A New Remote Sensing Dryness Index Based on the Near-Infrared and Red Spectral Space
Abstract
:1. Introduction
2. Study Areas and Data
2.1. Study Area
2.2. Field Measurement Data
2.3. Satellite Image Data and Its Pre-Processing
2.3.1. Landsat 8 Data
2.3.2. MODIS data
3. Method
3.1. The NIR–Red Spectral Space
3.2. Satellite-Based Dryness Indices
3.2.1. PDI
3.2.2. MPDI
3.2.3. TVDI
3.2.4. TVMDI
3.3. The Proposed Ratio Dryness Monitoring Index (RDMI)
3.3.1. The Edges of the Triangle Extractions
3.3.2. Constructing RDMI
3.3.3. Implementing RDMI with Landsat-8
4. Results and Discussions
4.1. RDMI Vs. In Situ Measured Data
4.2. RDMI Vs. Other Satellite-Based Dryness Indices
4.3. RDMI Dryness Maps with Landsat 8 and MODIS Imagery
4.3.1. Dryness Indices Map with Landsat 8 Data
4.3.2. The RDMI Map with MODIS Data
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilhite, D.A. Drought as a natural hazard: Concepts and definitions. Drought A Glob. Assess. 2000, 1, 3–18. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Jiang, L.; Jiapaer, G.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in central asia. Sci. Total Environ. 2017, 599, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Makundi, W.R.; Shemdoe, R.; Kibassa, D.; Ravilious, C.; Bertzky, M.; Miles, L.; Angelsen, A.; Wertzkanounnikoff, S.; Hatcher, J. Climate Change and Water; Intergovernmental Panel on Climate Change Secretariat: Geneva, Switzerland, 2008. [Google Scholar]
- Hao, L.; Liu, S. Risk assessment to china’s agricultural drought disaster in county unit. Nat. Hazards 2012, 61, 785–801. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.Y.; Sun, C.F. Drought severity and change in xinjiang, china, over 1961–2013. Hydrol. Res. 2017, 48, 1343–1362. [Google Scholar] [CrossRef]
- Santos, J.F.; Pulido-Calvo, I.; Portela, M.M. Spatial and temporal variability of droughts in portugal. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Palmer, W. Meteorological drought. In U.S. Department of Commerce Weather Bureau Research Paper; U.S. Government Printing Office: Washington, DC, USA, 1965. [Google Scholar]
- Van Rooy, M. A rainfall anomaly index independent of time and space. Notos 1965, 14, 6. [Google Scholar]
- Palmer, W.C. Keeping track of crop moisture conditions, nationwide: The new crop moisture index. Weatherwise 1968, 21, 156–161. [Google Scholar] [CrossRef]
- Bhalme, H.N.; Mooley, D.A. Large-scale droughts/floods and monsoon circulation. Mon. Weather Rev. 1980, 108, 1197. [Google Scholar] [CrossRef]
- Shafer, B.A.; Dezman, L.E. Development of a surface water supply index (swsi) to assess the severity of drought conditions in snowpack runoff areas. In Proceedings of the 50th Annual Western Snow Conference, Reno, NV, USA, 19–23 April 1982. [Google Scholar]
- Katz, R.W.; Glantz, M.H. Anatomy of a rainfall index. Mon. Weather Rev. 1986, 114, 764–771. [Google Scholar] [CrossRef]
- McKee, T.B. Drought monitoring with multiple time scales. In Proceedings of the 9th Conference on Applied Climatology, Dallas, TX, USA, 15–20 January 1995. [Google Scholar]
- Easterling, D.R. Global Data Sets for Analysis of Climate Extremes; Springer: Berlin, Germany, 2013; pp. 347–361. [Google Scholar]
- Lessel, J.; Sweeney, A.; Ceccato, P. An agricultural drought severity index using quasi-climatological anomalies of remotely sensed data. Int. J. Remote Sens. 2016, 37, 913–925. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Yin, J.; Zhan, X.; Hain, C.R.; Liu, J.; Anderson, M.C. A method for objectively integrating soil moisture satellite observations and model simulations toward a blended drought index. Water Resour. Res. 2018, 54, 6772–6791. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A.; Nakhjiri, N.; Farahmand, A. Global integrated drought monitoring and prediction system. Sci. Data 2014, 1, 140001. [Google Scholar] [CrossRef] [PubMed]
- Paridal, B.R.; Collado, W.B.; Borah, R.; Hazarika, M.K.; Sarnarakoon, L. Detecting drought-prone areas of rice agriculture using a modis-derived soil moisture index. Gisci. Remote Sens. 2008, 45, 109–129. [Google Scholar] [CrossRef]
- Damberg, L.; AghaKouchak, A. Global trends and patterns of drought from space. Theor. Appl. Climatol. 2014, 117, 441–448. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Cheng, L.; Mazdiyasni, O.; Farahmand, A. Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 california drought. Geophys. Res. Lett. 2014, 41, 8847–8852. [Google Scholar] [CrossRef]
- Barré, H.M.; Duesmann, B.; Kerr, Y.H. SMOS: The mission and the system. IEEE Trans. Geosci. Remote Sens. 2008, 46, 587–593. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J. The soil moisture active passive (smap) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil moisture retrieval from amsr-e. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Chen, N.C.; He, Y.Q.; Zhang, X. Nir-red spectra-based disaggregation of smap soil moisture to 250 m resolution based on oznet in southeastern australia. Remote Sens. 2017, 9, 51. [Google Scholar] [CrossRef]
- Liu, D.; Mishra, A.K.; Yu, Z.B.; Yang, C.G.; Konapala, G.; Vu, T. Performance of smap, amsr-e and lai for weekly agricultural drought forecasting over continental united states. J. Hydrol. 2017, 553, 88–104. [Google Scholar] [CrossRef]
- Martinez-Fernandez, J.; Gonzalez-Zamora, A.; Sanchez, N.; Gumuzzio, A.; Herrero-Jimenez, C.M. Satellite soil moisture for agricultural drought monitoring: Assessment of the smos derived soil water deficit index. Remote Sens. Environ. 2016, 177, 277–286. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Park, S.; Rhee, J. Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the korean peninsula. Agric. For. Meteorol. 2017, 237, 257–269. [Google Scholar] [CrossRef]
- Du, L.; Tian, Q.; Yu, T.; Meng, Q.; Jancso, T.; Udvardy, P.; Huang, Y. A comprehensive drought monitoring method integrating modis and trmm data. Int. J. Appl. Earth Obs. 2013, 23, 245–253. [Google Scholar] [CrossRef]
- Naumann, G.; Barbosa, P.; Carrao, H.; Singleton, A.; Vogt, J. Monitoring drought conditions and their uncertainties in africa using trmm data. J. Appl. Meteorol. Climatol. 2012, 51, 1867–1874. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P.P. Cmorph: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Janowiak, J.E.; Joyce, R.J.; Yarosh, Y. A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Am. Meteorol. Soc. 2001, 82, 205–217. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Liu, T.; Chen, S.; Ndayisaba, F. Evaluation of persiann-cdr for meteorological drought monitoring over china. Remote Sens. 2016, 8, 379. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The version-2 global precipitation climatology project (gpcp) monthly precipitation analysis (1979-present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Price, J.C. On the information content of soil reflectance spectra. Remote Sens. Environ. 1990, 33, 113–121. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Moisture effects on soil reflectance. Soil Sci. Soc. Am. J. 2002, 66, 722–727. [Google Scholar] [CrossRef]
- Bablet, A.; Vu, P.V.H.; Jacquemoud, S.; Viallefont-Robinet, F.; Fabre, S.; Briottet, X.; Sadeghi, M.; Whiting, M.L.; Baret, F.; Tian, J. Marmit: A multilayer radiative transfer model of soil reflectance to estimate surface soil moisture content in the solar domain (400–2500 nm). Remote Sens. Environ. 2018, 217, 1–7. [Google Scholar] [CrossRef]
- Whalley, W.R.; Leedsharrison, P.B.; Bowman, G.E. Estimation of soil-moisture status using near-infrared reflectance. Hydrol. Process. 1991, 5, 321–327. [Google Scholar] [CrossRef]
- Fabre, S.; Briottet, X.; Lesaignoux, A. Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4–2.5 mu m domain. Sensors 2015, 15, 3262–3281. [Google Scholar] [CrossRef] [PubMed]
- Oltra-Carrio, R.; Baup, F.; Fabre, S.; Fieuzal, R.; Briottet, X. Improvement of soil moisture retrieval from hyperspectral vnir-swir data using clay content information: From laboratory to field experiments. Remote Sens. 2015, 7, 3184–3205. [Google Scholar] [CrossRef]
- Gao, B.C. Ndwi—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Ghulam, A.; Qin, Q.; Zhan, Z. Designing of the perpendicular drought index. Environ. Geol. 2007, 52, 1045–1052. [Google Scholar] [CrossRef]
- Ghulam, A.; Qin, Q.M.; Teyip, T.; Li, Z.L. Modified perpendicular drought index (mpdi): A real-time drought monitoring method. ISPRS J. Photogramm. Remote Sens. 2007, 62, 150–164. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Z.; Yao, F.; Yang, L.; Hao, C. Validating the modified perpendicular drought index in the north china region using in situ soil moisture measurement. IEEE Geosci. Remote Sens. Lett. 2015, 12, 542–546. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Ghulam, A. Remote Monitoring of Farmland Drought Based n-Dimensional Spectral Feature Space. Ph.D. Thesis, Peking University, Beijing, China, 2006. (In Chinese). [Google Scholar]
- Amani, M.; Salehi, B.; Mahdavi, S.; Masjedi, A.; Dehnavi, S. Temperature-vegetation-soil moisture dryness index (tvmdi). Remote Sens. Environ. 2017, 197, 1–14. [Google Scholar] [CrossRef]
- Dash, P.; Gottsche, F.M.; Olesen, F.S.; Fischer, H. Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. Int. J. Remote Sens. 2002, 23, 2563–2594. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Zhao, Y.; Mao, W.; Xu, X.; Liu, Y.; Yang, Q. Response of vegetation ndvi to climatic extremes in the arid region of central asia: A case study in xinjiang, china. Theor. Appl. Climatol. 2017, 131, 1503–1515. [Google Scholar] [CrossRef]
- Zhang, Q.; Singh, V.P.; Bai, Y. Spi-based evaluation of drought events in xinjiang, china. Nat. Hazards 2012, 64, 481–492. [Google Scholar] [CrossRef]
- Li, H.X.; Yang, J.; Hao, X.M. Retrieval of soil moisture information in xinjiang using modis. Acta Prataculturae Sin. 2017, 26, 16–27. (In Chinese) [Google Scholar]
- Gerace, A.; Montanaro, M. Derivation and validation of the stray light correction algorithm for the thermal infrared sensor onboard landsat 8. Remote Sens. Environ. 2017, 191, 246–257. [Google Scholar] [CrossRef]
- Available online: https://landsat.usgs.gov/2014 (accessed on 24 December 2014).
- Richardson, A.J. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Price, J.C. Estimating vegetation amount from visible and near-infrared reflectances. Remote Sens. Environ. 1992, 41, 29–34. [Google Scholar] [CrossRef]
- Zhan, Z.; Qin, Q.; Ghulan, A.; Wang, D. Nir-red spectral space based new method for soil moisture monitoring. Sci. China Ser. D Earth Sci. 2007, 50, 283–289. [Google Scholar] [CrossRef]
- Amani, M.; Parsian, S.; MirMazloumi, S.M.; Aieneh, O. Two new soil moisture indices based on the nir-red triangle space of landsat-8 data. Int. J. Appl. Earth Obs. 2016, 50, 176–186. [Google Scholar] [CrossRef]
- Mobasheri, M.R.; Bidkhan, N.G. Development of new hyperspectral angle index for estimation of soil moisture using in situ spectral measurments. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 481–486. [Google Scholar] [CrossRef]
- Qin, Q.; Ghulam, A.; Zhu, L.; Wang, L.; Li, J. Application of perpendicular drought index in the drought assessment: A case study in ningxia huizu autonomous region of china using modis data. In Proceedings of the 2006 IEEE International Geoscience and Remote Sensing Symposium, Denver, CO, USA, 31 July–4 August 2006; Volumes 1–8, pp. 3078–3081. [Google Scholar]
- Shahabfar, A.; Eitzinger, J. Agricultural drought monitoring in semi-arid and arid areas using modis data. J. Agric. Sci. 2011, 149, 403–414. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, H.; Wang, H.; Zhang, W.; Iop. Comparison of smmi, pdi and its applications in shendong mining area. In Proceedings of the International Symposium on Earth Observation for One Belt and One Road, Sanya, China, 25–27 November 2017; Volume 57. [Google Scholar]
- Zormand, S.; Jafari, R.; Koupaei, S.S. Assessment of pdi, mpdi and tvdi drought indices derived from modis aqua/terra level 1b data in natural lands. Nat. Hazards 2017, 86, 757–777. [Google Scholar] [CrossRef]
- Sheng, C.; Bingfang, W.; Nana, Y.; Jianjun, Z.; Qi, W.; Feng, X. A refined crop drought monitoring method based on the chinese gf-1 wide field view. Sensors 2018, 18, 1297. [Google Scholar]
- Gao, Z.; Gao, W.; Chang, N.-B. Integrating temperature vegetation dryness index (tvdi) and regional water stress index (rwsi) for drought assessment with the aid of landsat tm/etm plus images. Int. J. Appl. Earth Obs. 2011, 13, 495–503. [Google Scholar] [CrossRef]
- Sun, L.; Wu, Q.; Pei, Z.; Li, B.; Chen, X. Study on drought index in major planting area of winter wheat of china. Sens. Lett. 2012, 10, 453–458. [Google Scholar] [CrossRef]
- Carpenter, G.A.; Gopal, S.; Macomber, S.; Martens, S.; Woodcock, C.E.; Franklin, J. A neural network method for efficient vegetation mapping. Remote Sens. Environ. 1999, 70, 326–338. [Google Scholar] [CrossRef]
- Elmore, A.J.; Mustard, J.F.; Manning, S.J.; Lobell, D.B. Quantifying vegetation change in semiarid environments: Precision and accuracy of spectral mixture analysis and the normalized difference vegetation index. Remote Sens. Environ. 2000, 73, 87–102. [Google Scholar] [CrossRef]
- Baret, F.; Clevers, J.G.; Steven, M.D. The robusteness of canopy gap fraction estimates from red and near-infrared reflectances: A comparison of approaches. Remote Sens. Environ. Remote Sens. Environ. 1995, 54, 141–151. [Google Scholar] [CrossRef]
- Shahabfar, A.; Ghulam, A.; Eitzinger, J. Drought monitoring in iran using the perpendicular drought indices. Int. J. Appl. Earth Obs. 2012, 18, 119–127. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from landsat tm data and its application to the israel-egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Shahabfar, A.; Reinwand, M.; Conrad, C.; Schorcht, G. A re-examination of perpendicular drought indices over central and south-west asia. In Remote Sensing for Agriculture, Ecosystems, and Hydrology Xiv; Neale, C.M.U., Maltese, A., Eds.; Spie-International Socity Optical Engineering: Bellingham, WA, USA, 2012; Volume 8531. [Google Scholar]
- Zhao, C.Y.; Sheng, Y.; Yimam, Y. Quantifying the impacts of soil water stress on the winter wheat growth in an arid region, xinjiang. J. Arid Land 2009, 1, 34–42. [Google Scholar]
- Li, J.; Zhao, C.Y.; Song, Y.J.; Sheng, Y.; Zhu, H. Spatial patterns of desert annuals in relation to shrub effects on soil moisture. J. Veg. Sci. 2010, 21, 221–232. [Google Scholar] [CrossRef]
- Li, S.Y.; Tang, Q.L.; Lei, J.Q.; Xu, X.W.; Jiang, J.; Wang, Y.D. An overview of non-conventional water resource utilization technologies for biological sand control in xinjiang, northwest china. Environ. Earth Sci. 2015, 73, 873–885. [Google Scholar] [CrossRef]
- Hu, R.J.; Ma, H.; Fan, Z.L. The climate trend demonstrated by changes of the lakes in xinjiang since recent years. J. Arid Land Resour. Environ. 2002, 16, 20–27. (In Chinese) [Google Scholar]
- Jiang, L. Analysis on the trend of climate and runoff changes of manas river basin upstream. Environ. Prot. Xinjiang 2016, 38, 44–48. (In Chinese) [Google Scholar]
- Xinhua. Drought Affects Half a Million in Xinjiang. Available online: http://www.chinadaily.com.cn/china/2014-08/23/content_18475075.htm (accessed on 23 August 2014).
- Yoo, C.; Kim, S.J.; Lee, J.S. Land cover change and its impact on soil-moisture-field evolution. J. Hydrol. Eng. 2001, 6, 436–441. [Google Scholar] [CrossRef]
- Chen, X.; Su, Y.; Liao, J.; Shang, J.; Dong, T.; Wang, C.; Liu, W.; Zhou, G.; Liu, L. Detecting significant decreasing trends of land surface soil moisture in eastern china during the past three decades (1979–2010). J. Geophys. Res. Atmos. 2016, 121, 5177–5192. [Google Scholar] [CrossRef]
Precipitation | Spatial Resolution | Temporal Resolution | Launch Time | References |
---|---|---|---|---|
TRMM-TMPA | 0.25° | 3 h | 1998 | [30,31] |
CMORPH | 0.25° | 3 h | 2002 | [32] |
GSMaP | 0.10° | 1 h | 2005 | [33] |
PERSIANN | 0.25° | 3 h | 2000 | [34] |
GPCP | 0.25° | monthly | 1979 | [35] |
Platform/Sensor | Number of Bands | Spectral Range (μm) | Spatial Resolution | Temporal Resolution | Launch Time |
---|---|---|---|---|---|
Landsat/TM | 7 | 0.4–2.35 | 30 m/120 m | 16 d | 1984 |
Landsat/ETM+ | 8 | 0.45–2.35 | 15 m/30 m/60 m | 16 d | 1999 |
Landsat/OLI | 9 | 0.43–1.39 | 30 m | 16 d | 2013 |
Landsat/TIRS | 2 | 10.6–12.5 | 100 m | 16 d | |
Terra/ASTER | 14 | 0.52–11.65 | 90 m | 16 d | 1999 |
HJ-1B/CCD | 4 | 0.43–0.90 | 30 m | 4d | 2008 |
HJ-1B/IRS | 4 | 0.75–12.50 | 300 m | 4 d | |
Aqura/MODIS | 36 | 0.4–14.40 | 250 m/1000 m | 0.5 d | 2002 |
Terra/MODIS | 0.5 d | 2000 | |||
NOAA/AVHRR | 5 | 0.55–12.50 | 1100 m | 0.5 d | 1979 |
Dryness Index | Indicators | Remote Sensors | Verification Area | References |
---|---|---|---|---|
PDI | Red band (0.63–0.69 µm) Near infrared (0.77–0.90 µm) | Landsat-7 ETM+ | The Shunyi Remote Sensing Experimental Base, Beijing, China | [61,62,63] |
MPDI | Red band (0.63–0.69 µm) Near infrared (0.77–0.90 µm) | Landsat-7 ETM+ | The Shunyi Remote Sensing Experimental Base, Beijing, China | [64,65] |
Red (0.62–0.67 µm) Near infrared (0.84–0.87 µm) | MODIS | Ningxia Huizu Autonomous Region of China | ||
TVDI | NDVI and LST | NOAA-AVHRR | Senegal river valley in Senegal Sichuan Basin | [66,67] |
MODIS | Fuxin, China | |||
Landsat TM/ETM+ | Northern China | |||
TVMDI | NDVI, LST and MPDI | Landsat-8 OLI | Yanco | [49] |
MODIS | AustraliaIran |
RDMI | PDI | MPDI | TVDI | TVMDI | ||
---|---|---|---|---|---|---|
Total (n = 51) | r | −0.89 | −0.72 | −0.74 | −0.84 | −0.87 |
Slope | −0.04 | −0.03 | −0.03 | −0.03 | −0.03 | |
Intercept | 0.92 | 0.87 | 0.89 | 0.89 | 0.81 | |
RMSE | 0.09 | 0.17 | 0.14 | 0.11 | 0.11 | |
Winter wheat (n = 8) | r | −0.76 | −0.60 | −0.65 | −0.64 | −0.73 |
Slope | −0.03 | −0.04 | −0.04 | −0.02 | −0.03 | |
Intercept | 0.79 | 1.08 | 1.14 | 0.72 | 0.86 | |
RMSE | 0.08 | 0.19 | 0.15 | 0.09 | 0.09 | |
Cotton (n = 19) | r | −0.64 | −0.26 | −0.47 | −0.61 | −0.62 |
Slope | −0.05 | −0.05 | −0.02 | −0.03 | −0.03 | |
Intercept | 1.01 | 1.01 | 0.78 | 0.91 | 0.87 | |
RMSE | 0.09 | 0.17 | 0.13 | 0.11 | 0.10 | |
Spring maize (n = 14) | r | −0.69 | −0.50 | −0.41 | −0.55 | −0.65 |
Slope | −0.02 | −0.02 | −0.04 | −0.02 | −0.03 | |
Intercept | 0.77 | 0.80 | 1.09 | 0.84 | 0.75 | |
RMSE | 0.09 | 0.14 | 0.12 | 0.10 | 0.09 | |
Bare land (n = 8) | r | −0.68 | −0.56 | −0.53 | −0.41 | −0.50 |
Slope | −0.02 | −0.01 | −0.01 | 0.01 | 0.03 | |
Intercept | 0.76 | 0.81 | 0.85 | 0.79 | 0.87 | |
RMSE | 0.06 | 0.17 | 0.08 | 0.11 | 0.08 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, Q.; Bao, A.; Wang, Y. A New Remote Sensing Dryness Index Based on the Near-Infrared and Red Spectral Space. Remote Sens. 2019, 11, 456. https://doi.org/10.3390/rs11040456
Zhang J, Zhang Q, Bao A, Wang Y. A New Remote Sensing Dryness Index Based on the Near-Infrared and Red Spectral Space. Remote Sensing. 2019; 11(4):456. https://doi.org/10.3390/rs11040456
Chicago/Turabian StyleZhang, Jieyun, Qingling Zhang, Anming Bao, and Yujuan Wang. 2019. "A New Remote Sensing Dryness Index Based on the Near-Infrared and Red Spectral Space" Remote Sensing 11, no. 4: 456. https://doi.org/10.3390/rs11040456
APA StyleZhang, J., Zhang, Q., Bao, A., & Wang, Y. (2019). A New Remote Sensing Dryness Index Based on the Near-Infrared and Red Spectral Space. Remote Sensing, 11(4), 456. https://doi.org/10.3390/rs11040456