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Abstract: Forest ecosystems provide critical ecosystem goods and services, and any
disturbance-induced changes can have cascading impacts on natural processes and human
socioeconomic systems. Forest disturbance frequency, intensity, and spatial and temporal scale
can be altered by changes in climate and human activity, but without baseline forest disturbance
data, it is impossible to quantify the magnitude and extent of these changes. Methodologies for
quantifying forest cover change have been developed at the regional-to-global scale via several
approaches that utilize data from high (e.g., IKONOS, Quickbird), moderate (e.g., Landsat) and coarse
(e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) spatial resolution satellite imagery.
While detection and quantification of forest cover change is an important first step, attribution of
disturbance type is critical missing information for establishing baseline data and effective land
management policy. The objective here was to prototype and test a semi-automated methodology
for characterizing high-magnitude (>50% forest cover loss) forest disturbance agents (stress, fire,
stem removal) across the conterminous United States (CONUS) from 2003–2011 using the existing
University of Maryland Landsat-based Global Forest Change Product and Web-Enabled Landsat
Data (WELD). The Forest Cover Change maps were segmented into objects based on temporal and
spatial adjacency, and object-level spectral metrics were calculated based on WELD reflectance time
series. A training set of objects with known disturbance type was developed via high-resolution
imagery and expert interpretation, ingested into a Random Forest classifier, which was then used to
attribute disturbance type to all 15,179,430 forest loss objects across CONUS. Accuracy assessments
of the resulting classification was conducted with an independent dataset consisting of 4156 forest
loss objects. Overall accuracy was 88.1%, with the highest omission and commission errors observed
for fire (32.8%) and stress (31.9%) disturbances, respectively. Of the total 172,686 km2 of forest loss,
83.75% was attributed to stem removal, 10.92% to fire and 5.33% to stress. The semi-automated
approach described in this paper provides a promising framework for the systematic characterization
and monitoring of forest disturbance regimes.

Keywords: forest cover loss; fire; remote sensing; forest management; forest recovery

1. Introduction

Forests provide critical ecosystem goods and services and are deeply intertwined with
socioeconomic systems [1,2]. Consequently, any disturbance-induced change in forest cover can
have cascading impacts on surface energy balances, carbon dynamics, wildlife habitat, and human
activities [3–6]. In the United States, wildfires, insect outbreaks, and land use (e.g., timber
harvest, urbanization) are a few of the major disturbances that can lead to large-scale changes in
forest cover [7–14]. Disturbance regimes (frequency, intensity, spatial and temporal scale) vary
significantly within and between disturbance types, making widespread, automated characterization
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challenging [15]. Generating a baseline assessment of forest disturbance is also needed to characterize
how climate change and human activity are altering these regimes [10,16,17]. Recognizing the need for
the systematic monitoring of forest cover, considerable effort has been devoted to quantify forest cover
loss via Earth observation data at regional to global scales [9,13,18–25]. However, fewer studies have
sought to attribute disturbance agents responsible for the changes in forest cover beyond those at the
regional scale [13,26–28]. Methodologies that can semi-autonomously quantify disturbance type across
large spatial extents are necessary in order to increase our understanding of disturbance regimes and
also for producing and implementing effective land management policy [29].

In the United States, there are several operational disturbance-specific monitoring programs
for assessing forest loss due to fire, insects and disease, and forest management. The Monitoring
Trends in Burn Severity (MTBS) program produces annual burned area and fire severity maps for the
conterminous United States (CONUS) and Alaska from 1984 to the present using Landsat data [30].
This product is produced via expert interpretation of Landsat data and U.S. Forest Service ancillary
ground information (when available), and only maps large fires (>400 ha in western U.S. and >200 ha
in eastern U.S.). The aerial detection survey (ADS) program maps damage to forests caused by insects
and disease. However, like MTBS, it relies on non-automated, human interpretation to map forest
areas affected by insect and disease from aerial surveys. This product typically overestimates forest
cover loss, as both live and dead trees are typically mapped in the affected areas, and it does not survey
all forests every year [31]. Ground-based forest inventory efforts such as the Forest Inventory and
Analysis (FIA) program produce nationwide forest structure and composition information, including
disturbance type attribution using a design-based set of field plots. However, plots are sparse (1 plot
per 2400 ha) and only 10–20% of plots per U.S. state are measured on an annual basis [32]. While all
of these monitoring programs have been useful to researchers and land managers, the limitations
and differing methodologies of these programs hinder comparisons and application to the CONUS
scale [13].

Semi-automated methodologies for characterizing disturbance types have been developed at the
regional scale using Earth Observation System datasets, such as Landsat time series data. Spectral
properties of disturbance-affected pixels and/or patches can be derived from Landsat data and
combined with ancillary data to train and validate machine learning classifiers (e.g., Random Forest,
Classification-and-Regression-Trees) [26,27,33,34]. These methodologies have generally resulted in
high (>90%) overall classification accuracies over a wide range of ecosystems [26,27]. While these
studies advance our ability to characterize disturbances, they have one key limitation: many (with
exception of a few, e.g., [35]) disturbance characterization efforts have been developed and tested
at watershed to regional scales [26,27,36], which limits their applicability to larger, more diverse
landscapes such as CONUS [11]. Other studies have developed methodologies for characterizing
disturbances across larger spatial extents, but the lack of automation and reliance on human
interpretation limits the number of samples that can be assessed [13,28].

The present study sought to develop and test a methodology for attributing a forest cover
disturbance type to an existing forest cover loss dataset, using CONUS-wide Web-Enabled Landsat
Data (WELD) for 2002–2012. The overall objective was to map major forest disturbance types across
CONUS. The U.S. Forest Service FIA Program field protocols for assessing tree status and cause of
death were used as a guide for grouping similar forest disturbance types [32,37]. Disturbance types
were grouped into three classes: stress, fire, and stem removal. In this study, “stress” includes forest
cover loss resulting from stress-induced slow degradation of the forest canopy leading to tree mortality.
Individual stressors in this class include insects, disease, and drought, although it is common for tree
mortality to result from interactions between these stressors [38]. “Fire” includes forest cover loss
resulting from wildfire or prescribed burning. “Stem removal” includes forest cover loss where tree
stems have been removed from the site either via forest harvest clearcuts, partial cuts, development,
mining, or other land clearing activities. The University of Maryland Global Forest Change 30 m dataset
of stand-replacing disturbances [23] was segmented into homogeneous forest disturbance objects based
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on year of forest loss and spatial adjacency. Object-level spectral trajectories (including spectral indices
and temporal profile metrics) were identified by adapting the approach proposed by Kennedy et al. [39],
using web-enabled Landsat Data [40]. Visual interpretation of high-resolution Google Earth imagery,
in combination with ancillary datasets, was used to create training and validation datasets of objects
with known disturbance type. A Random Forest classifier was then used to classify all disturbance
objects. The classification was then refined using the Moderate Resolution Imaging Spectroradiometer
(MODIS) Active Fire Product [41]. The classified forest loss objects were compared to an independent
validation dataset and accuracy was assessed using error matrices.

2. Data

2.1. University of Maryland Global Forest Change Product

The Global Forest Change Product, produced by University of Maryland, provides 30 m spatial
resolution global tree canopy cover extent and forest cover change (i.e., forest cover loss and forest
cover gain) from 2000–2016 [23,42]. The forest loss product was designed to capture stand replacing
events and may not detect low-to-moderate-intensity disturbances that result in partial forest cover
loss. Tree canopy cover and change datasets are distributed in 10 × 10 degree tiles. User’s accuracy for
the forest loss product in temperate forests was 88.2%, Producer’s accuracy was 93.9%, and overall
accuracy was 99.8% [20]. Accuracy is likely to be higher in CONUS than other regions due to the
higher number of available Landsat scenes [43].

2.2. Web Enabled Landsat Data (WELD)

The Web Enabled Landsat Data (WELD) dataset consists of temporally composited mosaics
of CONUS and Alaska using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) Level 1 Terrain
Corrected (L1T) data. All ETM+ pixels with cloud cover ≤ 80% are considered for inclusion in weekly,
monthly, or annual composites [40]. The Level 1T data used to generate the WELD product is processed
using radiometric correction, systematic geometric correction, precision correction with ground control
chips, and correction of parallax error aided by digital elevation models [37]. The WELD product
includes top of atmosphere (TOA) reflectance (bands 1–5, 7) and brightness temperature (band 6),
TOA normalized difference vegetation index (NDVI), and the date of pixel acquisition. WELD version
1.5 Products were used in this study. The WELD products are designed to provide consistent data
that can be easily used to derive land cover and geo-physical and bio-physical products, such as land
cover change [44], and cropland delineation [45,46]. Image composites are distributed in 5000×5000
30 m pixel tiles in the Albers equal area projection. In this study, annual CONUS WELD mosaics
from 2002–2012 were used. TOA reflectance for ETM+ bands 1 (0.45–0.52 µm), 2 (0.53–0.61 µm),
3 (0.63–0.69 µm), 4 (0.78–0.90 µm), 5 (1.55–1.75 µm), and 7 (2.09–2.35 µm) from WELD mosaics were
used to calculate object-level spectral metrics for each forest cover disturbance (see Section 3.4).

2.3. Moderate Resolution Imaging Spectroradiometer (MODIS) Active Fire Product

The MODIS active fire product detects fires that are actively burning at the time of NASA satellite
(Terra and Aqua) overpass, with up to four overpasses possible per day at CONUS latitude [41]. The
Collection 5 Level 3 8-day MODIS Terra active fire product, MOD14A1 was used for this study. The
MOD14A1 product contains 8 layers indicating the location of daily active fire detections at a nominal
1 km spatial resolution, includes ancillary detection confident information, and is distributed in the
native MODIS sinusoidal projection [47]. Annual active fire detection files were created by temporally
compositing MOD14A1 tiles for each year from 2003–2012. The compositing procedure is described in
detail [48]; to provide the greatest number of possible active fire detections, all confidence levels were
used. These composites were used in the post-classification phase, to refine forest cover loss objects
classified as fire-caused, by confirming that they were close in space and time to MOD14A1 detections.
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2.4. Insect Mortality-Area Dataset

The insect mortality-area dataset developed by Meddens et al. [31] provides a 1 km gridded bark
beetle-caused tree mortality-area product for British Columbia and the western United States from
1997–2010. This dataset was created by converting aerial detection survey (ADS) polygon data collected
by the USDA Forest Health Monitoring Program in United States, to percent crown mortality per unit
area. This product includes percent crown mortality resulting from nine major bark beetle species
(e.g., mountain pine beetle, pinyon ips, ips engraver beetle, western balsam bark beetle, fir engraver,
Douglas-fir beetle, spruce beetle, western pine beetle, and unspecified bark beetles) in the western
United States and British Columbia, Canada. In this study, the insect mortality-area dataset was used
solely as an ancillary dataset to inform the selection of training and validation dataset locations.

2.5. Monitoring Trends in Burned Severity (MTBS) Burned Area Perimeters

The MTBS project produces annual burned area polygons and fire severity maps for CONUS
and Alaska from 1984 to the present date. Burned area perimeters are created via on-screen expert
interpretation of Landsat data and U.S. Forest Service fire incident information when available [30].
Only large fires are mapped (>400 ha in western U.S. and >200 ha in eastern U.S.). Like the insect
detection data, MTBS fire perimeters were used solely as ancillary dataset to inform the selection of
training and validation data locations.

2.6. GoogleEarth High Spatial-Resolution Imagery

GoogleEarth imagery consists of high spatial resolution (typically <5 m) data acquired by
U.S. government programs, such as the National Agricultural Imagery Program (NAIP), and
commercial companies, such as DigitalGlobe. This imagery allows for the interpretation of tree
crown absence/presence and was used in the production of training and validation datasets
(see Sections 3.5 and 3.7 for more detail).

3. Methods

3.1. Data Preprocessing

Following [48], all datasets were projected to the WELD Albers equal area projection (datum:
WGS84). The 1 km datasets (insect mortality-area dataset and MOD14A1) were reprojected and
resampled to 30 m spatial resolution. As mentioned previously, the insect detection dataset was
used only as a guide to find suitable training and validation dataset locations, and MOD14A1 was
used to confirm that objects classified as fire were close in space and time relative to MOD14A1
detections. Consequently, geolocation errors arising during reprojection and resampling are not critical
for this analysis.

3.2. Image Segmentation

The reprojected Global Forest Change Product was segmented based on year of disturbance and
spatial adjacency using Trimble eCognition Developer 9.1 software. Specifically, forest loss pixels were
partitioned into objects using a 4-neighbor adjacency rule: (1) if they occurred in the same year, and
(2) if they shared at least one edge with another forest cover loss pixel of the same year. Single-pixel
objects were analyzed in the same manner as larger objects. A 4-neighbor adjacency rule was chosen
to minimize the risk of forest cover loss objects caused by different disturbances being segmented into
the same object. The resulting 15,179,430 forest cover loss objects became the functional units for all
subsequent analyses. To match the temporal extent of the WELD dataset, only forest cover loss from
2003 to 2011 was considered.
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3.3. Temporal Consistency of Forest Loss Year

The WELD annual datasets are generated from all the available Landsat scenes of the year by
applying a maximum normalized difference vegetation index (NDVI) compositing algorithm [40]. For
pixels that experience a forest canopy loss (or more generally a disturbance), either a pre-disturbance
or a post-disturbance value might be selected in the composite of the disturbance year depending on
the nature of the spectral changes and on the amount of cloud-free data available before and after the
disturbance. In some cases, this causes a discrepancy between the forest cover loss year estimated by
the Global Forest Change Product, and the WELD time series. For each forest cover loss object defined
in Section 3.2, the mean normalized burned ratio (NBR) was computed using the WELD composites
from two years before the disturbance year, to the year after the disturbance year. If the disturbance
year did not coincide with the year with the largest NBR drop, the year with the largest NBR drop
was used in the subsequent steps of the analysis; in 5.6% of the objects the largest NBR drop occurred
the year before the forest cover loss year, 23.2% of the objects the largest NBR drop occurred the year
after the forest cover loss year. This was a purely nominal change intended to deal with the artifacts of
the compositing algorithm: after the disturbance classification, all the objects were reassigned to the
original disturbance year.

3.4. Object-Level Spectral Indices and Temporal Trajectories

Spectral indices were calculated for each forest loss object each year during the study period
(2003–2011) using co-located WELD reflectance data. Spectral indices were first calculated at the
pixel level and then averaged to the object. Any pixels labeled as cloudy in the WELD product were
removed prior to any object-level spectral index calculation. The average cloud cover in the annual
datasets for CONUS during the study period was 0.16%. In the rare instances where an object was
comprised entirely of cloudy pixels, a mean value of the year before and after was assigned to the
object. Based on previous land cover change studies (e.g., [33,49–51]), the following spectral indices
were calculated: normalized difference vegetation index (NDVI), red-green index (RGI), band5 (B5),
the Band 5/Band 4 ratio (B54R), normalized difference moisture index (NDMI), normalized burn ratio
(NBR), tasseled cap brightness (BRI), tasseled cap greenness (GRE) and tasseled cap wetness (WET)
(Table 1).

Table 1. Spectral indices extracted for each forest cover loss object from the yearly Web-Enabled
Landsat Data (WELD).

Spectral Index Formula Reference

Red-green index (RGI) ρred/ρgreen [50]
Normalized difference vegetation

index (NDVI) (ρNIR − ρred)/(ρNIR + ρred) [52]

Normalized difference moisture
index (NDMI) (ρNIR − ρSWIR1.6)/(ρNIR + ρSWIR1.6) [50]

Band 5/Band 4 ratio (B54R) ρSWIR1.6/ρNIR [53]
Normalized burn ratio (NBR) (ρNIR − ρSWIR2.1)/(ρNIR + ρSWIR2.1) [54]

Band 5 (B5) ρSWIR1.6

Tasseled cap brightness (BRI) 0.3561*ρblue + 0.3972*ρgreen + 0.3904*ρred
+ 0.6966*ρNIR + 0.2286*ρSWIR1.6 + 0.1596*ρSWIR2.1

[55]

Tasseled cap Greenness (GRE) −0.3344*ρblue − 0.3544*ρgreen − 0.4556*ρred
+ 0.6966*ρNIR − 0.0242*ρSWIR1.6 − 0.2630*ρSWIR2.1

Tasseled cap Wetness (WET) 0.2626*ρblue + 0.2141*ρgreen + 0.0926*ρred
+ 0.0656*ρNIR − 0.7629*ρSWIR1.6 − 0.5388*ρSWIR2.1

ρred = red reflectance, ρgreen = green reflectance, ρNIR = near infrared reflectance, ρSWIR = short − wave infrared
reflectance, ρblue = blue reflectance.

To capture the temporal spectral properties of each forest disturbance type, spectral index data
for all 15,179,430 forest loss objects was processed implementing a similar temporal segmentation
strategy as presented in Kennedy et al. [39]. Spectral trajectories were decomposed to a sequence of
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straight-line segments that capture slow changes (e.g., forest recovery after disturbance) and abrupt
changes (e.g., forest loss due to stand replacing fire). Specifically, a linear regression fit of spectral index
versus year was computed using all points and the first and last years as vertices. The point with the
largest deviation from the fit became the next vertex and regression fits were computed between this
vertex and the first and last data points in the time series (resulting in two segments). This computation
was repeated until four segments were fit to the spectral trajectories. This number was assumed to
capture the typical forest disturbance lifecycle: pre-disturbance stable forest, forest disturbance, forest
recovery, and post-disturbance stable forest. Figure 1 shows typical spectral profiles for stem removal
(h03v04 tile, Oregon; WELD tile system displayed in Figure 3), fire (h02v06 tile, California), and stress
(h11v09 tile, Colorado). Detection differences between the spectral indices are clearly apparent as well
as the temporal characteristics of each disturbance. For example, forest stem removal and fire have
abrupt changes in spectral index values (Figure 1, top and middle rows), whereas stress damage is
characterized by gradual change over time (Figure 1, bottom row).
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For each spectral index, five features were extracted from the temporal profile, as shown in
Figure 2. Average pre-disturbance spectral index values for the two years before the forest cover loss,
average post-disturbance values for the disturbance year and the following year, and the difference
between post- and pre-disturbance values were extracted. Note that, for the forest loss objects with
forest loss year 2003, the pre-disturbance value was calculated from a single year of WELD data;
conversely, for the forest loss objects of year 2011, only 2012 WELD data was used as post-disturbance
value. The maximum and minimum slopes of the four segments fitted to each spectral index temporal
trajectory were added to the predictor variables. The pre-disturbance value, post-disturbance value,
difference value, maximum slope and minimum slope were denoted as (with NDVI spectral index as
an example) bNDVI, aNDVI, delta_NDVI, maxNDVI, and minNDVI, respectively. The five features
extracted for each of the nine spectral indices resulted in a total of 45 predictor variables to be used in
the classification (Table 2).

Remote Sens. 2018, 1, x FOR PEER REVIEW 7 of 24 

 

For each spectral index, five features were extracted from the temporal profile, as shown in 
Figure 2. Average pre-disturbance spectral index values for the two years before the forest cover loss, 
average post-disturbance values for the disturbance year and the following year, and the difference 
between post- and pre-disturbance values were extracted. Note that, for the forest loss objects with 
forest loss year 2003, the pre-disturbance value was calculated from a single year of WELD data; 
conversely, for the forest loss objects of year 2011, only 2012 WELD data was used as post-disturbance 
value. The maximum and minimum slopes of the four segments fitted to each spectral index temporal 
trajectory were added to the predictor variables. The pre-disturbance value, post-disturbance value, 
difference value, maximum slope and minimum slope were denoted as (with NDVI spectral index as 
an example) bNDVI, aNDVI, delta_NDVI, maxNDVI, and minNDVI, respectively. The five features 
extracted for each of the nine spectral indices resulted in a total of 45 predictor variables to be used 
in the classification (Table 2). 

 

Figure 2. Illustration of the extracted features for every spectral index using the forest loss objects and 
WELD time series data. Each temporal profile is converted into segments and five features, used in 
the subsequent classification, are extracted: (1) maximum (max) and minimum (min) slope among all 
the segments of the trajectory; (3) mean value of the two years before the forest loss year (b), (4) mean 
value of the two years after the forest loss year (including the disturbance year) (a); and (5) difference 
between (4) and (3) (delta). 

Table 2. Predictor variables (n = 45) considered in the classification. 

Spectral Metrics  
Pre-disturbance mean (2 years pre-

disturbance) 
bRGI, bNDVI, bNDMI, bB54R, bNBR, bB5, bBRI, bGRE, 

bWET 
Post-disturbance mean (the disturbance year 

and the following year) 
aRGI, aNDVI, aNDMI, aB54R, aNBR, aB5, aBRI, aGRE, 

aWET 

Difference (post minus pre) dRGI, dNDVI, dNDMI, dB54R, dNBR, dB5, dBRI, dGRE, 
dWET 

  
Spectral Trajectory Metrics  

Maximum slope maxRGI, maxNDVI, maxNDMI, maxB54R, maxNBR, 
maxB5, maxBRI, maxGRE, maxWET 

Minimum slope 
minRGI, minNDVI, minNDMI, minB54R, minNBR, minB5, 

minBRI, minGRE, minWET 

Figure 2. Illustration of the extracted features for every spectral index using the forest loss objects and
WELD time series data. Each temporal profile is converted into segments and five features, used in the
subsequent classification, are extracted: (1) maximum (max) and (2) minimum (min) slope among all
the segments of the trajectory; (3) mean value of the two years before the forest loss year (b), (4) mean
value of the two years after the forest loss year (including the disturbance year) (a); and (5) difference
between (4) and (3) (delta).

Table 2. Predictor variables (n = 45) considered in the classification.

Spectral Metrics

Pre-disturbance mean (2 years pre-disturbance) bRGI, bNDVI, bNDMI, bB54R, bNBR, bB5, bBRI,
bGRE, bWET

Post-disturbance mean (the disturbance year and the
following year)

aRGI, aNDVI, aNDMI, aB54R, aNBR, aB5, aBRI,
aGRE, aWET

Difference (post minus pre) dRGI, dNDVI, dNDMI, dB54R, dNBR, dB5, dBRI,
dGRE, dWET

Spectral Trajectory Metrics

Maximum slope maxRGI, maxNDVI, maxNDMI, maxB54R, maxNBR,
maxB5, maxBRI, maxGRE, maxWET

Minimum slope minRGI, minNDVI, minNDMI, minB54R, minNBR,
minB5, minBRI, minGRE, minWET
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3.5. Classification of Forest Disturbances

3.5.1. Training Dataset

To create a training dataset for the Random Forest classifier, a stratified sampling approach was
employed (Figure 3). Twenty-one 150 × 150 km WELD tiles were selected based on the following
criteria: (i) at least one tile should be selected in each EPA Level II Ecoregion [56], and (ii) selected tiles
should avoid overlapping multiple ecoregions while also encompassing as many forest disturbance
objects as possible. Twelve WELD tiles were selected for stem removal training samples, based on
documented timber extraction activity [57]. The five tiles with the highest reported tree mortality due
to insects in the 2001–2010 period, as reported by the ADS dataset [31], were used to collect stress
disturbance training objects. Similarly, the eight tiles with the highest fire occurrence based on the
MTBS dataset were used to collect fire training objects (four of those coincided with tiles also used to
collect stem removal training objects).
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selected training tiles for stem removal, fire, stress, and both stem removal and fire, respectively.
To provide geographic context, ecoregions grouped by common forest type are shown in background
as well as the total forest cover extent mapped by Hansen et al. [23] (dark green pixels).

In all cases, all objects greater than 5 pixels in size were sorted randomly, and the interpreter
proceed to interpret them in order. The first 100 objects confidently interpreted as stem removal, insect
damage and fire—respectively in the tiles designated to collect training of each class—constituted
the training set. The exception were two tiles (h01v06, h07v03) where only 50 stem removal training
objects could be identified, and four tiles (h01v06, h07v03, h07v13, h09v04) where only 50 fire objects
could be identified. As a result, the training dataset included 1100 stem removal, 600 fire, and
500 stress forest cover loss objects. The visual interpretation of the training objects was conducted
using a methodology adapted from Cohen et al. [58]. A trained interpreter relied primarily on high
spatial resolution Google Earth imagery, using the MTBS polygons and insect disturbance data as
ancillary source of information, with limited input from WELD multi-spectral data and temporal
profiles, to manually classify each target forest loss object. It is important to note that Cohen et al. [58]
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used multiple interpreters to help control measurement error, whereas this study did not. However,
like Cohen et al. [58], independent disturbance datasets (e.g., MTBS, insect disturbance data) were
employed to aid the interpreter’s decisions.

3.5.2. Random Forest Classification

The Random Forest (RF) classifier was used to attribute disturbance type to the forest loss objects
and was chosen due to its high performance in remote sensing image classification [59] and large
area mapping. The RF classifier uses an ensemble approach, where bootstrap samples of training
data are used to create a set, or ensemble, of classification trees [60]. Forest loss objects are assigned a
disturbance type by majority vote of the ensemble of trees. The R software package “randomForest”
was used to implement the RF classifier [61]. In the RF classifier, two parameters need to be set:
the number of decision trees (Ntree) and the number of variables to be selected for the best split
when growing the trees (Mtry). Ntree is commonly set to 500 because the errors stabilize before
this number of trees is achieved [59]. The Mtry parameter is usually set to the square root of the
number of classification variables [62]. Following these recommendations, Ntree was set 500, and
Mtry was set to 6. In addition to the classification results, predicted class probabilities for each forest
loss object are computed, which gives a measure of attribution confidence. Input variable importance
was calculated as the mean decrease in classification accuracy. Some of the predictor variables were
strongly correlated with each other (~4% of variable pairs had Pearson’s correlation coefficient >0.75)
and could bias variable importance if not taken into account [63]. Consequently, we used a conditional
permutation methodology [63] implemented in the “party” R package [64] to calculate mean decrease
in classification accuracy. Variable importance can be useful for model reduction (e.g., using only the
“important” variables to build simpler, more readily interpretable models), especially in the case where
models have hundreds to thousands of predictor variables [65]. Since the number of predictor variables
in this study is relatively small (n = 45), all variables were input into the Random Forest classification.

3.6. Post-Classification of Fire Disturbance

Forest loss objects classified as fire were checked with the MODIS Active Fire Product for temporal
and spatial consistency. If objects classified as fire were spatially and temporally co-located with
MODIS active fire detections from the forest loss year or previous year, then the object retained its fire
designation. Otherwise, the object was reclassified as the disturbance type with the second largest
majority vote among the ensemble of classification trees. An object was considered spatially co-located
with an active fire detection if at least 20% of its area overlapped at least one active fire detection.

3.7. Validation and Accuracy Assessment

We used a stratified cluster sampling strategy to select validation WELD tiles. Following
Cohen et al. [13], sampling strata were produced by merging EPA (Environmental Protection Agency)
Level II ecoregion data [56] into generalized strata based on common forest types. The resulting
regional strata included Mountain West, Lowland West, Central, Northeast, and Southeast regions
(Figure 4). In total, 81 WELD tiles were selected for a validation dataset. Selection of tiles within the five
strata utilized a weighted approach, where strata with more forested area and a higher number of forest
loss objects received more validation tiles. This strategy produced 19, 9, 6, 23, and 24 WELD validation
tiles for the Mountain West, Lowland West, Central, Northeast, and Southeast strata, respectively
(Figure 4). Within each of the 81 WELD validation tiles, 50 forest loss objects (>5 pixels in size) were
randomly selected and manually classified into one of the three disturbance types using the same
methodology as the training dataset; replacement samples were drawn if no disturbance could be
confidently detected in the high resolution imagery. The final validation set consisted of 3029 stem
removal (299,107 pixels), 595 fire (164,932 pixels) and 426 stress (22,320 pixels) forest loss objects, and
106 objects (2432 pixels) that could not be confidently labeled as disturbed.
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Figure 4. Regional stratification of WELD tiles composing the validation dataset. WELD tiles selected
for validation are shown with thicker border lines. Ecoregions grouped by common forest type
are shown in background as well as the total forest cover extent mapped by Hansen et al. [23]
(dark green pixels).

Disturbance type classification accuracy was quantitatively assessed using confusion matrices
calculated between the validation dataset and the Random Forest classification result. Three commonly
used classification measures (overall accuracy, producer’s accuracy, and user’s accuracy) are reported.

4. Results

4.1. Image Segmentation

A total of 15,179,430 forest loss objects were segmented for the 415 CONUS WELD tiles with
forest loss over the study period. The average forest loss object was ~3.87 hectares in size, however,
there was considerable variability within and between forest disturbance types. Representative forest
loss object size, shape, and pattern are shown for each major disturbance type in Figure 5. While a
large proportion of forest loss objects (71.98%) were less than 5 pixels (Figure 6), they accounted for a
small proportion of the total forest loss area (~9.5%). The number of image objects with object size
ranging from 1 to 4 pixels accounted for 3.44%, 2.84%, 1.65%, 1.60% of the total forest loss area in the
CONUS, respectively.

There was a total of 4,038,889 image objects that were greater than 5 pixels in size. At the regional
level (see definition in Section 3.7 and Figure 4), the Southeast accounted for more than half of the
total image objects greater than 5 pixels in size (50.22%) and had the largest average segment size
(4.41 hectares) among the five regions. The Mountain West accounted for the third largest proportion
of objects (up to 20.16%) with an average object size of 4.23 hectares. The Northeast ranked second in
the number of objects (up to 21.86%), and objects averaged 2.7 hectares in size.
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4.2. Effect of the Post-Classification of Fire Disturbance

Across all CONUS WELD tiles, about 5.1% fire areas initially classified by the random forest
classifier were reclassified after a spatial and temporal check with the MODIS active fire data (Figure 7).
For these reclassified forest loss areas, 73.6% were reclassified as stem removal and 26.4% were
reclassified to stress.
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Figure 7. Initial forest disturbance type classification (Left) and the final result checked with the
Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product (right) for northwest
Oregon (top row) and northwest California (bottom row). Orange, magenta, and blue objects represent
stem removal, fire and stress disturbance classes, respectively. Forest cover extent is shown in light
grey, non-forest as black, and water as white in background. Each panel is approximately 25 × 25 km.

4.3. Predictor Variable Ranking

Figure 8 presents the mean decrease in accuracy (relative variable importance) for all predictor
variables input into the Random Forest classifier. Post-disturbance brightness (aBRI), minimum
spectral trajectory slope for greenness (minGRE), post-disturbance NBR (aNBR), pre-disturbance
red-green index (bRGI), and pre-disturbance brightness (bBRI) were identified as the top five most
important predictor variables for this classification.
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4.4. Classification of Forest Disturbances

Forest disturbance type classification for CONUS is shown in Figure 9. Of the total 172,686 km2 of
forest loss classified in this study, 83.75% was attributed to forest stem removal, 10.92% to fire, and
5.33% to stress. A cursory visual inspection shows good agreement between the classification results
and independent datasets, such as MTBS and the insect mortality-area dataset.Remote Sens. 2018, 1, x FOR PEER REVIEW 14 of 24 
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spatial extent and pattern of disturbance agents in the west and southeast United States. Total forest
cover extent is shown in light grey as background.

The annual forest loss attributed by disturbance type is shown in Figure 10. In terms of
high-magnitude disturbance (>50% forest cover loss) detected in the Global Forest Change Product,



Remote Sens. 2019, 11, 477 14 of 21

stem removal was the dominant forest disturbance agent at the CONUS scale over this time period.
The average stem removal area per year was 16,069 km2, while forest loss due to fire and stress were
much lower at 2096 km2 and 1022 km2, respectively. The stem removal area shows a clear reduction
in 2009–2011 period over the previous year, reflecting the reduced demand of timber due to the 2008
economic recession [66]. Forest loss due to fire and stress was more variable from year to year, likely
owing to strong climatic influence on these disturbance agents.
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4.5. Validation and Accuracy Assessment

Table 3 presents the Random Forest classification accuracy at the CONUS scale based on manual
validation assessment of 4156 forest loss objects (488,791 pixels). Overall accuracy was 88.1%. While
overall accuracy was high, classification performance varied by disturbance type. Stem removal had
very high user’s and producer’s accuracies, demonstrating its relatively distinguishable feature space.
Stress disturbance had the lowest user’s accuracy (high commission error), mainly due to forest loss
caused by fire being incorrectly attributed to stress disturbance.

Table 3. Classification confusion matrix results at the CONUS scale, reporting the number of objects.
Correctly classified forest disturbance pixels are highlighted in grey. No disturbance (false positives)
could be attributed to 2.5% of the objects.

Reference Data

Stem
removal Fire Stress No

disturbance Total User’s
Accuracy

Classified
Data

Stem removal 2922 115 64 66 3167 92.3%
Fire 53 400 22 15 490 81.6%

Stress 54 80 340 25 510 68.1%
Total 3029 595 426 106 4156

Producer’s Accuracy 96.5% 67.2% 79.8%
Overall Accuracy: 88.1%
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5. Discussion

5.1. Overall Performance

The lack of baseline forest disturbance data inhibits our ability to understand how climate change
and human activity are altering forests and disturbance regimes [7,15,66]. While many efforts have
advanced our ability to detect and map forest disturbance [9,21–25,39,67], the focus of the paper was
to further our understanding of forest disturbance regimes by characterizing forest disturbance types,
starting from the existing forest cover loss University of Maryland Global Forest Change Product [23].
An object-based approach to characterize forest disturbance types across CONUS was prototyped and
tested using WELD data. Through this methodology, we classified each forest cover loss object by
disturbance type, resulting in a wall-to-wall map of forest disturbance types for CONUS from 2003
to 2011.

The methodology presented in this study advances our ability to characterize forest disturbance
regimes at large spatial scales. Quantifying disturbance type using object-based methodology captures
the spatial and temporal nature of forest disturbances better than pixel-based methodologies that
suffer from noisy outputs due to isolated pixels [68]. The use of Landsat WELD data enabled temporal
trend analyses, which can provide valuable information regarding magnitude, duration, and direction
of forest loss and recovery due to a particular disturbance agent. The high overall accuracy of
the classification (88.1%), low training data needs (<1% of the total forest cover loss objects), and
semi-automation suggest this methodology could be adapted to other regions where large-scale
disturbances are common. It is important to note that, given the higher number of available Landsat
scenes within CONUS compared to other regions [43], this methodology may not perform as well
outside of CONUS. However, this methodology could potentially be adapted to other areas outside
CONUS using satellite sensors with similar spectral and spatial characteristics, such as the European
Space Agency’s Sentinel sensors [69,70]. Combined usage of Landsat and Sentinel data could improve
disturbance classification by providing greater opportunities of suitable observations (i.e., higher
frequency of cloud-free observations) [71].

5.2. Predictor Variable Importance

The top predictors in the disturbance type classification included tasseled cap brightness and
greenness, NBR, RGI and NDVI. The performance of these indices is in part due to the large range of
forest canopy cover change that can result from these disturbance types. For example, stem removal
removes a large proportion of the forest canopy, leading to large magnitude, rapid spectral changes.
Other disturbances, such as fire and insects, can remove variable amounts of forest cover depending
on the intensity of the disturbance, and result in lower magnitude spectral change [72]. Some of the
top indices that utilize SWIR wavelengths (BRI, GRE, NBR) have had previous success quantifying
different magnitudes of timber harvest (low intensity partial cut to clearcut) [73,74]. The performance
of indices that use SWIR in this study also matches other studies conducted in boreal forest, where
SWIR indices outperformed those that did not use SWIR for delineating between fire and clearcuts [28].
It is likely that the more heterogeneous post-fire landscapes, which consisted of mixes of live vegetation,
dead standing vegetation, and shadow, contributed to this result. Other top indices that are sensitive
to photosynthetically active vegetation (e.g., NDVI) have been shown to also be sensitive to fire
intensity-induced stress in remaining live foliage [75], which could result in a lower magnitude (or less
rapid) spectral change (compared to clearcuts) depending on the proportion of surviving trees within a
forest disturbance object. Overall, it is important to understand that while some predictor variables are
ranked higher than others, the classification accuracy is the result of the collective of input variables.

5.3. Limitations and Future Work

A limitation of the proposed approach is its grouping of forest disturbance types into only three
classes (i.e., stress, fire, stem removal). In recent decades, forest loss in the eastern United States due to
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other disturbances (e.g., urban development, mining, reservoir construction, storm damage) has been
estimated to account for ~43% of the total forest loss, with urban development and mining accounting
for 34% and 7%, respectively [10]. Forest harvest accounted for >56% of forest loss over the same
time period [10]. It is likely that these other disturbances were classified in the ‘stem removal’ class.
Many other forest disturbance agents, such as hurricanes [76], wind [77] and ice storms [78] occur
across CONUS. However, these disturbances account for a much smaller proportion of forest loss
compared to the three disturbance classes considered in this study [8–14], and are mostly restricted
to localized areas in the United States (e.g., hurricanes are most prevalent in areas along the Gulf
of Mexico). Including these other disturbance agents would likely result in imbalanced training
data and reduced accuracy in the overall classification [79]. As a preliminary test to see whether the
Global Forest Change Product detects storm damage, GoogleEarth imagery was used to identify forest
damage along “major hurricane” (Category 3–6 hurricanes) paths mapped by the National Oceanic
and Atmospheric Administration (https://coast.noaa.gov/hurricanes/). Of the major hurricanes that
hit the southeastern U.S. during the time period of this study, only two had discernable forest damage;
hurricanes Rita (2005) and Katrina (2005). Twenty areas where severe damage occurred (>75% of trees
knocked over) were identified in southeast Texas (WELD tile h18v17) and southern Louisiana and
Mississippi (WELD tile h21v16). Only ~15% of storm-damaged areas identified in GoogleEarth were
captured by the Global Forest Change Product, highlighting potential detection limitations of the
product. Future work is needed to assess what disturbances and disturbance intensities are not detected
by this product and how classification performance is affected by including more disturbance types.

As illustrated by the preliminary storm damage assessment, this paper’s classification approach
is limited by the Global Forest Change Product detection capabilities and accuracy. The Global Forest
Change Product was designed to capture high-intensity disturbances (>50% forest canopy loss) and
thus can miss substantial forest loss resulting from lower-intensity disturbances (<50% forest canopy
loss) [13]. It is clear that variability in disturbance magnitude (i.e., proportion of forest canopy removed)
can result in similar spectral changes and misclassification of disturbance type. For example, stress
disturbance had the lowest user’s accuracy (high commission error), mainly due to forest loss caused
by fire being incorrectly attributed to stress disturbance. It is common for fire disturbance in forests to
result in highly variable within-patch severity (i.e., proportion of forest overstory mortality) [80,81],
which could account for this error. However, because the MODIS Active Fire product was used
in the post-classification phase, it is likely that some small fires were not detected in the coarser
resolution MODIS product (1 km spatial resolution) and, therefore, were classified erroneously as
stress disturbance rather than fire. Additionally, forest loss resulting from low intensity, multi-year
partial cut harvests (few trees harvested per unit area) could be misclassified as stress-induced mortality
due to similar changes in SWIR and NIR reflectance [73]. It is also quite possible that low intensity
partial cut areas were not captured in the Global Forest Change Product that was used in this study,
resulting in an underestimation of forest loss. Partial cuts can result in low overall spectral change and
variability, leading to misclassification as undisturbed forest cover [74]. Likewise, areas of undisturbed
forest misclassified as forest loss by the Global Forest Change Product (false positives) could have been
erroneously classified into one of the three classes.

While the approach detailed in this study provides a relatively accurate broad-scale approach
using the Global Forest Change Product, future work is needed to further refine this methodology
and understand its limitations. Our methodology is limited to the temporal range that the Global
Forest Change Product is produced (i.e., 2000 to the present) but could easily be adapted to additional
years as the product is updated and expanded. The relatively short time series used in this study
did not allow for the permanence of forest loss to be assessed for many of the disturbance objects.
For example, many forest loss objects that returned to vegetation had spectral index values that were
indistinguishable from objects that did not return to vegetation for the first 1–3 years after disturbance.
As the Global Forest Change Product expands, longer time series datasets (that include >3 years of
post-disturbance observations) could potentially be used to assess the permanence of forest cover
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loss and/or switch from forest to another landcover (e.g., forest converted to urban development).
The disturbance weighted approach used in constructing the validation dataset precluded yearly and
regional accuracy estimates. Future work could evaluate stratified approaches so that yearly and
regional accuracy are calculated. Further work is also necessary to understand how this classifier
handles errors (i.e., false positives) in the Global Forest Change Product.

6. Conclusions

The overall objective of this study was to test an object-based methodology for disturbance
characterization, including areas beyond existing forest disturbance datasets. This paper demonstrates
the potential of adopting a two-stage approach to characterize forest disturbances, where an existing
forest cover loss map is further classified into three disturbance classes. The object-based approach is
based on the classification of post-disturbance temporal profiles. The wall-to-wall forest disturbance
map of the CONUS for the 2003–2011 period achieved high overall accuracy (88.1%) in discriminating
major forest disturbance agents (i.e., stress, fire, and stem removal) across a wide range of forest types.
The final classified map is freely available for download through the PANGAEA Data Publisher for
Earth and Environmental Science repository (https://doi.pangaea.de/10.1594/PANGAEA.898416).
Ultimately, this study represents an initial step and future research will explore refinement of this
methodology by including additional disturbance classes in the classification.
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Abbreviations

The following abbreviations are used in this manuscript:

BRI tasselled cap brightness
B54R band 5/band 4 ratio
CONUS conterminous United States
GRE tasselled cap greenness
MTBS Monitoring Trends in Burned Severity
NBR Normalized Burn Ratio
NDMI Normalized Difference Moisture Index
NDVI Normalized Difference Vegetation Index
RF Random Forest
RGI red-green index
WELD Web Enabled Landsat Data
WET tasselled cap wetness
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