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Abstract: The Landsat Analysis Ready Data (ARD) are designed to make the U.S. Landsat archive
straightforward to use. In this paper, the availability of the Landsat 4 and 5 Thematic Mapper (TM)
and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) ARD over the conterminous United States
(CONUS) are quantified for a 36-year period (1 January 1982 to 31 December 2017). Complex patterns
of ARD availability occur due to the satellite orbit and sensor geometry, cloud, sensor acquisition and
health issues and because of changing relative orientation of the ARD tiles with respect to the Landsat
orbit paths. Quantitative per-pixel and summary ARD tile results are reported. Within the CONUS,
the average annual number of non-cloudy observations in each 150 × 150 km ARD tile varies from
0.53 to 16.80 (Landsat 4 TM), 11.08 to 22.83 (Landsat 5 TM), 9.73 to 21.72 (Landsat 7 ETM+) and
14.23 to 30.07 (all three sensors). The annual number was most frequently only 2 to 4 Landsat 4 TM
observations (36% of the CONUS tiles), increasing to 14 to 16 Landsat 5 TM observations (26% of tiles),
12 to 14 Landsat 7 ETM+ observations (31% of tiles) and 18 to 20 observations (23% of tiles) when
considering all three sensors. The most frequently observed ARD tiles were in the arid south-west
and in certain mountain rain shadow regions and the least observed tiles were in the north-east,
around the Great Lakes and along parts of the north-west coast. The quality of time series algorithm
results is expected to be reduced at ARD tiles with low reported availability. The smallest annual
number of cloud-free observations for the Landsat 5 TM are over ARD tile h28v04 (northern New
York state), for Landsat 7 ETM+ are over tile h25v07 (Ohio and Pennsylvania) and for Landsat 4 TM
are over tile h22v08 (northern Indiana). The greatest annual number of cloud-free observations for
the Landsat 5 TM and 7 ETM+ ARD are over southern California ARD tile h04v11 and for the Landsat
4 TM are over southern Arizona tile h06v13. The reported results likely overestimate the number of
good surface observations because shadows and cirrus clouds were not considered. Implications of
the findings for terrestrial monitoring and future ARD research are discussed.
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1. Introduction

The advent of free and open Landsat data, increasing computational capabilities and analysis
ready data (ARD), have stimulated the uptake of Landsat data and a growth in Landsat time series
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research and applications [1]. Recently, the United States Geological Survey (USGS) generated Landsat
ARD over the conterminous United States (CONUS), Alaska and Hawaii [2]. The ARD are available
for all the Landsat sensors except the Multispectral Scanner (MSS) [3]. The ARD are designed to
be straightforward to use and include atmospherically corrected data and are provided in fixed
non-overlapping tiles that are “stackable” for time series analysis [2]. The ARD are stored with band
specific scaling factors and fill values to denote no data was observed at an ARD tile pixel location.

The availability of satellite observations influences surface monitoring capabilities. Higher
temporal resolution observations enable more reliable change detection and surface monitoring.
However, the availability of Landsat surface observations changes geographically because of cloud
cover at the time of Landsat overpass, the increasing spatial overlap of adjacent Landsat orbits
further poleward and because not every sunlit land image is acquired due to a variety of mission and
operational constraints [4–6].

The purpose of this study is to quantify the availability of the CONUS ARD data. Previous Landsat
availability analyses have been undertaken over large areas considering Landsat image geographic and
cloud metadata information [4,5,7–9], satellite-sensor orbit models [10,11] and Landsat per-pixel image
data [12] but for limited time periods. In this study, the Landsat temporal data availability is quantified
in detail considering every CONUS ARD 30 m pixel location, the cloud state of each ARD pixel and
36 years of data. The Landsat 4 and 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) ARD for a 36-year period (1 January 1982 to 31 December 2017) are considered.

The number of times that each ARD pixel was observed and the average annual number of non-fill
non-cloudy observations at each pixel are derived considering each Landsat sensor independently and
the three sensors together. The average annual numbers of non-fill non-cloudy observations for each
ARD tile are derived. CONUS ARD tiles with particularly low and high numbers of observations are
documented to identify regions that are sensitive to time series data availability issues and to support
algorithm developers who wish to test algorithms using data rich and data sparse ARD tiles.

2. Landsat Data and ARD Study Data

The CONUS Landsat 4, 5 and 7 ARD were used. Landsat 4 was launched July 16, 1982 and
functioned until December 14, 1993 when the satellite lost its ability to transmit data. Landsat 4
suffered several technical problems during its mission life with no systemic acquisition plan over
the CONUS [13]. Landsat 5 was launched March 1, 1984 and observed the Earth until 15 January
2013, when Landsat 5’s instruments were powered off and the satellite was moved into a lower orbit.
The Landsat 5 TM acquired every available image over the CONUS, even during its commercialization
period from 1985 to 2001 [13]. Landsat 7 was launched April 15, 1999 and continues to acquire every
available image over the CONUS [5]. The Landsat 4, 5 and 7 satellites have approximately 710 km
sun-synchronous circular 98.2◦ inclined near-polar orbits and, with 15◦ sensor fields-of-view, provide
a 16 day repeat cycle [6]. Nominally, each Landsat satellite can sense the same earth location 22 or 23
times per year, depending on the first January overpass date [8]. The orbits are phased relative to each
other to provide an 8-day full earth coverage for both Landsat 4 and 5 and for both Landsat 5 and
7 [14,15].

The Landsat ARD are discussed in detail in [2]. They are derived using the most recent Landsat
Collection 1 processing algorithms applied to all Landsat images in the U.S. Landsat archive that can
be corrected to ≤12 m Root Mean Square Error (RMSE) geodetic accuracy. The ARD are provided
as top of atmosphere and atmospherically corrected products in the Albers equal area projection,
in fixed non-overlapping geo-registered tiles, with spatially explicit quality assessment and cloud
mask information. Each ARD tile is composed of 5000 × 5000 30 m pixels (i.e., covers 150 × 150
km). The CONUS ARD archive contains 512 tiles that are referenced by horizontal and vertical tile
coordinates (Figure 1).
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Figure 1. CONUS ARD tile locations with horizontal (h = 0 to 32) and vertical (v = 0 to 20) tile 
coordinates. The ARD tile boundaries are shown by grey lines and are defined by 5000 × 5000 30 m 
pixels in the Albers equal area projection (see [2] for the projection parameters); national and state 
boundaries are shown as black lines. Tiles where at least 50% of their coverage is within the CONUS 
(defined by vector data, [16]) are shown white, otherwise shown grey. 

Each Landsat sensor orbit that overpasses each ARD tile is stored as a separate file [2]. In this 
paper, we refer to each ARD file as a granule. Each ARD granule is available as a “compressed tarball” 
which must be uncompressed and untarred before the bands are readable. After the tarball is 
uncompressed the ARD bands are stored with internal compression to save disk space. All of the 
available Landsat 4, 5 and 7 ARD granules over the 512 CONUS ARD tiles spanning a 36-year period 
from January 1st, 1982 to December 31st, 2017 were considered - a total of 1,027,231 (7,374, 562,576 and 
457,281 Landsat 4 TM, 5 TM and 7 ETM+, respectively) granules. 

3. Methods 

3.1. Sensor summary information 

The annual number of Landsat ARD granules over the CONUS was first derived by counting the 
total number of CONUS ARD granules for each year and sensor over the 36-year study period 
(January 1st, 1982 to December 31st, 2017). The seasonal number of Landsat ARD granules over the 
CONUS was also derived using the standard seasonal definition adopted by the climate modeling 
community where winter is defined by the months December, January and February and for a given 
reporting year the December count data are from the previous year. Two other metrics were derived 
to better document the discontinuous acquisition availability over the 36-year period. The sensor 
lifetime was defined as the number days from the first date with one or more CONUS ARD granules 
to the last date with one or more CONUS ARD granules. As there may be no CONUS sensor 
acquisitions on certain days over the sensor lifetime, the number of sensing days was also derived as 
the total number of days with one or more CONUS ARD granules.  

Figure 1. CONUS ARD tile locations with horizontal (h = 0 to 32) and vertical (v = 0 to 20) tile
coordinates. The ARD tile boundaries are shown by grey lines and are defined by 5000 × 5000 30 m
pixels in the Albers equal area projection (see [2] for the projection parameters); national and state
boundaries are shown as black lines. Tiles where at least 50% of their coverage is within the CONUS
(defined by vector data, [16]) are shown white, otherwise shown grey.

Each Landsat sensor orbit that overpasses each ARD tile is stored as a separate file [2]. In this
paper, we refer to each ARD file as a granule. Each ARD granule is available as a “compressed
tarball” which must be uncompressed and untarred before the bands are readable. After the tarball
is uncompressed the ARD bands are stored with internal compression to save disk space. All of the
available Landsat 4, 5 and 7 ARD granules over the 512 CONUS ARD tiles spanning a 36-year period
from 1 January 1982 to 31 December 2017 were considered - a total of 1,027,231 (7,374, 562,576 and
457,281 Landsat 4 TM, 5 TM and 7 ETM+, respectively) granules.

3. Methods

3.1. Sensor Summary Information

The annual number of Landsat ARD granules over the CONUS was first derived by counting the total
number of CONUS ARD granules for each year and sensor over the 36-year study period (1 January
1982 to 31 December 2017). The seasonal number of Landsat ARD granules over the CONUS was also
derived using the standard seasonal definition adopted by the climate modeling community where
winter is defined by the months December, January and February and for a given reporting year the
December count data are from the previous year. Two other metrics were derived to better document
the discontinuous acquisition availability over the 36-year period. The sensor lifetime was defined as
the number days from the first date with one or more CONUS ARD granules to the last date with one
or more CONUS ARD granules. As there may be no CONUS sensor acquisitions on certain days over
the sensor lifetime, the number of sensing days was also derived as the total number of days with one or
more CONUS ARD granules.
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These metrics and the ones described in the following sections, were calculated for each sensor
independently and considering the three sensors together. They were derived using in-house C-code
and shell scripts implemented in the Linux operating system.

3.2. Pixel-Level Summary Information

Only pixels that were not labelled as “fill” in the ARD pixel quality assessment band (PIXELQA)
were considered. This is because the ARD fill value denotes no Landsat data was observed [2]. At
each ARD 30 m pixel location, the total number of times that the location had non-fill non-cloudy
data was counted. Pixels were considered cloudy if they were labelled as medium or high confidence
cloud in the ARD pixel quality assessment band. Pixels labelled as snow or water in the ARD pixel
quality assessment band were also counted as in many CONUS regions snow and water may not be
permanent over the year [17–19] and Landsat data are used for snow and water monitoring [20–22].
The counting was undertaken at each ARD pixel over each sensor lifetime independently - to provide
at each ARD pixel location counts for Landsat 4 TM, Landsat 5 TM and Landsat 7 ETM+, denoted
nL4

pixel , nL5
pixel , nL7

pixel respectively – and also considering all three Landsat sensors together, to provide a

combined count denoted nL457
pixel .

At each ARD 30 m pixel location, the average annual number of non-fill non-cloudy observations
was derived, for each sensor and for the three sensors combined, as:

µ sensor
pixel =

n sensor
pixel

(number o f sensing dayssensor /365)
(1)

where µ sensor
pixel is the average annual number of non-fill non-cloudy observations at a 30 m ARD pixel

location, n sensor
pixel is the total number of times that the location had non-fill non-cloudy data (defined

as described above) for sensor ∈ {L4, L5, L7, L457} and the number of sensing days is defined in
Section 3.1. The number of sensing days is converted to number of sensing years in the Equation (1)
denominator by dividing by 365 as only a minority (9 of the 36 study period years) are leap years
composed of 366 instead of 365 days.

At each ARD 30 m pixel location, the annual variation in the number of non-fill non-cloudy
observations was derived. The number of non-fill non-cloudy observations in each calendar year
(from January 1st to December 31st) was counted over the sensor lifetime. For example, 29 annual
counts were derived at each ARD pixel location for Landsat 5 TM from 1984 to 2012. The annual count
data were not normally distributed and at some locations for certain years and sensors there were no
observations. Therefore, non-parametric statistics, namely, the 25th and 75th percentiles (lower and
upper quartiles respectively) were derived from the annual counts. The interquartile range (IQR) was
then derived:

IQR sensor
pixel = Q3 sensor

pixel − Q1 sensor
pixel (2)

where IQR sensor
pixel is the interquartile range and Q3 sensor

pixel is the upper quartile (75th percentile) and

Q1 sensor
pixel is the lower quartile (25th percentile) derived from the number of non-fill non-cloudy

observations in each calendar year over the sensor lifetime. The IQR sensor
pixel provides a non-parametric

measure of the annual variation in the number of non-fill non-cloudy observations among years at
each ARD 30 m pixel location.

3.3. ARD Tile-Level Summary Information

For each CONUS ARD tile, the average annual number of non-fill non-cloudy observations across
the tile was derived, for each sensor and for the three sensors combined, as:

µ sensor
tile =

∑N
pixel=1 µ sensor

pixel

N
(3)
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where µ sensor
tile is the average annual number of non-fill non-cloudy observations across the tile, µ sensor

pixel

is defined as Equation (1) and N is the number of ARD tile pixels that have n L457
pixel > 0. Usually

N = 25,000,000 (as there are 5000 × 5000 30 m pixels in each ARD tile) but border ARD tiles that
contain Landsat images acquired only over Canada or Mexico are not included in the CONUS ARD
processing (for example, see Figure 1 in Reference [23]).

The ten CONUS ARD tiles with the highest and lowest µ tile values were identified. For ranking
purposes, only tiles within at least 50% of the CONUS land mass (shown shaded white in Figure 1)
were considered as some tiles contain only a minority of land pixels, for example, coastal tiles and
because some ARD tiles only partially cover the CONUS.

4. Results

4.1. Sensor Summary Information

Figure 2 illustrates the annual number of Landsat ARD granules over the CONUS for each sensor
over the 36-year study period. From 1999 to 2011 there were significantly more Landsat ARD granules
over the CONUS than in other years because both the Landsat 5 TM and Landsat 7 ETM+ sensors
were operating in this period. The annual maximum number of ARD granules (48,511) was in 2001.
The annual minimum number of granules (1,517) was in 1983 when only Landsat 4 was on orbit.
In Figure 2 a small number of Landsat 4 TM granules in 1984 (52) and Landsat 5 TM granules in 2012
(70) are not apparent because of the barplot y-axis scale. The Landsat 4 TM data were temporally quite
discontinuous. In 1983, Landsat 4 lost the use of two of its four solar panels and both of its direct
downlink transmitters, which caused a gap in observations until 1987, when the Tracking and Data
Relay Satellite System (TDRSS) became operational and was used to relay Landsat 4 TM data [6].
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Figure 2. Annual number of Landsat ARD granules over the CONUS for each sensor over the 36-year
study period (1 January 1982 to 31 December 2017). The sensor count data (colored bars) are shown
stacked on top of each other in periods with overlapping sensor data.

Figure 3 illustrates the seasonal number of Landsat ARD granules over the CONUS for each
sensor over the 36-year study period. More ARD granules occur typically in the summer followed
by the spring, fall and winter seasons. The cause of this seasonality is not immediately obvious as,
nominally, every Landsat 5 TM and Landsat 7 ETM+ overpass of the CONUS is acquired. It is due to
the ARD geolocation accuracy requirement and CONUS cloud seasonality. Only Landsat images that
can be geometrically corrected to a geodetic accuracy ≤12 m RMSE are used to generate the ARD [2].
At the time of Landsat overpass the CONUS is on average cloudier in the winter and progressively less
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cloudy in the fall, spring and summer [8]. In the cloudy seasons there are a reduced relative number of
ground control points used in the Landsat geolocation [24,25] and so fewer ARD granules. There are
some exceptions to this seasonal pattern because of Landsat sensor and/or acquisition abnormalities.
For example, the May 2003 Landsat 7 ETM+ Scan Line Corrector (SLC) failure [26] resulted in fewer
Landsat acquisitions in the following 2003 summer months.
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Figure 3. Seasonal number of Landsat ARD granules over the CONUS over the 36-year study period
shown in order of winter (December to February), spring (March to May), summer (June to August)
and autumn (September to November) for each year. The sensor count data (colored bars) are shown
stacked on top of each other in periods with overlapping sensor data.

Table 1 summarizes, for each sensor, the dates of the first and last days with one or more
CONUS ARD granules and the sensor lifetime and number of sensing days, over the 36-year study period.
The Landsat 5 TM provided the longest operating Earth remote sensing satellite mission in history [27]
with a 28.156 year sensor lifetime. In Table 1 Landsat 7 ETM+ had an 18.518 year sensor lifetime but
continued to sense beyond the end of the 31 December 2017 study period. Landsat 4 TM had a 10.685
sensor life time but as noted above, was not always operational. The discontinuous acquisition and
availability of Landsat data over the CONUS, particularly for Landsat 4 TM, is evident by the difference
between the sensor lifetime and the number of sensing days. In particular, the Landsat 4 TM sensor was in
orbit for 3,900 days but acquired CONUS data to make ARD for only 387 days, that is, for only 9.92%
of the sensor lifetime. In contrast, the Landsat 5 TM and 7 ETM+ sensors acquired data to make ARD for
93.17% and 98.15% of their sensor lifetime values respectively. Over the 36 year study period there were
12,191 days (>33 years) when there was at least one sensor acquiring CONUS data that were used to
make ARD.
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Table 1. CONUS ARD sensor summary information over the 36 year study period (1 January 1982 to 31
December 2017). The sensor lifetime and number of sensing days are shown with units of days and years.

Sensor
First CONUS ARD

Granule
Acquisition Date

Last CONUS ARD
Granule

Acquisition Date

Sensor Lifetime
days|years

Number of Sensing
days|years

Landsat 4 1982/11/11 1993/07/16 3,900|10.685 387|1.060

Landsat 5 1984/03/16 2012/05/05 10,277|28.156 9,575|26.233

Landsat 7 1999/06/30 2017/12/31 6,759|18.518 6,634|18.175

Landsat
4, 5 and 7 1982/11/11 2017/12/31 12,834|35.162 12,191|33.400

4.2. Pixel-Level Summary Information

Figure 4 shows, for the three sensors together, the total number of (a) non-fill observations,
(b) non-fill and non-cloudy observations and (c) non-fill, non-cloudy and non-shadow observations,
at each CONUS ARD 30 m pixel location over the 36 year study period. Many of the CONUS border
ARD tiles contain pixels with n L457

pixel = 0 (shown as black). Discarding pixel locations with n L457
pixel = 0,

the mean CONUS total number of observations over the 36 year study period derived from Figure 4a–c
is 936.2, 658.4 and 628.0 respectively, demonstrating the effect of cloud and shadow in reducing the
number of surface observations.

Across the CONUS there is a regional variation in the number of observations. Notably, without
consideration of the cloud or shadow status (Figure 4a) there are fewer observations in the north-east,
north-west and also in certain ARD tiles that are predominantly over water. This is due to the ARD
geolocation accuracy requirement – only Landsat images that can be geometrically corrected to a
geodetic accuracy ≤12 m RMSE are used to generate the ARD [2]. Consequently, in coastal and cloudy
regions, which typically have a reduced relative number of ground control points used in the Landsat
geolocation [24,25], there are fewer ARD granules.

Figure 4b shows the total number of non-fill non-cloudy observations, that is, it shows the
same information as Figure 4a but without the cloudy observations. There are fewer observations
due to cloud cover at the time of Landsat overpass, which previous CONUS Landsat cloud studies
have shown predominates in the north-east and north-west, with more observations in the arid
south-west [4,8,12]. The ARD cloud mask is imperfect and even at national scale, some cloud detection
issues are evident. For example, the extensive highly reflective sands of White Sands, New Mexico,
have a reduced number of observations (blue spot near the center of ARD tile h10v14) which is a
previously documented Landsat cloud mask commission error [12].

Figure 4c shows the total number of non-fill, non-cloudy and non-shadow observations, that is,
it shows the same information as Figure 4b but without the shadow observations. There are fewer
observations due to shadows across the CONUS. This is particularly evident over mountainous regions,
for example, over the Rocky mountains, from Colorado to Idaho, where shadows due to relief and
not just clouds are common. Pixels were considered shadow contaminated if they were labelled as
Cloud Shadow in the ARD PIXELQA band [2]. However, at local scale, the ARD shadow mask can
be quite unreliable. For example, we have found examples where it fails to mask shadows or falsely
labels non-shadow observations as shadow. Efforts by other researchers are underway to improve the
shadow mask [28]. Therefore, in the remainder of the paper we do not consider the shadow state as it
is not reliably labelled in the current ARD version.
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The approximately north-south oriented stripes in Figure 4 occur because spatially adjacent
Landsat orbits overlap in the across-scan direction, with a greater number of observations (red tones)
evident in the overlap regions. The overlap regions are wider in the north than in the south because
the Landsat orbit paths converge further poleward [4]. The ARD tiles are defined in the Albers equal
area projection. Consequently, the change in the relative orientation of the ARD tile boundaries to the
fixed Landsat orbit inclination is evident, with an approximately top to bottom relative orientation in
the eastern CONUS and a more diagonal relative orientation in the western CONUS. As a result, many
tiles in the western CONUS contain a larger number of overlapping Landsat observations than in the
eastern CONUS.

The Landsat orbits drift slightly at annual scale, for example, considering three years of global
Landsat 5 TM and Landsat 7 ETM+ data the mean drift was several kilometers east-west and less than
a kilometer north-south direction [4]. Over the satellite lifetime, the Landsat orbits are maintained by
station keeping maneuvers (orbit burns) but for Landsat 5, the orbit was allowed to drift considerably
when the satellite was operated commercially from 1985 to 2001 [13,27]. The orbits drift spatially, which
blurs the number of observations over long time periods and this is apparent when the Figure 4 data
are examined in detail. As an example, Figure 5 shows a spatial subset of Figure 4a for six ARD tiles.
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Figure 5. Example detailed spatial subset of Figure 4a over the northern tip of Maine (state boundary
in black) showing the total number of non-fill Landsat 4 TM, 5 TM and 7 ETM+ observations over the
36 year study period for six ARD tiles (h29 to h31, v01 to v02).

Figure 6 shows the average annual numbers of non-cloudy and non-fill observations (µ sensor
pixel ,

Equation (1)) at each 30 m ARD pixel location. The same geographic patterns as Figure 4b are apparent,
including the stripes of greater observations where spatially adjacent Landsat orbits overlap. As
described above, nominally, there are a maximum of 22 or 23 Landsat overpasses per year per sensor
and much of the less cloudy CONUS regions have µ L5

pixel values and µ L7
pixel similar to this maximum.

The µ L7
pixel values are often smaller than the µ L5

pixel values, particularly in the across-scan orbit overlap
regions. This is because of the May 2003 Landsat 7 ETM+ Scan Line Corrector (SLC) failure that
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resulted in a 22% data loss occurring in a wedge-shaped pattern increasing in width at scan angles
further from nadir [26]. The µ L4

pixel have the smallest values (Figure 6d) and even with 387 sensing days
(Table 1), full CONUS Landsat 4 TM coverage did not occur. In Figure 6d, there are regions with no
observations and there are ARD pixels with significantly reduced µ L4

pixel values due to clouds. The

CONUS-wide mean µ pixel values, considering only pixels with n L457
pixel > 0 and pixels in ARD tiles

covering at least 50% of the CONUS, are 4.85 (Landsat 4 TM), 16.41 (Landsat 5 TM), 15.03 (Landsat 7
ETM+) and 21.22 (all three Landsat sensors).
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Figure 6. The average annual number (µ sensor
pixel Equation (1)) of non-fill non-cloudy observations at each

CONUS ARD 30 m pixel location over the 36 year study period for (a) Landsat 4 TM, 5 TM and 7 ETM+
combined, (b) Landsat 7 ETM+, (c) Landsat 5 TM, (d) Landsat 4 TM.

Figure 7 shows the interquartile range (IQR sensor
pixel , Equation (2)) of the annual number of non-fill

non-cloudy observations at each CONUS ARD 30 m pixel location. It provides a non-parametric
measure of the annual variation in the number of non-fill non-cloudy observations among years. It is
zero valued (shown grey) if the lower and upper quartiles are the same, for example, if the annual
number of non-fill non-cloudy observations is the same in every year. The combined sensor values
(IQRL457, Figure 7a) are generally greater, that is, there is more variation among years, than for the
individual sensors. This is expected because 23 of the 36 years had simultaneously two sensors
acquiring data (Figure 2) and this results in a greater annual variation over the 36 years than over
the lifetimes of the individual sensors. The IQRL5 values (Figure 7c) are generally greater than the
IQRL7 values (Figure 7b). This is because the Landsat 5 TM acquisition strategy was less consistently
maintained, particularly in the commercial operational period from 1985 to 2001 [13,27]. The IQRL4

values (Figure 7d) are generally lower than for the other sensors because the annual number of Landsat
4 TM observations are low (Figure 6) and because for several years there were no or few Landsat 4 TM
ARD granules (Figure 2). The stripes of high interquartile range values evident across the CONUS are
expected as they occur where the adjacent orbits overlap (Figures 4–6) resulting in a greater absolute
variation in the number of observations among years.
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observations at each CONUS ARD 30 m pixel location for (a) Landsat 4 TM, 5 TM and 7 ETM+
combined, (b) Landsat 7 ETM+, (c) Landsat 5 TM, (d) Landsat 4 TM. The maximum CONUS ARD
IQR sensor

pixel values are 55 (a), 27 (b), 31 (c) and 6 (d). Light grey show locations where there were
observations over the sensor lifetime but where the interquartile range is zero, for example, where the
annual number of non-fill non-cloudy observations was the same among the years.

Figure 8 shows histograms of the temporal difference between consecutive observations of a
single ARD pixel location. The results are shown for the most observed CONUS 30 m ARD pixel, that
is, the pixel location with the greatest number of non-fill and non-cloudy Landsat 4 TM, 5 TM and 7
ETM+ observations over the 36 year study period. The most observed CONUS ARD pixel location is in
a region of southern California where adjacent Landsat orbits overlap at 32◦47′34.09” N, 114◦55′47.60”
W (pixel row 3656 and column 2154 in ARD tile h05v13). At this pixel location there were 24, 940 and
570 (total 1534), non-fill non-cloudy Landsat 4 TM, 5 TM and 7 ETM+ observations over the 36 years,
respectively. The results illustrate that when considering each sensor independently (Figure 8b–d), the
most common temporal differences between consecutive pixel observations are 7, 9 and 16 days. The
7 and 9 day differences reflect how adjacent orbits laterally overlap at the Landsat swath edges and
the 16 day difference is due to the 16 day Landsat repeat cycle. Other temporal differences are due
to cloud obscuration between consecutive observations and periods of missing observations due to
sensor and/or acquisition abnormalities. The maximum consecutive temporal differences (not plotted
in Figure 8) are 57, 176 and 1975 for the Landsat 7 ETM+, 5 TM and 4 TM observations respectively.
Similar results are evident considering the three sensors combined (Figure 8a) but with a greater
variety of differences and notably one and eight day differences that can occur between successive
Landsat 7 ETM+ and 5 TM observations [29,30].
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Figure 8. Histogram of the temporal differences between consecutive non-fill non-cloudy Landsat
observations over the 36 year study period at the most observed non-fill non-cloudy CONUS ARD
pixel location (located at 32◦47′34.09” N 114◦55′47.60” W, southern California, ARD tile h05v13) for (a)
Landsat 4 TM, 5 TM and 7 ETM+ combined, (b) Landsat 7 ETM+, (c) Landsat 5 TM, (d) Landsat 4 TM.

The results in Figure 8 are for the single most observed non-fill non-cloudy CONUS ARD pixel.
At other ARD pixel locations greater temporal differences between consecutive non-cloudy Landsat
observations occur more frequently. These differences are not straightforward to summarize at every
CONUS ARD pixel because they vary considerably. In certain years (Figure 2) and in the non-summer
months (Figure 3), there may be relatively fewer observations of an ARD pixel and at some pixel
locations there may be no or only a small number of non-fill non-cloudy observations over the sensor
lifetime (Figure 6).

4.3. ARD Tile-Level Summary Information

Figure 9 shows the per tile annual mean number of non-fill non-cloudy observations (µ sensor
tile ,

Equation (3)). Considering each sensor separately and all three sensors combined, reveals similar
patterns. The most frequently observed tiles are in the south-west, particularly over the Mojave and
Sonora deserts and also in mountain rain shadow regions of the Cascade Range (Columbia basin and
High Desert), Sierra Nevada Range (Great Basin Desert), Coast Range (Central Valley) and the Rocky
Mountains (Great Plains). The least observed tiles tend to be in the north-east, around the Great Lakes
and along parts of the north-west coast. As noted above, the coastal ARD tiles have low µ sensor

tile values
as there are fewer ARD granules for the geolocation processing reasons discussed at the beginning of
Section 4.2.
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Figure 9. The average annual number (µ sensor
tile , Equation (3)) of non-fill non-cloudy observations across

each CONUS ARD tile over the 36 year study period for (a) Landsat 4 TM, 5 TM and 7 ETM+ combined,
(b) Landsat 7 ETM+, (c) Landsat 5 TM, (d) Landsat 4 TM. The ten most (red outlined) and the ten least
(white outlined) observed CONUS ARD tiles (white tiles in Figure 1) are shown and are summarized
in Tables 2 and 3.

Table 2. The ten most observed CONUS cloud-free ARD tiles over the 36 year study period (red outlined
in Figure 9).

Landsat 4,5,7 Landsat 7 Landsat 5 Landsat 4

Tile µ tile Tile µ tile Tile µ tile Tile µ tile

h05v13 30.067 h04v11 21.718 h04v11 22.828 h06v13 16.794

h04v11 29.974 h05v13 21.621 h05v13 22.727 h06v14 16.419

h05v12 29.876 h05v12 21.522 h05v12 22.669 h07v13 14.637

h06v13 29.740 h06v13 21.001 h06v13 22.635 h07v12 14.413

h06v14 29.217 h04v12 20.937 h04v10 22.303 h05v13 14.211

h04v10 29.024 h05v11 20.900 h06v14 22.280 h10v14 12.974

h05v11 28.982 h06v11 20.761 h06v12 22.064 h10v13 12.292

h06v12 28.941 h04v10 20.746 h05v11 22.035 h08v14 12.128

h06v11 28.749 h06v12 20.695 h06v11 21.855 h07v14 11.790

h05v10 28.512 h06v14 20.576 h05v10 21.804 h16v10 11.441
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Table 3. The ten least observed CONUS cloud-free ARD tiles over the 36 year study period (white
outlined in Figure 9).

Landsat 4,5,7 Landsat 7 Landsat 5 Landsat 4

Tile µ tile Tile µ tile Tile µ tile Tile µ tile

h28v04 14.231 h25v07 9.728 h28v04 11.077 h22v08 0.526

h28v05 14.273 h28v05 9.792 h28v05 11.177 h22v09 0.789

h03v02 14.546 h28v04 9.905 h03v02 11.453 h25v09 0.840

h26v07 14.582 h26v07 9.916 h26v09 11.535 h25v08 0.859

h26v08 14.589 h26v08 10.031 h26v08 11.547 h18v16 0.995

h26v09 14.864 h03v02 10.069 h26v07 11.587 h22v07 1.019

h27v07 14.905 h23v07 10.105 h03v01 11.652 h22v04 1.056

h03v01 14.946 h27v07 10.217 h28v06 11.726 h25v10 1.076

h28v06 14.957 h28v06 10.262 h27v07 11.789 h24v11 1.087

h25v10 15.144 h27v06 10.293 h15v18 11.983 h22v06 1.104

In Figure 9 the pixel-level Landsat orbit swath overlap patterns (Figures 4 and 6) are less evident
because of the tile level averaging. However, the change in the relative orientation of the ARD tile
locations to the Landsat orbits is still apparent, with more tiles in the western CONUS having greater
µ sensor

tile values than in the eastern CONUS due to this phenomenon and also due to reduced cloudiness.
Figure 10 shows histograms of the Figure 9 data. The histograms are approximately normally

distributed, except for the Landsat 4 TM histogram that is positively skewed (i.e., a greater frequency
of small values). Across the CONUS, the most common µ tile values are 18 to 20 (23.4% of tiles) for all
three sensors, 12 to 14 (30.7% of tiles) for the Landsat 7 ETM+, 14 to 16 (26.2% of tiles) for the Landsat 5
TM and 2 to 4 (36.5% of tiles) for the Landsat 4 TM.

The ten CONUS ARD tiles with the highest µ tile values are summarized in Table 2 and highlighted
in Figure 9. The tiles are clustered over the south-west and with the exception of Landsat 4 TM, have
µ tile > 20. Considering Landsat 7 ETM+, Landsat 5 TM and the three sensors combined, eight of the
ten most frequency observed ARD tiles are common. Southern California ARD tiles h05v13 (centered
33◦06′56.45” N, 114◦53′38.52” W) and h04v11 (centered 35◦27′32.82” N, 117◦11′13.44” W) have the
highest µ tile values for these sensors. The top ten Landsat 4 TM ARD tiles have a different geographic
distribution compared to the other sensors, due to the spatially irregular number of observations
(Figure 6). Southern Arizona ARD tile h06v13 (centered 33◦22′12.09” N, 113◦18′11.39” W) has the
highest µ tile value for the Landsat 4 TM.

The ten CONUS ARD tiles with the lowest µ tile values are summarized in Table 3 and highlighted
in Figure 9. They are located predominantly in north-west coastal regions and in tiles surrounding
the Great Lakes. For all three sensors and also Landsat 5 TM, the least observed tile is h28v04
that encompasses northern New York state and parts of southern Canada (centered 44◦58′01.15” N,
74◦06′31.86” W). For Landsat 7 ETM+, the least observed tile is h25v07 that is over the state boundary
of Ohio and Pennsylvania (centered 41◦47′42.71” N, 80◦40′9.54” W). Notably, these least observed
tiles have approximately half the µ tile values compared to the most observed tile µ tile values for these
sensors (Table 2). The least observed Landsat 4 TM ARD tile is h22v08 that is over northern Indiana
(centered 40◦59′40.72” N, 86◦17′1.36” W) and has a very low µ tile (0.526) that is, in this tile ARD pixels
have on average less than one non-fill non-cloudy observation per year.
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Figure 10. CONUS histograms of the average annual number (µ tile, Equation (3)) of non-fill non-cloudy
observations across each ARD tile for the 36 year study period, for (a) Landsat 4 TM, 5 TM and 7 ETM+
combined, (b) Landsat 7 ETM+, (c) Landsat 5 TM, (d) Landsat 4 TM. The histogram bins are defined as
<2, 2 – <4, 4 – <6, . . . , 30 - <32. All results derived from the Figure 9 data.

5. Discussion

It is well established that the availability of satellite observations influences terrestrial monitoring
capabilities. More observations in a given time period mean that users have more opportunities to select
single cloud free images over an area and time period of interest. More observations also enable more
reliable time series fitting [31–33]and improved change detection through more precise definition of
the timing of the change and characterization of the change type [34,35]. More observations also mean
that temporally composited products have a higher likelihood of being generated with cloud-free data
and that shorter temporally compositing periods can be used which is useful if the surface phenomena
are changing rapidly [36–38].

The results reported in this paper illustrate that the Landsat 4 TM, 5 TM and 7 ETM+ ARD
observation record has different availability across the CONUS, at annual and seasonal scales and that
the availability can vary spatially quite significantly. For example, for Landsat 5 TM the µ tile values
vary from 11.08 (tile h28v04, northern New York state) to 22.83 (h04v11, Southern California). This
uneven distribution poses challenges for CONUS-wide terrestrial applications that use the historical
Landsat ARD. Complex patterns of data availability occur across the CONUS due to different sensor
data acquisition frequency, cloud, the satellite orbit and sensor geometry and because of the relative
orientations of the ARD tiles with respect to the Landsat orbit paths. This may be a concern for
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certain applications. For example, Landsat ARD analyses results generated over the arid south-west,
where there are the most cloud-free ARD observations, will likely be more reliable than results in
the north-east, around the Great Lakes and along parts of the north-west coast where significantly
fewer observations are available. It is recommended that the ARD tiles with particularly high and low
numbers of observations (described in Tables 2 and 3) be considered by algorithm developers who
wish to evaluate algorithms at data rich and data sparse ARD tile locations. The quality of time series
algorithm results is expected to be reduced at tiles with low reported temporal ARD availability.

The results reported in this paper also illustrate the utility of combing different Landsat sensor
data together to take advantage of their different acquisition patterns to improve temporal data
availability. The CONUS average annual number of non-cloudy observations at each 30 m ARD pixel
location is 4.85 (Landsat 4 TM), 16.41 (Landsat 5 TM), 15.03 (Landsat 7 ETM+) and 21.22 (all three
Landsat sensors). The greatest temporal availability of ARD pixel observations occurs in cloud-free
regions where spatially adjacent Landsat orbits overlap across-scan. These locations offer potential
for new Landsat-scale remote sensing studies where higher temporal resolution observations are
needed. For example, Landsat reflectance bi-directional effects have been documented by taking
advantage of the one day overpass difference between Landsat 5 TM and Landsat 7 ETM+ at orbit
overlap locations [29].

For systematic monitoring, satellite observations should ideally occur uniformly in time with at
least twice the observation frequency of the surface variations being monitored [33]. This is not the
case for Landsat data. For example, at the most observed CONUS 30 m ARD pixel there is considerable
variety in the temporal difference between consecutive pixel observations (Figure 8). At other
CONUS ARD pixel locations greater temporal differences between consecutive non-cloudy Landsat
observations occur more frequently. Future research on the temporal difference between consecutive
pixel observations in the ARD record is recommended, including the minimum temporal difference
as near coincident observations can be used for among-sensor comparison and characterization
activities [39]. This is beyond the scope of the present study however.

The reported results likely overestimate the number of “good” surface observations because
shadows and cirrus clouds were not considered. Clouds and shadows reduced the CONUS mean
total number of Landsat 4 TM, 5 TM and 7 ETM+ observations for the 36 years by 32.9% (comparing
Figure 4a with Figure 4c, whereas clouds reduced the number by 29.7% (comparing Figure 4a with
Figure 4b). However, at local scale the ARD shadow mask is not reliable and consequently it was not
used in this study except to generate Figure 4c. Reliable shadow and cloud masking are difficult to
implement over all surface and atmospheric conditions and the ARD cloud-mask and shadow-mask
will be improved in future ARD versions [2,28,40]. Cirrus clouds were also not considered in this
study as there is no Landsat 4 TM, 5 TM and 7 ETM+ cirrus mask. A recent analysis of one year of
Landsat 8 Operational Land Imager (OLI) imagery, that includes a new Landsat band dedicated to
cirrus cloud detection, indicated that the historical CONUS Landsat archive is about 7% cirrus cloud
contaminated [12].

The reported analysis was straightforward to undertake computationally because the ARD are
stored in fixed geolocated ARD tiles. The ARD filenames include the tile coordinates and so are
amenable to scripting. In addition, computationally expensive image reprojection and resampling
needed to align Landsat images [25] was not required because this was already undertaken in the
ARD generation. The majority of the computational overhead was on reading the ARD. The CONUS
ARD volume is considerable. In this study, a total of 1,027,231 Landsat 4 TM, 5 TM and 7 ETM+ ARD
granules were considered that required 119 TB of dedicated disk storage after tarball decompression.

Research to assess and consider more sophisticated processing using the ARD is ongoing,
including correction for bi-directional reflectance and topographic effects, gap-filling and improved
cloud masking [23,28,41,42]. A recommendation of this study is to improve the Landsat geolocation
processing. The ARD are generated using only Landsat images corrected to a geodetic accuracy ≤12
m RMSE [2]. More images in the U.S. Landsat archive could be processed as ARD if the Landsat
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geometric processing was improved, for example, by using an orbit based methodology [43,44] rather
than one that relies on the collection of ground control from individual images [24].

6. Conclusions

The release of the Landsat ARD reduces the magnitude of pre-processing required to produce
large-area Landsat derived data products or to perform long term terrestrial monitoring [2]. In this
study, the availability of the CONUS Landsat 4 TM, 5 TM and 7 ETM+ ARD was examined for each
sensor separately and combined for a 36 year period (1 January 1982 to 31 December 2017). This
is important as the availability of satellite observations influences surface monitoring capabilities.
The main quantitative paper findings are summarized below.

Over the 36 years there were 12,191 days (>33 years) on which at least one Landsat sensor (Landsat
4 TM, 5 TM, 7 ETM+) acquired imagery that was used to make CONUS ARD. Examination of the
number of days with CONUS ARD revealed that Landsat 4 TM, Landsat 5 TM and Landsat 7 ETM+
acquired images used to make the CONUS ARD for 9.92%, 93.17% and 98.15% of their sensor lifetimes
in the 36 year period respectively.

The single ARD 30 m pixel location with the greatest number of non-cloudy Landsat 4 TM, 5 TM
and 7 ETM+ observations is in southern California ARD tile h05v13 (column 5, row 13; specifically,
32◦47′34.09” N 114◦55′47.60” W). The CONUS average annual number of non-cloudy observations at
each 30 m ARD pixel location is 4.85 (Landsat 4 TM), 16.41 (Landsat 5 TM), 15.03 (Landsat 7 ETM+)
and 21.22 (all three Landsat sensors).

Considering the average annual number of non-cloudy observations in each 150 × 150 km ARD
tile (µ tile), the most common CONUS µ tile values are 2 to < 4 (Landsat 4 TM), 14 to < 16 (Landsat 5
TM), 12 to < 14 (Landsat 7 ETM+) and 18 to < 20 (all three Landsat sensors). The ten CONUS ARD
tiles with the highest µ tile values are clustered over the south-west; and the highest values are at ARD
tiles h04v11 (Landsat 5 TM and 7 ETM+), h06v13 (Landsat 4 TM) and h05v13 (all three sensors). The
ten CONUS ARD tiles with the lowest µ tile values are located predominantly in north-west coastal
regions and in tiles surrounding the Great Lakes; the ARD tiles with the lowest values are h28v04
(Landsat 5 TM and all three sensors), h25v07 (Landsat 7 ETM+), and h22v08 (Landsat 4 TM).
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