Comprehensive In Situ Validation of Five Satellite Land Surface Temperature Data Sets over Multiple Stations and Years
Abstract
:1. Introduction
2. Data and Methods
2.1. GlobTemperature Satellite Data Sets
2.1.1. Advanced along Track Scanning Radiometer (AATSR)
2.1.2. GlobTemperature MODIS Products (MOGSV and MYGSV)
2.1.3. Spinning Enhanced Visible and Infrared Imager (SEVIRI)
2.1.4. Geostationary Operational Environmental Satellite (GOES)
2.2. In Situ Stations
2.2.1. KIT Stations
2.2.2. SURFRAD Stations
- uncertainty in upwelling measurements: ±5 Wm−2 [58]
- uncertainty in downwelling measurements: ±5 Wm−2 [58]
- BBE uncertainty: this contains the uncertainty from the single CIMMS emissivities and the linear regression for calculating BBE. For the former, Borbas et al. [59] state a standard deviation between 0.005 and 0.02 for the single wavelengths. For the latter, Cheng et al. [57] give a RMSE of 0.005. An overall emissivity uncertainty of 0.01 is obtained when performing error propagation with the upper uncertainty limit of the CIMMS emissivities (0.02) and the RMSE associated with the regression (0.005) as input.
2.2.3. Classification of Validation Stations and Sites
2.3. Comparison of In Situ and Satellite LST
- For each satellite orbit, it is determined whether the orbit overpasses the validation station;
- For each overpass, an extract is saved.
3. Results
3.1. Validation Results for 2010–2012
3.2. Time-Series Analyses
3.2.1. Desert Station: GBB_W
3.2.2. Semi-Desert Stations: KAL_R and KAL_H
3.2.3. Subtropical Station: DAH_T
3.2.4. Forest Station: EVO
3.2.5. Rural Station: BND
3.2.6. Shrubland Station, Located in a Valley: DRA
3.2.7. Stations with Mixed Land Cover: TBL, FPK, GCM, and PSU
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dash, P.; Goettsche, F.M.; Olesen, F.S.; Fischer, H. Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. Int. J. Remote Sens. 2002, 23, 2563–2594. [Google Scholar] [CrossRef]
- Mallick, J.; Singh, C.K.; Shashtri, S.; Rahman, A.; Mukherjee, S. Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city. Int. J. Appl. Earth Obs. 2012, 19, 348–358. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Mildrexler, D.J.; Zhao, M.; Running, S.W. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Dousset, B.; Gourmelon, F.; Laaidi, K.; Zeghnoun, A.; Giraudet, E.; Bretin, P.; Mauri, E.; Vandentorren, S. Satellite monitoring of summer heat waves in the Paris metropolitan area. Int. J. Climatol. 2011, 31, 313–323. [Google Scholar] [CrossRef]
- Li, Z.; Jia, L.; Lu, J. On Uncertainties of the Priestley-Taylor/LST-Fc Feature Space Method to Estimate Evapotranspiration: Case Study in an Arid/Semiarid Region in Northwest China. Remote Sens. 2015, 7, 447–466. [Google Scholar] [CrossRef]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods and applications and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y. Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong. Remote Sens. 2011, 3, 1535–1552. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.; Zhan, W.; Huang, F.; Voogt, J.; Bechtel, B.; Allen, M.; Peng, S.; Hong, F.; Liu, Y.; Du, P. Identification of typical diurnal patterns for clear-sky climatology of surface urban heat islands. Remote Sens. Environ. 2018, 217, 203–220. [Google Scholar] [CrossRef]
- Nichol, J.E. Remote sensing of urban heat islands by day and night. Photogramm. Eng. Remote Sens. 2005, 71, 613–621. [Google Scholar] [CrossRef]
- Mallick, J.; Rahman, A.; Singh, C.K. Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Adv. Space Res. 2013, 52, 639–655. [Google Scholar] [CrossRef]
- Reichle, R.H.; Kumar, S.V.; Mahanama, S.P.P.; Koster, R.D.; Liu, Q. Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models. J. Hydrometeorol. 2010, 11, 1103–1122. [Google Scholar] [CrossRef] [Green Version]
- GCOS. The Global Observing System for Climate: Implementation Needs, GCOS-200/GOOS-214. Implementation Plan. 2016. Available online: https://library.wmo.int/doc_num.php?explnum_id=3417 (accessed on 22 February 2019).
- Schneider, P.; Ghent, D.; Corlett, G.; Prata, F.; Remedios, J. AATSR Validation: LST Validation Protocol. ESA Report, Contract No.: 9054/05/NL/FF, European Space Agency (ESA). 2012. UL-NILU-ESA-LST-LVP Issue 1 Revision 0. Available online: http://lst.nilu.no/Portals/73/Docs/Reports/UL-NILU-ESA-LST-LVP-Issue1-Rev0-1604212.pdf (accessed on 2 February 2019).
- Guillevic, P.; Göttsche, F.; Nickeson, J.; Hulley, G.; Ghent, D.; Yu, Y.; Trigo, I.; Hook, S.; Sobrino, J.; Remedios, J.; et al. Land Surface Temperature Product Validation Best Practice Protocol, Version 1.0. 2017. Available online: http://ceos.org/document_management/Working_Groups/WGCV/CEOS_LST_PROTOCOL_Oct2017_v1.0.0.pdf (accessed on 22 February 2019).
- Martin, M.; Göttsche, F.M.; Ghent, D.; Trent, T.; Dodd, E.; Pires, A.; Trigo, I.; Prigent, C.; Jimenez, C. ESA DUE GlobTemperature Project: Satellite LST Intercomparison Report. Technical Report. ESA, 2016. Available online: http://www.globtemperature.info/index.php/public-documentation/deliverables-1/121-intercomparison-report-del-13/file (accessed on 22 February 2019).
- Martin, M.; Göttsche, F.M. ESA DUE GlobTemperature Project: Satellite LST Validation Report. Technical Report. ESA, 2016. Available online: http://www.globtemperature.info/index.php/public-documentation/deliverables-1/117-validation-report-del12/file (accessed on 22 February 2019).
- Göttsche, F.M.; Olesen, F.S.; Trigo, I.; Bork-Unkelbach, A.; Martin, M. Long Term Validation of Land Surface Temperature Retrieved from MSG/SEVIRI with Continuous in-Situ Measurements in Africa. Remote Sens. 2016, 8, 410. [Google Scholar] [CrossRef]
- Wang, K.; Liang, S. Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites. Remote Sens. Environ. 2009, 113, 1556–1565. [Google Scholar] [CrossRef]
- Pinker, R.T.; Sun, D.; Hung, M.P.; Li, C.; Basara, J.B. Evaluation of Satellite Estimates of Land Surface Temperature from GOES over the United States. J. Appl. Meteorol. Climatol. 2009, 48, 167–180. [Google Scholar] [CrossRef]
- Guillevic, P.C.; Privette, J.L.; Coudert, B.; Palecki, M.A.; Demarty, J.; Ottlé, C.; Augustine, J.A. Land Surface Temperature product validation using NOAA’s surface climate observation networks—Scaling methodology for the Visible Infrared Imager Radiometer Suite (VIIRS). Remote Sens. Environ. 2012, 124, 282–298. [Google Scholar] [CrossRef]
- Göttsche, F.M.; Olesen, F.S.; Bork-Unkelbach, A. Validation of land surface temperature derived from MSG/SEVIRI with in situ measurements at Gobabeb, Namibia. Int. J. Remote Sens. 2013, 34, 3069–3083. [Google Scholar] [CrossRef]
- Guillevic, P.C.; Biard, J.C.; Hulley, G.C.; Privette, J.L.; Hook, S.J.; Olioso, A.; Göttsche, F.M.; Radocinski, R.; Román, M.O.; Yu, Y.; et al. Validation of Land Surface Temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements. Remote Sens. Environ. 2014, 154, 19–37. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Zhan, W.; Gottsche, F.M.; Liu, S.; Olesen, F.S.; Hu, W.; Dai, F. A Thermal Sampling Depth Correction Method for Land Surface Temperature Estimation from Satellite Passive Microwave Observation over Barren Land. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4743–4756. [Google Scholar] [CrossRef]
- Guillevic, P.C.; Bork-Unkelbach, A.; Gottsche, F.M.; Hulley, G.; Gastellu-Etchegorry, J.P.; Olesen, F.S.; Privette, J.L. Directional Viewing Effects on Satellite Land Surface Temperature Products over Sparse Vegetation Canopies—A Multisensor Analysis. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1464–1468. [Google Scholar] [CrossRef]
- Ermida, S.L.; Trigo, I.F.; DaCamara, C.C.; Göttsche, F.M.; Olesen, F.S.; Hulley, G. Validation of remotely sensed surface temperature over an oak woodland landscape—The problem of viewing and illumination geometries. Remote Sens. Environ. 2014, 148, 16–27. [Google Scholar] [CrossRef]
- Li, S.; Yu, Y.; Sun, D.; Tarpley, D.; Zhan, X.; Chiu, L. Evaluation of 10 year AQUA/MODIS land surface temperature with SURFRAD observations. Int. J. Remote Sens. 2014, 35, 830–856. [Google Scholar] [CrossRef]
- Yu, Y.; Tarpley, D.; Privette, J.L.; Flynn, L.E.; Xu, H.; Chen, M.; Vinnikov, K.Y.; Sun, D.; Tian, Y. Validation of GOES-R Satellite Land Surface Temperature Algorithm Using SURFRAD Ground Measurements and Statistical Estimates of Error Properties. IEEE Trans. Geosci. Remote Sens. 2012, 50, 704–713. [Google Scholar] [CrossRef]
- Coll, C.; Caselles, V.; Valor, E.; Niclòs, R.; Sánchez, J.M.; Galve, J.M. Validation of Land Surface Temperatures Derived from Aatsr Data at the Valencia Test Site. In Proceedings of the MERIS (A)ATSR Workshop, Frascati, Italy, 26–30 September 2005. ESA SP-597. [Google Scholar]
- Coll, C.; Hook, S.; Galve, J. Land Surface Temperature from the Advanced along-Track Scanning Radiometer: Validation over Inland Waters and Vegetated Surfaces. IEEE Trans. Geosci. Remote Sens. 2009, 47, 350–360. [Google Scholar] [CrossRef]
- Sobrino, J.; Jimenez-Munoz, J.; Balick, L.; Gillespie, A.; Sabol, D.; Gustafson, W. Accuracy of ASTER Level-2 Thermal-Infrared Standard Products of an Agricultural Area in Spain. Remote Sens. Environ. 2007, 106, 146–153. [Google Scholar] [CrossRef]
- Yu, W.; Ma, M. Scale Mismatch between In Situ and Remote Sensing Observations of Land Surface Temperature: Implications for the Validation of Remote Sensing LST Products. IEEE Geosci. Remote Sens. Lett. 2015, 12, 497–501. [Google Scholar] [CrossRef]
- Ouyang, X.; Chen, D.; Duan, S.B.; Lei, Y.; Dou, Y.; Hu, G. Validation and Analysis of Long-Term AATSR Land Surface Temperature Product in the Heihe River Basin, China. Remote Sens. 2017, 9, 152. [Google Scholar] [CrossRef]
- Ouyang, X.; Chen, D.; Lei, Y. A Generalized Evaluation Scheme for Comparing Temperature Products from Satellite Observations, Numerical Weather Model, and Ground Measurements over the Tibetan Plateau. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3876–3894. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sens. Environ. 2008, 112, 59–74. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Freitas, S.; Trigo, I.; Bioucas-Dias, J.; Gottsche, F.M. Quantifying the Uncertainty of Land Surface Temperature Retrievals From SEVIRI/Meteosat. IEEE Trans. Geosci. Remote Sens. 2010, 48, 523–534. [Google Scholar] [CrossRef] [Green Version]
- Ermida, S.L.; Jiménez, C.; Prigent, C.; Trigo, I.F.; DaCamara, C.C. Inversion of AMSR-E observations for land surface temperature estimation: 2. Global comparison with infrared satellite temperature. J. Geophys. Res. Atmos. 2017. [Google Scholar] [CrossRef]
- Candy, B.; Saunders, R.W.; Ghent, D.; Bulgin, C.E. The Impact of Satellite-Derived Land Surface Temperatures on Numerical Weather Prediction Analyses and Forecasts. J. Geophys. Res. Atmos. 2017, 122, 9783–9802. [Google Scholar] [CrossRef]
- Jiménez, C.; Michel, D.; Hirschi, M.; Ermida, S.; Prigent, C. Applying multiple land surface temperature products to derive heat fluxes over a grassland site. Remote Sens. Appl. Soc. Environ. 2017, 6, 15–24. [Google Scholar] [CrossRef]
- Rasmussen, T.A.S.; Høyer, J.L.; Ghent, D.; Bulgin, C.E.; Dybkjær, G.; Ribergaard, M.H.; Nielsen-Englyst, P.; Madsen, K.S. Impact of Assimilation of Sea-Ice Surface Temperatures on a Coupled Ocean and Sea-Ice Model. J. Geophys. Res. Ocean. 2018, 123, 2440–2460. [Google Scholar] [CrossRef] [Green Version]
- Ghent, D.J.; Corlett, G.K.; Göttsche, F.M.; Remedios, J.J. Global Land Surface Temperature from the Along-Track Scanning Radiometers. J. Geophys. Res. Atmos. 2017, 122, 12,167–12,193. [Google Scholar] [CrossRef]
- Prata, F. Land Surface Temperature Measurement from Space: AATSR Algorithm Theoretical Basis Document; Technical Report; CSIRO Atmospheric Research: Aspendale, Australia, 2002; Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.3562&rep=rep1&type=pdf (accessed on 22 February 2019).
- Wan, Z.; Dozier, J. A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef]
- Trigo, I.F.; Monteiro, I.T.; Olesen, F.; Kabsch, E. An assessment of remotely sensed land surface temperature. J. Geophys. Res. 2008, 113, 1–12. [Google Scholar] [CrossRef]
- Trigo, I.F.; Dacamara, C.C.; Viterbo, P.; Roujean, J.L.; Olesen, F.; Barroso, C.; Camacho-de Coca, F.; Carrer, D.; Freitas, S.C.; Garcia-Haro, J.; et al. The Satellite Application Facility for Land Surface Analysis. Int. J. Remote Sens. 2011, 32, 2725–2744. [Google Scholar] [CrossRef]
- Sun, D.; Pinker, R.T. Estimation of land surface temperature from a Geostationary Operational Environmental Satellite (GOES-8). J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Freitas, S.C.; Trigo, I.F.; Macedo, J.; Barroso, C.; Silva, R.; Perdigão, R. Land surface temperature from multiple geostationary satellites. Int. J. Remote Sens. 2013, 34, 3051–3068. [Google Scholar] [CrossRef]
- Bork-Unkelbach, A. Extrapolation von in-situ Landoberflächentemperaturen auf Satellitenpixel. Ph.D. Thesis, Karlsruher Institut für Technologie, Karlsruhe, Germany, 2012. [Google Scholar]
- Guillevic, P.; Göttsche, F.; Nickeson, J.; Hulley, G.; Ghent, D.; Yu, Y.; Trigo, I.; Hook, S.; Sobrino, J.; Remedios, J.; et al. Land Surface Temperature Product Validation Best Practice Protocol, Version 1.1. 2018. Available online: https://lpvs.gsfc.nasa.gov/PDF/CEOS_LST_PROTOCOL_Feb2018_v1.1.0_light.pdf (accessed on 22 February 2019).
- Theocharous, E.; Fox, N.; Göttsche, F.; Høyer, J.L.; Wimmer, W.; Nightingale, T. Fiducial Reference Measurements for Validation of Surface Temperature from Satellites (FRM4STS). Technical Report 1—Procedures and Protocols for the Verification of TIR FRM Field Radiometers and Reference Blackbody Calibrators. Reference: OFE- D80-V1-Iss-2-Ver-1-FINAL DRAFT, ESA Contract No. 4000113848 15I-LG. Technical Report. ESA, 2016. Available online: http://www.frm4sts.org/wp-content/uploads/sites/3/2017/12/FRM4STS_D80-TR1_Final-Draft-2-0_28Jun16_v1-signed.pdf (accessed on 22 February 2019).
- Theocharous, E.; Barker Snook, I.; Fox, N.P. 2016 Comparison of IR Brightness Temperature Measurements in Support of Satellite Validation. Part 4: Land Surface Temperature Comparison of Radiation Thermometers. Technical Report. ESA, 2017. Available online: http://www.frm4sts.org/wp-content/uploads/sites/3/2017/12/FRM4STS_D100_TR-2_Part4_LST_22Sep17-signed.pdf (accessed on 22 February 2019).
- Göttsche, F.M.; Hulley, G.C. Validation of six satellite-retrieved land surface emissivity products over two land cover types in a hyper-arid region. Remote Sens. Environ. 2012, 124, 149–158. [Google Scholar] [CrossRef]
- Masiello, G.; Serio, C.; Venafra, S.; Liuzzi, G.; Poutier, L.; Göttsche, F.M. Physical Retrieval of Land Surface Emissivity Spectra from Hyper-Spectral Infrared Observations and Validation with In Situ Measurements. Remote Sens. 2018, 10, 976. [Google Scholar] [CrossRef]
- Augustine, J.A.; DeLuisi, J.J.; Long, C.N. SURFRAD—A National Surface Radiation Budget Network for Atmospheric Research. Bull. Am. Meteorol. Soc. 2000, 81, 2341–2357. [Google Scholar] [CrossRef] [Green Version]
- Seemann, S.W.; Borbas, E.E.; Knuteson, R.O.; Stephenson, G.R.; Huang, H.L. Development of a Global Infrared Land Surface Emissivity Database for Application to Clear Sky Sounding Retrievals from Multispectral Satellite Radiance Measurements. J. Appl. Meteorol. Climatol. 2008, 47, 108–123. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S.; Yao, Y.; Zhang, X. Estimating the Optimal Broadband Emissivity Spectral Range for Calculating Surface Longwave Net Radiation. IEEE Geosci. Remote Sens. Lett. 2013, 10, 401–405. [Google Scholar] [CrossRef]
- Augustine, J.A.; Dutton, E.G. Variability of the surface radiation budget over the United States from 1996 through 2011 from high-quality measurements. J. Geophys. Res. Atmos. 2013, 118, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Borbas, E.E.; Ruston, B.C. The RTTOV UWiremis IR Land Surface Emissivity Module, Associate Scientist Mission Report; Mission no. AS09-04, Document NWPSAF-MO-VS-042, Version 1.0; Technical report, EUMETSAT Numerical Weather Prediction Satellite Applications Facility; Met Office: Exeter, UK, 2010.
- Ghent, D. Definition of a Common Nomenclature for LST (Technical Note). Technical Report. 2014. Available online: https://nwpsaf.eu/vs_reports/nwpsaf-mo-vs-042.pdf (accessed on 22 February 2019).
- JCGM. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. Technical Report JCGM 100, IEC BIPM, ILAC IFCC, and IUPAC ISO, Joint Committee for Guides in Metrology; 2008; GUM 1995 with Minor Corrections. Available online: https://ncc.nesdis.noaa.gov/documents/documentation/JCGM_100_2008_E.pdf (accessed on 22 February 2019).
- Pearson, R.K. Outliers in Process Modeling and Identification. IEEE Trans. Control Syst. Technol. 2002, 10, 55–63. [Google Scholar] [CrossRef]
- Göttsche, F.; Olesen, F.; Trigo, I.; Bork-Unkelbach, A. Validation of Land Surface Temperature Products with 5 Years of Permanent In-Situ Measurements in Different Climate Regions. EUMETSAT Meteorological Satellite Data Users’ Conference. 2013. Available online: https://www.researchgate.net/publication/261675804_VALIDATION_OF_LAND_SURFACE_TEMPERATURE_PRODUCTS_WITH_5_YEARS_OF_PERMANENT_IN-SITU_MEASUREMENTS_IN_4_DIFFERENT_CLIMATE_REGIONS (accessed on 22 February 2019).
- Göttsche, F.M.; Olesen, F.; Poutier, L.; Langlois, S.; Wimmer, W.; Garcia Santos, V.; Coll, C.; Niclos, R.; Arbelo, M.; Monchau, J.P. Report from the Field Inter-Comparison Experiment (FICE) for Land Surface Temperature. Technical Report. ESA, 2017. Available online: http://www.frm4sts.org/wp-content/uploads/sites/3/2018/10/FRM4STS_LST-FICE_report_v2017-11-20_signed.pdf (accessed on 22 February 2019).
- Ghent, D. GlobTemperature Project Technical Specification Document. Technical Report. ESA, 2016. Available online: http://www.globtemperature.info/index.php/public-documentation/deliverables-1/88-technical-specification-document-del-06/file (accessed on 22 February 2019).
- Caselles, E.; Valora, E.; Abadb, F.; Caselles, V. Automatic classification-based generation of thermal infrared land surface emissivity maps using AATSR data over Europe. Remote Sens. Environ. 2012, 124, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Liang, S. Global atmospheric downward longwave radiation over land surface under all-sky conditions from 1973 to 2008. J. Geophys. Res. 2009, 114, 1–12. [Google Scholar] [CrossRef]
Product ID | Sensor | Latest Version | Dataset Coverage | Spatial Resolution | Validated over Stations from Network | Validated Years | Matchup Spatial Dimensions | Matchup Temporal Dimensions |
---|---|---|---|---|---|---|---|---|
AATSR_LST_2 | AATSR | 2.1 | 20/05/2002–08/04/2012 | 1 km at nadir | KIT | 2010–2012 | 5 × 5; 0.01° cells | ≤0.5 min |
SURFRAD | 2003–2012 | 5 × 5/3 × 3/ 1 × 1; 0.01° cells depending on station | ≤1.5 min before 2009; ≤0.5 min since 2009 | |||||
GOES__LST_2 | GOES-EAST | 1.0 | 01/01/2010–31/12/2014 | 0.05° × 0.05° equal angle latitude—longitude grid | SURFRAD | 2010–2012 | 1 × 1; 0.05° cell | ≤1.5 min before 2009; ≤0.5 min since 2009 |
MOGSV_LST_2; MYGSV_LST_2 | MODIS-Terra; MODIS-Aqua | 2.0 | 05/03/2000–31/12/2014 (Terra); 05/03/2000–04/07/2014 (Aqua) | 1 km at nadir | KIT | 2010–2012 | 5 × 5; 0.01° cells | ≤0.5 min |
SURFRAD | 2003–2012 | 5 × 5/3 × 3/ 1 × 1; 0.01° cells depending on station | ≤1.5 min before 2009; ≤0.5 min since 2009 | |||||
SEVIR_LST_2 | SEVIRI | 1.0 | 01/01/2007–31/12/2015 | 0.05° × 0.05° equal angle latitude—longitude grid | KIT | 2010–2012 | 1 × 1; 0.05° cell | ≤0.5 min |
Code | Name | Network | Geographic Coordinates (Decimal Degrees, WGS 84) | Elevation (m) | Surface type (Fractional Coverage of End-Members for KIT Stations from [49]) | Validation Time Period |
---|---|---|---|---|---|---|
EVO | Evora, Portugal | KIT | 38.540244, −8.003368 | 230 | Savannas, woody savanna; 32% tree, 68% grass | 2010–2012 |
DAH_T | Dahra tree mast, Senegal | KIT | 15.402336, −15.432744 | 90 | Grassland; 96% grass, 4% tree | 2010–2011 |
GBB_W | Gobabeb wind tower, Namibia | KIT | −23.550956, 15.05138 | 406 | Bare ground; 75% gravel, 25% dry grass | 2010–2012 |
KAL_R | Rust mijn Ziel (RMZ) Farm, Kalahari, Namibia | KIT | −23.010532, 18.352897 | 1450 | Shrub land; 85% grass/soil, 15% tree | 2010–2011 |
KAL_H | Farm Heimat, Kalahari, Namibia | KIT | −22.932827, 17.992137 | 1380 | Shrub land; 37% tree/bush, 63% grass | 2011–2012 |
BND | Bondville, Illinois, USA | SURF-RAD | 40.05155, −88.37325 | 230 | Grassland | 2003–2012 |
TBL | Table Mountain, Boulder, Colorado, USA | SURF-RAD | 40.12557, −105.23775 | 1689 | Sparse grassland | 2003–2012 |
DRA | Desert Rock, Nevada, USA | SURF-RAD | 36.62320, −116.01962 | 1007 | Arid shrub land | 2003–2012 |
FPK | Fort Peck, Montana, USA | SURF-RAD | 48.30798, −105.10177 | 634 | Grassland | 2003–2012 |
GCM | Goodwin Creek, Mississippi, USA | SURF-RAD | 34.2547, −89.8729 | 98 | Grassland | 2003–2012 |
PSU | Pennsylvania State University, Pennsylvania, USA | SURF-RAD | 40.72033, −77.93100 | 376 | Cropland | 2003–2012 |
Satellites | AATSR | MOGSV | MYGSV | GOES_ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stations | Median [K] | STD [K] | # | Median [K] | STD [K] | # | Median [K] | STD [K] | # | Median [K] | STD [K] | # | |
BND__ * | Day | - | - | - | - | - | - | - | - | - | - | - | - |
Night | 0.30 | 1.82 | 58 | −0.58 | 1.54 | 165 | −0.49 | 1.18 | 104 | −0.37 | 1.79 | 108 | |
DRA__ | Day | 0.08 | 2.63 | 116 | 1.13 | 1.39 | 714 | 1.25 | 1.60 | 639 | −3.51 | 1.63 | 6822 |
Night | - | - | - | −1.28 | 1.28 | 876 | −1.31 | 1.25 | 802 | −3.04 | 1.55 | 344 | |
FPK__ * | Day | - | - | - | - | - | - | - | - | - | - | - | - |
Night | −0.24 | 2.42 | 94 | −1.63 | 1.84 | 731 | −0.72 | 1.28 | 525 | −0.94 | 2.12 | 270 | |
GCM__ | Day | 0.29 | 1.48 | 87 | −0.73 | 1.91 | 524 | −0.15 | 1.66 | 419 | −1.35 | 1.82 | 4664 |
Night | 1.77 | 1.45 | 103 | 1.36 | 1.34 | 508 | 1.50 | 1.45 | 267 | 1.52 | 1.74 | 300 | |
PSU__ | Day | 1.13 | 2.11 | 78 | −0.28 | 2.13 | 400 | 1.06 | 2.05 | 296 | −1.44 | 2.67 | 3603 |
Night | 1.15 | 2.46 | 95 | 1.04 | 1.93 | 432 | 1.41 | 1.22 | 276 | 1.88 | 1.89 | 268 | |
TBL__ | Day | 2.49 | 4.11 | 107 | 0.16 | 2.71 | 487 | −0.07 | 2.45 | 388 | −2.96 | 2.95 | 4934 |
Night | −1.05 | 1.42 | 99 | −1.59 | 1.59 | 594 | −1.16 | 1.29 | 490 | −0.33 | 2.14 | 286 |
Satellites | AATSR | MOGSV | MYGSV | SEVIR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stations | Median [K] | STD [K] | # | Median [K] | STD [K] | # | Median [K] | STD [K] | # | Median [K] | STD [K] | # | |
DAH_T * | Day | 0.81 | 2.74 | 50 | 1.42 | 3.60 | 121 | 1.78 | 3.50 | 134 | −0.43 | 3.99 | 3069 |
Night | 0.33 | 1.07 | 30 | −0.86 | 2.99 | 190 | −0.59 | 2.90 | 108 | −0.51 | 2.76 | 2801 | |
EVO__ | Day | 2.18 | 2.77 | 112 | −0.49 | 2.38 | 458 | 0.90 | 3.05 | 398 | 0.91 | 2.25 | 5580 |
Night | 2.01 | 1.04 | 127 | 0.96 | 1.68 | 559 | 1.88 | 1.55 | 421 | 0.53 | 1.59 | 6239 | |
GBB_W | Day | 3.06 | 2.15 | 142 | 3.43 | 1.73 | 567 | 2.61 | 1.48 | 674 | 0.26 | 1.91 | 10347 |
Night | 0.65 | 1.12 | 118 | 1.34 | 1.51 | 766 | 1.61 | 1.54 | 627 | −1.29 | 1.79 | 10336 | |
KAL_H ** | Day | 1.02 | 1.73 | 60 | 1.69 | 1.60 | 403 | 1.30 | 1.29 | 312 | −0.19 | 1.39 | 5084 |
Night | 2.40 | 0.39 | 47 | 2.23 | 1.20 | 358 | 2.01 | 1.35 | 329 | −0.48 | 1.19 | 5409 | |
KAL_R ** | Day | 2.88 | 1.20 | 55 | 2.31 | 1.71 | 236 | 3.82 | 1.66 | 180 | 0.56 | 2.00 | 3280 |
Night | −0.90 | 0.87 | 42 | −0.95 | 0.99 | 188 | −0.65 | 1.12 | 157 | −1.18 | 0.09 | 3155 |
Satellites | AATSR | MOGSV | MYGSV | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Stations | Median [K] | STD [K] | # | Median [K] | STD [K] | # | Median [K] | STD [K] | # | |
BND__ * | Day | - | - | - | - | - | - | - | - | - |
Night | 0.40 | 1.96 | 207 | −0.29 | 1.79 | 504 | −0.33 | 1.30 | 271 | |
DRA__ | Day | 0.83 | 2.67 | 506 | 1.48 | 1.85 | 2509 | 1.58 | 1.88 | 2239 |
Night | - | - | - | −0.92 | 1.23 | 2915 | −0.92 | 1.08 | 2736 | |
FPK__ * | Day | - | - | - | - | - | - | - | - | - |
Night | −0.21 | 2.03 | 334 | −1.29 | 1.63 | 2317 | −0.41 | 1.42 | 1649 | |
GCM__ | Day | 0.56 | 1.54 | 347 | −0.73 | 1.98 | 1574 | −0.16 | 1.76 | 1308 |
Night | 2.14 | 1.13 | 398 | 1.02 | 1.32 | 1614 | 1.18 | 1.28 | 783 | |
PSU__ | Day | 1.16 | 2.61 | 314 | −0.21 | 2.05 | 1263 | 0.59 | 1.99 | 983 |
Night | 1.05 | 2.59 | 446 | 0.82 | 1.97 | 1509 | 1.21 | 1.22 | 888 | |
TBL__ | Day | 2.48 | 4.36 | 520 | 0.58 | 2.67 | 1591 | 0.61 | 2.43 | 1265 |
Night | −1.01 | 1.57 | 387 | −1.55 | 1.53 | 1982 | −1.05 | 1.08 | 1455 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, M.A.; Ghent, D.; Pires, A.C.; Göttsche, F.-M.; Cermak, J.; Remedios, J.J. Comprehensive In Situ Validation of Five Satellite Land Surface Temperature Data Sets over Multiple Stations and Years. Remote Sens. 2019, 11, 479. https://doi.org/10.3390/rs11050479
Martin MA, Ghent D, Pires AC, Göttsche F-M, Cermak J, Remedios JJ. Comprehensive In Situ Validation of Five Satellite Land Surface Temperature Data Sets over Multiple Stations and Years. Remote Sensing. 2019; 11(5):479. https://doi.org/10.3390/rs11050479
Chicago/Turabian StyleMartin, Maria Anna, Darren Ghent, Ana Cordeiro Pires, Frank-Michael Göttsche, Jan Cermak, and John J. Remedios. 2019. "Comprehensive In Situ Validation of Five Satellite Land Surface Temperature Data Sets over Multiple Stations and Years" Remote Sensing 11, no. 5: 479. https://doi.org/10.3390/rs11050479
APA StyleMartin, M. A., Ghent, D., Pires, A. C., Göttsche, F. -M., Cermak, J., & Remedios, J. J. (2019). Comprehensive In Situ Validation of Five Satellite Land Surface Temperature Data Sets over Multiple Stations and Years. Remote Sensing, 11(5), 479. https://doi.org/10.3390/rs11050479