction results
contained the spatial coordinates of the vertices corresponding to each annotated building footprint
polygon. Thus, we needed to convert the single-band building extraction image results (the output of
the semantic segmentation network) into a list of building polygons (in the same format as the ground
truth dataset). Formula (2) shows the definition of the IoU (intersection over union) for evaluating
whether a detected building polygon is accurate, which is equal to the intersection area of a detected
building polygon (denoted by A) and a ground truth building polygon (denoted by B) divided by
the union area of A and B. If a detected building polygon intersects with more than one ground truth
building polygon, then the ground truth building with the highest IoU value will be selected.

IoU =
Area(A∩ B)
Area(A∪ B)

(2)
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The precision, recall, and F1-score were calculated according to Formulas (3)–(5), where true
positive (TP) indicates the number of building polygons that are detected correctly, false positive (FP)
indicates the number of other objects that are detected as building polygons by mistake, and false
negative (FN) indicates the number of building polygons not detected. A building polygon will be
scored as correctly detected if the IoU between the detected building polygon and a ground truth
building polygon is larger than 0.5. The results of each city were evaluated independently and the
final F1-score is the average value of F1-scores for each city.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1-score =
2 × Precision × Recall

(Precision + Recall)
=

2 × TP
(2 × TP + FP + FN)

(5)

4. Experimental Results Analysis

4.1. Experiment Setting and Semantic Segmentation Results

In this study, training and evaluation of the semantic segmentation network was based on the
Keras deep learning framework [64] and the NVIDIA Titan V GPU hardware platform. The image
scenes of each city were randomly divided into 70% training samples and 30% validation samples for
the semantic segmentation networks. The number of training and validation samples for each city
can be found in Table 2. Considering the significant differences between the four cities, the semantic
segmentation network of each city was trained and evaluated independently based on its own training
and validation samples.

Table 2. Number of training and validation samples in four cities.

Number Las Vegas Paris Shanghai Khartoum

Training samples 2695 803 3207 708
Validation samples 1156 345 1375 304

As shown in Figure 2, the semantic segmentation networks were trained and evaluated
based on four dataset collections for each city: the original satellite dataset (Satellite-org), the
augmented satellite dataset (Satellite-aug), the original satellite dataset combined with the GIS map
dataset (Satellite-Map-org), and the augmented satellite dataset combined with the GIS map dataset
(Satellite-Map-aug). Table 3 shows the validation accuracies of the semantic segmentation network in
four cities when using different types of datasets. We find that the validation accuracies of the four cities
are all over 93% and vary slightly among the cities and the types of datasets, which indicates accurate
detection of building areas of the semantic segmentation network. Moreover, the average validation
accuracy of the four cities is the highest when using the augmented satellite dataset combined with
the GIS map dataset (Satellite-Map-aug). The evaluation of the building footprint extraction results is
described in Section 4.2.

Table 3. Validation accuracies of semantic segmentation networks in four cities.

Type of Dataset Las Vegas Paris Shanghai Khartoum Average

Satellite-org 0.9684 0.9752 0.9610 0.9386 0.9608
Satellite-aug 0.9646 0.9776 0.9613 0.9399 0.9609

Satellite-Map-org 0.9681 0.9772 0.9677 0.9371 0.9625
Satellite-Map-aug 0.9692 0.9772 0.9681 0.9420 0.9641
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4.2. Building Footprint Extraction Results of the Proposed Method

Table 4 shows the building footprint extraction results of the proposed method evaluated by the
validation dataset in the four cities in terms of TP, FP, FN, precision, recall, and the F1-score. There are
significant differences between the results in different cities. Our method obtains the highest F1-score
of 0.8911 for Las Vegas and the lowest F1-score of 0.5415 for Khartoum. Table 5 shows the results
of our proposed method in the final phase of the CVPR 2018 DeepGlobe Satellite Challenge, which
are evaluated by an unlabeled dataset selected from other regions in the four cities. The evaluation
results in the final phase can only be seen through the online submission, and each team has only five
submission chances. The experimental results demonstrate that our proposed method achieves similar
F1-scores for the validation dataset and the dataset provided in the final phase. Figure 4 shows some
examples of the building footprint extraction results of our proposed method in which the green, red,
and yellow polygons denote correctly extracted buildings (TP), other objects extracted as buildings
by mistake (FP), and ground truth buildings that are not extracted correctly by the proposed method
(FN), respectively. The building footprint extraction results of the four cities are analyzed in detail,
according to the actual situation of each city in Section 5.3.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 20 
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Figure 4. Examples of building footprint extraction results of our proposed method in (a,b) Las Vegas,
(c,d) Paris, (e,f) Shanghai, and (g,h) Khartoum. Green, red, and yellow polygons denote correctly
extracted buildings (TP), other objects extracted as buildings by mistake (FP), and ground truth
buildings that were not extracted correctly by the proposed method (FN), respectively.

Table 4. Results of the proposed method evaluated by the validation dataset. TP, true positive. FP, false
positive. FN, false negative.

Index Las Vegas Paris Shanghai Khartoum

TP 27,526 3097 11,323 3495
FP 1629 564 3835 1968
FN 5098 1441 9661 3951

Precision 0.9441 0.8459 0.7470 0.6398
Recall 0.8437 0.6825 0.5396 0.4694

F1-score 0.8911 0.7555 0.6266 0.5415
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Table 5. Results of proposed method evaluated by the dataset provided in the final phase.

Index Las Vegas Paris Shanghai Khartoum

TP 30,068 4056 11,674 4031
FP 1912 844 4132 2106
FN 5187 2006 8974 4443

Precision 0.9402 0.8278 0.7386 0.6568
Recall 0.8529 0.6601 0.5654 0.4757

F1-score 0.8944 0.7400 0.6250 0.5518

5. Discussion

5.1. Comparison of Building Footprint Extraction Results Obtained from Different Methods

In this section, we compare the building footprint extraction results obtained from our proposed
method with those achieved from the top three solutions in the SpaceNet Building Detection
Competition (round 2) [11]. Table 6 shows the final F1-scores of the four cities obtained from our
proposed method and from the top three solutions (XD_XD, wleite, and nofto, the competitors’
usernames). The numbers in bold type indicate the highest F1-scores. The solution proposed by the
XD_XD is based on an ensemble of U-Net models, which combines multi-spectral satellite images with
OpenStreetMap data. Different from our proposed method, XD_XD’s solution uses the OpenStreetMap
as the only auxiliary data for all cities, and the OpenStreetMap vector layers (each layer represents a
single land use type) are rasterized into four or five bands to integrate with the multi-spectral satellite
image. Wleite and nofto use a similar approach, including traditional feature extraction (e.g., Sobel
filter-based edge detection, average, variance, and skewness for small neighborhood squares around
each evaluated pixel) and two random forest classifiers (one for predicting whether a pixel belongs to
the border and the other one for predicting whether a pixel is inside a building).

Compared with the winning solution (XD_XD), the F1-score of our proposed method increased
significantly (by 3%) for Shanghai and by 1.1% and 0.6% for Paris and Las Vegas. The F1-score
decreased slightly (by 0.2%) for Khartoum. This method improved the total F1-score by 1.1%, 6.1%,
and 12.5% compared with the top three solutions in the competition. All four methods performed best
in Las Vegas, second best in Paris, third best in Shanghai, and worst in Khartoum. Possible reasons for
this phenomenon are analyzed in Section 5.3.

Table 6. F1-scores obtained from different methods.

Method Las Vegas Paris Shanghai Khartoum Total

Ours 0.891 0.756 0.627 0.542 0.704
XD_XD 0.885 0.745 0.597 0.544 0.693
wleite 0.829 0.679 0.581 0.483 0.643
nofto 0.787 0.584 0.520 0.424 0.579

5.2. Building Extraction Results Obtained from Different Strategies of Our Proposed Method

In this section, we compare and analyze the effects of each strategy in our proposed method on
the building footprint extraction results in different cities. Table 7 shows the precision, recall, and
F1-score of the four cities after applying the different strategies. The numbers in bold type indicate the
highest values. Baseline refers to training the semantic segmentation model using the rescaled satellite
images. Data-aug (data augmentation) refers to training the semantic segmentation model using the
augmented satellite images. Post-proc (post-processing) refers to applying the post-processing strategy
to the integrated results of the baseline and data-aug. Add-map (adding GIS map data) refers to
integrating the results obtained from the satellite image–based dataset collection with those from the
combined satellite and GIS map image–based dataset collection. The F1-scores obtained after applying
the different strategies are summarized in Figure 5.
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Table 7. Results obtained after applying different strategies of our proposed method.

Strategy Index Las Vegas Paris Shanghai Khartoum

Baseline
Precision 0.8849 0.7370 0.5973 0.4885

Recall 0.8384 0.6342 0.4831 0.4248
F1-score 0.8611 0.6817 0.5342 0.4544

Data-aug
Precision 0.8896 0.7474 0.5649 0.5338

Recall 0.8570 0.6911 0.5304 0.4589
F1-score 0.8730 0.7181 0.5471 0.4935

Post-proc
Precision 0.9308 0.8272 0.6875 0.6141

Recall 0.8464 0.6666 0.5163 0.4525
F1-score 0.8866 0.7383 0.5897 0.5210

Add-map
Precision 0.9441 0.8459 0.7470 0.6398

Recall 0.8437 0.6825 0.5396 0.4694
F1-score 0.8911 0.7555 0.6266 0.5415
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Compared with the baseline, our proposed method improved the F1-score by 3.01%, 7.38%, 9.24%,
and 8.71% for Las Vegas, Paris, Shanghai, and Khartoum, respectively. The improvement is much more
significant for Paris, Shanghai, and Khartoum than for Las Vegas, which had an F1-score of 0.8849
using the baseline model. For the data augmentation strategy, the F1-score improvements for Paris and
Khartoum (3.64% and 3.91%) are more remarkable than for Las Vegas and Shanghai (1.19% and 1.29%).
We can conclude that, for cities with fewer initial training samples, the data augmentation strategy
significantly improves the F1-score. The post-processing strategy was more beneficial for Shanghai
and Khartoum, with relatively low F1-scores compared to Las Vegas and Paris, with relatively high
F1-scores. The strategy of integrating satellite data with GIS map data improved the F1-score more for
Shanghai than for the other three cities, which might be due to the relatively poor building extraction
results of the baseline model and the substantial building information of the MapWorld datasets.
It is worth noting that the F1-score of Khartoum increased by 2.05% after the add-map strategy even
though the OpenStreetMap dataset lacked building information for most areas in Khartoum. We can
conclude that other information in the map data (e.g., many roads and other land use types) might
also contribute to the improved building extraction results.

Figures 6–9 show some examples of the building footprint extraction results after applying the
different strategies in which green, red, and yellow polygons denote correctly extracted buildings (TP),
other objects extracted as buildings by mistake (FP), and ground truth buildings that were not extracted
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correctly (FN), respectively. The experimental results demonstrate that the proposed strategies led to
remarkable improvements in the building footprint results in many aspects. For instance, we could
obtain more complete building outlines (e.g., the top images in Figures 6–8), and the neighboring
buildings were more likely to be successfully extracted separately (e.g., the bottom images in Figures 8
and 9). Moreover, there was less confusion between tiny buildings and noise in the results (e.g., top
images in Figure 6 and bottom images in Figure 8). Analysis about the results regarding the actual
situation in different cities is demonstrated in the following section.
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5.3. Analysis of Building Footprint Extraction Results for Different Cities

Figure 10 shows typical examples of the footprint extraction results obtained from our proposed
method in the four cities. The two left columns of the images are selected examples with good results.
The two right columns are selected examples with inferior results. The results of our proposed method
are analyzed based on the specific situation of each city as follows.

Our method achieved the best results for Las Vegas. Most of the satellite images in the Las Vegas
dataset are collected from residential regions. Compared with the other three cities, the buildings
in Las Vegas have a more unified architectural style. Buildings partly covered by trees can also
be successfully extracted by our proposed method for most regions (e.g., buildings on the left of
Figure 10a,b). Tiny buildings and buildings of a similar color as the background region are relatively
harder to extract correctly using the proposed method (e.g., FN buildings denoted by yellow polygons
in Figure 10c,d).

Our method obtained the second highest F1-score for Paris. The satellite images are collected
from the western part of Paris. Similar to Las Vegas, the buildings in Paris have a relatively unified
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architectural style. However, more buildings in Paris are a similar color as the background (e.g., trees
and roads), which are difficult to correctly detect compared with those in Las Vegas. The proposed
method also had difficulty identifying the outlines of two neighboring buildings separately and
completely extracting large buildings that consist of several parts (e.g., buildings in the bottom of
Figure 10g,h).Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 20 
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Our method obtained the second lowest F1-score for Shanghai. Most of the satellite images are
collected from suburban regions of Shanghai. Compared with the other three cities, buildings in the
Shanghai dataset are more diverse in many aspects, including the construction area, the building
height, the architectural style, etc. There are more high-rise buildings in Shanghai with a larger distance
between the roof and the footprint polygons on the satellite images (e.g., Figure 4e). Buildings located
in residential areas (e.g., Figure 10i,j) are relatively easier to extract correctly by the proposed method
than those located in agricultural areas, industrial areas, gardens, etc. (e.g., Figure 10k,l). Moreover,
our proposed method had difficulty correctly extracting buildings with green roofs, of a similar color
as the background, partly covered by trees, or of extremely small size, etc. (e.g., FN buildings denoted
by yellow polygons in Figure 10k,l), even though the integration of satellite and map data solved the
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above problems to a great extent when compared with using only the provided satellite datasets (see
Section 5.2).

Our method obtained the lowest F1-score for Khartoum. Most of the satellite images in the
Khartoum dataset are collected from residential regions, where the buildings have great variance in
structural organization and construction area. There are many building groups in Khartoum, and it is
hard to judge, even by the human eye, whether a group of neighboring buildings should be extracted
entirely or separately in many regions (e.g., Figure 10o,p). To the best of our knowledge, all of the
existing public GIS map datasets show very limited building information in Khartoum. All of these
aspects might result in inferior performance of building footprint extraction in Khartoum.

6. Conclusions

In this study, we proposed a U-Net–based semantic segmentation method for building footprint
extraction from high-resolution satellite images using the SpaceNet building dataset provided in the
DeepGlobe Challenge. Multisource GIS map datasets (OpenStreetMap, Google Maps, and MapWorld)
are explored to improve the building extraction results in four cities (Las Vegas, Paris, Shanghai,
and Khartoum). In our proposed method, we designed a data fusion and augmentation method for
integrating multispectral WorldView-3 satellite images with selected GIS map datasets. We trained
and evaluated four U-Net–based semantic segmentation models based on augmented and integrated
dataset collections. Lastly, we integrated the results obtained from the semantic segmentation models
and employed a post-processing method to further improve the building extraction results.

The experimental results show that our proposed method improves the total F1-score by 1.1%,
6.1%, and 12.5% when compared with the top three solutions in the SpaceNet Building Detection
Competition. The F1-scores of Las Vegas, Paris, Shanghai, and Khartoum are 0.8911, 0.7555, 0.6266,
and 0.5415, respectively. The significant difference in the results is due to many possible aspects,
including the consistency or the diversity of buildings in a city (e.g., construction area, building
height, and architectural style), the similarity between buildings and background, and the number of
training samples. We also analyze the effects of proposed strategies on the building extraction results.
Our proposed strategies improved the F1-score by 3.01% to 9.24% for the four cities compared with
those obtained from the baseline method, which achieved precise building outlines and less confusion
between tiny buildings and noise. The data augmentation strategy improves the F1-scores greatly for
Paris and Khartoum, with fewer training samples, and slightly for Las Vegas and Shanghai, with more
training samples. The post-processing strategy brings more improvement for Shanghai and Khartoum,
with lower initial F1-scores, than for Las Vegas and Paris, with higher initial F1-scores. The strategy
of integrating satellite and GIS data brings the most improvement for Shanghai, with a low initial
F1-score and substantial building information in GIS map data. In our future research, we will try to
combine the semantic segmentation model with other image processing algorithms (e.g., traditional
image segmentation and edge detection algorithms) to further improve the extraction of building
outlines. We will also explore different data fusion strategies for combining satellite images and GIS
data, and other state-of-the-art semantic segmentation models for building footprint extraction using
the SpaceNet building dataset.
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